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A Theoretically Based Valve Noise 
Prediction Method for 
Compressible Fluids 
Noise generated by control valves in power generation, chemical and petrochemical 
plants must be predictable so that proper design measures can be taken to conform 
to OSHA 's noise regulation. Currently available noise prediction methods are em­
pirically based and not sufficiently accurate. The method proposed is based on jet 
noise theory for both subcritical and choked conditions, duct acoustics theory in 
terms of higher order mode generation and propagation, and the theory of 
acoustics-structure interaction in the development of the transmission loss values for 
the pipe. One third octave values are calculated over the audio spectrum by incor­
porating spectral aspects of noise generation, propagation, transmission, and radia­
tion. The predicted values of noise for several size cage globe valves over wide 
pressure ranges compare well with measured results by two prominent valve 
manufacturers. The method, at present, is restricted to conventional valve styles, as 
opposed to the special low noise valve types with their very complicated orificial 
elements. 

Introduction 
The noise generated by control valves and regulators in 

chemical, petrochemical, and steam power plants has received 
much attention over the last 10 years because of the potential 
health and communication hazards to workers inside the 
plants and the objectionable noise levels which are radiated in­
to surrounding communities. Typical noise levels inside large 
stream power plants can range up to 120 dBA in the vicinity of 
the large piping arrangements. Such levels are in excess of the 
OSHA limits for typical exposures of workers. 

The valve industry has responded to this problem by, on the 
one hand, developing valve noise prediction methods to aid 
the plant designers, and on the other hand, developing quieter 
valves which are based on concepts of multiple series and 
parallel expansion or tortuous path approaches. However, 
such quiet valves are far more complex than conventional 
valves, such as globe, butterfly, and simple trim configura­
tions, and may cost as much as 10 times more and, in several 
instances, result in reduced reliability. 

Most attention has been given to the aerodynamically 
generated noise situations, since the dominant noise genera­
tion process in the hydrodynamic case is cavitation. Cavitation 
almost always is accompanied by serious physical damage to 
the metering elements in the valve, due to cavitation erosion. 
Properly designed and used valves with liquids avoid cavita­
tion conditions. This paper, therefore, deals only with 
aerodynamically generated noise. A discussion of the 
background to valve noise prediction, with an extensive 
bibliography, is given in references fl] and [2]. At the present 
time, each valve manufacturer has developed its own valve 
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Fig. 1 Schematic representation of valve noise generation, propaga­
tion, transmission, and radiation 

noise prediction method. The methods are largely based on the 
results of measurements on many valves, over a limited range 
of sizes, and with only air, at ambient temperatures, as the 
fluid. Some valve companies have attempted to develop 
methods based on free jet noise theory, with only limited suc­
cess. Therefore, the accuracy of these prediction methods is 
not satisfactory, particularly if the methods are applied to 
valves larger than those tested and if the valve's throttling ele­
ment geometries differ from prior experience. The reasons for 
these difficulties will become apparent from the discussion of 
the various elements that enter into prediction methods. A re­
cent study of the variation in noise prediction using various 
manufacturers' methods [3] illustrates the present, not fully 
satisfactory, state of affairs. 

A recently published method by Dr. H. D. Baumann [4], 
representing many years of pioneering work, does appear 
promising. Certain facets of this work have been incorporated 
into the method presented in this paper. Dr. Baumann's work 
is based on the concept of an acoustic efficiency i/asa func­
tion of pressure recovery FL, pressures across the valve, a siz-
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Fig. 2 Typical pressure recovery characteristics downstream of valves 

ing coefficient and gas properties. The method does not incor­
porate several features, related to the acoustics inside the pipe 
and the pipe wall transmission, which are important for a 
general method. 

The construction of valves results almost always in rigid, 
massive valve bodies, which do not radiate significant acoustic 
energy. The propagation of sound upstream from the valves, 
even for subcritical pressure ratios, is not a serious problem. 

The processes associated with noise from valves and the 
associated piping can be broken down into four interrelated 
elements, which are pictured in Fig. 1: (1) the noise generation 
processes just downstream of the throttling elements which are 
either turbulent shear dominated or shock cell-turbulence in­
teraction dominated; (2) the development of the acoustic field 
inside the piping downstream of the valves; (3) the excitation 
of the pipe wall vibrations; and (4) the radiation of the sound 
into the space surrounding the downstream pipe. 

In order to approach the development of prediction 
methods, analytical relationships which describe these four 

processes must be developed. Considerable progress has been 
made over the last several years. Support of research at Penn 
State University by the National Science Foundation over 
several years and by several valve companies, as well as the ef­
forts of the Instrument Society of America's Valve Noise 
Prediction Task Force, has permitted this progress. 

Sound Power Determination 

Control valves are pressure-reducing devices controlling 
pressure or flow by throttling the fluid in the orificial 
elements. For subcritical pressurization, the noise is generated 
by the intense turbulent mixing of the high-velocity spatially 
complex jet, or several jets, emanating from the throttling 
elements. Pressure recovery, as shown schematically in Fig. 2, 
occurs in this mixing region because of the recirculating flows 
that are generated in the continued jet mixing process. 
Therefore, the noise generation process can not simply be 
treated as a free subsonic jet by applying the extensive jet noise 
research results related to jet engines. The pressure recovery 
coefficient FL is defined [5] by: 

P . _ P . 
(1) 

Pi -P,„ 

The pressure recovery characteristics of various valve styles 
are determined by their orifical geometry, the valve opening 
and valve gallery configuration. Thus, cage globe valves have 
low pressure recoveries (FL = 0.95) and butterfly valves have 
large pressure recoveries (FL » 0.5). A corollary of high-
pressure recovery is that sonic velocities will be reached at 
lower pressure ratios than for the case of no recovery. The 
critical pressure ratio for isentropic flow to the vena contracta 
is given by 

Nomenclature 

a = speed of sound, m/s 
Aj = jet area, m2 

Avc = vena contracta area, m2 

C„ = valve flow coefficient 
d = outside diameter of pipe, m 

Dj = effective diameter of valve 
orifice, m 

E = pipe wall material, modulus 
of elasticity, N/m2 

E2 = acoustic energy inside the 
pipe, N - m / s 

E0 = acoustic energy outside the 
pipe, N - m / s 

/ = frequency, Hz 
fi = one-third octave band center 

frequencies, Hz 
Fd = trim coefficient 
FL = pressure recovery coefficient 

G{M) = velocity correction factor 
K = stiffness, N/m 

kmn = radial wave number of mth 
circumferential and nth 
radial mode, 1/m 

k = wave number w/a2, 1/m 
kx = free space axial wave 

number, 1/m 
kxs = shell axial wave number 

(pipe), 1/m 
L„ = sound power level, dB 
[L] = matrix differential operator 

given in Appendix A 
LTL = pipe wall transmission loss, 

dB 

L, = 

m = 

me 

M 

P 
P 

R,„ — 

R 
s 

h 
(U,J 

w 
' ' f i r 

A weighted sound pressure 
level at outer pipe wall, dB 
A weighted sound pressure 
level at distance 5 from pipe, 
dB 
circumferential mode 
number (acoustic or pipe 
flexural) 
mass of a pipe element, kg 
convection flow Mach 
number in downstream pipe 
radial acoustic mode number 
apparent number of noise 
producing orifices 
absolute pressure, N/m 2 

RMS acoustic pressure, 
N/m2 

mechanical resistance of pipe 
radial dimension in 
cylindrical coordinates 
pipe internal radius, m 
mean pipe radius 
distance from centerline of 
pipe, m 
Strouhal number, Hz/Hz 
pipe wall thickness, m 
displacement vector in the u, 
v, w coordinates which are 
orthogonal in the r, 8, and x 
directions 
jet velocity, m/s 
acoustic power, W 

X = 

X = 
e = 
0 = 
7 = 

Vs = 

e = 

a = 
°o = 

v = 

Pj = 

Po = 

P = 

Ps = 

fi = 

ACO,- = 

01 = 

a = 

Subscript 

axial dimension in cylindrical 
coordinates 
mechanical reactance of pipe 
dimensionless parameter t kx 

dimensionless parameter h/R 
ratio of specific heats 
material loss factor (10 ~4 for 
steel) 
circumferential angle in 
cylindrical coordinates 
internal radiation efficiency 
external radiation efficiency 
pipe wall material, Poisson's 
ratio 
fluid density in emerging jet, 
kg/m3 

external fluid mass density, 
kg/m3 

internal fluid mass density, 
kg/m3 

pipe wall material mass den­
sity, kg/m3 

dimensionless parameter 
co?Vp(l - c2)/E 
frequency bandwidth, rad/s 
frequency, rad/s 
pressure ratio correction for 
recovery 

i 

1 = upstream condition 
2 = downstream condition 

vc = vena contracta condition 
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j / crit \ y + 1 / 

7 

T - l (2) 

Equation (1) can be combined with equation (2) to arrive at a 
critical pressure ratio in terms of P2, P\, FL, and 7. 

— ) =1 
Pl /crit 

"V V 7 + I / 

T 
7 -1 (3) 

The case of FL = 0.75 and air (7 = 1.4) gives a critical 
pressure ratio of Px/P2 = 1.36, compared to 1.89 for no 
recovery [4]. Thus, higher recovery valves choke at lower 
pressure ratios than low recovery valves. 

Research on simple orifices and valves followed by sections 
of straight pipe has shown that the noise generation process is 
dominated by dipole type acoustic sources [6]. Because of the 
"compact" nature of the internal radiating surfaces and the 
higher efficiencies of dipole radiators compared to the 
quadrupoles, which dominate the noise generation in free jets, 
the dipole sources dominate the noise from confined jets. The 
sound power Wac generated by dipoles is given by the follow­
ing proportionality 

W^ocpj VfAja-3 (4) 

Since the region of highest velocity for subsonic flow is at the 
vena contracta, the sound power generated will be dominated 
by that condition. The velocity in the vena contracta and the 
resulting Mach number are given by the following relation­
ships for isentropic flow (assuming Vx < < VttC): 

V2 = i^m>-m 
<< vv, 

7-1 

•-(£) 
7-1 
27 

A/?, „ = 
7" 1 (£) 

7 - 1 

7 

(5) 

(6) 

(7) 

The flow area in the vena contracta Avc is related to the 
value's flow coefficient Cv and FL defined by 

59,055 
[m2 (8) 

The sound power generated by the turbulent shear 
mechanisms in the subsonic flow regime becomes: 

M X W-WMt^F^ (^f) (9) 

The constant in equation (9) contains a reference acoustic to 
mechanical power conversion ratio for a sonic jet {Mvc = 1) of 
3 x 10~4 which is the result of measurements by the authors 
and others. This reference "acoustic efficiency" is the only 
empiricism in the method. 

Above the critical pressure ratio given by (3) the velocity in 
the vena contracta will remain sonic and stationary shock cells 
of increasing strength will appear as pressure ratio increases. 
Up to a certain pressure ratio given, by equation (10), the 
sound power as given by equation (11) continues to be 
dominated by turbulent mixing. 

P , a 
= [0.754(7 + 0.326)] 7 - 1 (10) 

7+1 

Wac = lx 10-VA3C„F iP l ( -A_) ^ " ^ (1 1) 

The vena contracta Mach number in equation (9) is replaced 
by the freely expanded jet Mach number Mjt which is given 
by: 

M / = -
7 - 1 

7 - ' 

y _ 1 (12) 

The recovery correction factor a is given by (at the critical 
pressure ratio, Muc = M,- = 1) 

7 

X - y + l / 

(Pl/POcr 

V 7 + 1 / 
(13) 

Above the pressure ratio given by (10) and up to M-s = V2 
(or (Mj2 - 1)1/2 = 1), the sound power generated is dominated 
by the shock-cell turbulence interaction noise mechanism, as 
first described by Powell [7], further developed by Harper-

Summed Effect Approximation 

Pre-Mach Disc 
Shock-cell Turb. Interaction 

Poat-Mach Disc -
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* f i l 

Choked (Turb. Mixing) 
a My6 1 
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FL = a = 1 

Pressure Ratio, [P1/P2) 

Fig. 3 Dependence of internal sound level on flow regime: turbulence, 
shock-turbulence interaction mechanisms 

10 

Journal of Vibration, Acoustics, Stress, and Reliability in Design JULY 1986, Vol. 108/331 
Downloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Bourne and Fisher [9] and recently refined by Seiner and 
Norum [8]. For valves, the sound power due to this 
mechanism can be expressed as: 

Wac = \A x 10-sa2
2(M/- D2 

l'a2CvFLPl(-±-) 
- l 

2(7-1) (14) 

where the quantity in brackets represents the choked mass 
flow. Above the pressure ratio at which Mj = V2, the shock cell 
structure becomes weaker, due to the formation of a Mach 
disk. This gives a fourth region to the sound power versus 
pressure ratio characteristic, which for air and FL = 1 starts at 
a pressure ratio of 3.25. The acoustic power in this region is 
proportional to (Mj2 — 1)1/2 and is given by: 

Wac = \.\ x 1 0 - 8 a 2
2 ( M / - l ) 1 / 2 

i^c^-L-) 
- l 

2(7-0 (15) 

Figure 3 shows a sample curve of the four mechanisms for 
the corrections shown. 

Spectral Characteristics of Noise Generated by Valves 

Since the pipe wall will be shown later to be a rather selec­
tive acoustic filter, it is necessary to break the overall acoustic 
power generated by the orificial elements of the valve into its 
spectral components. One-third octave band levels shall be 
used in the calculation procedures, overall the audible fre­
quencies from the 200 Hz to the 20,000 Hz bands. The final 
procedure will involve combining sound pressure band levels 
with pipe wall transmission loss band levels, and, if needed, 
the spectral absorption characteristics of the space into which 
the pipe radiates. Finally, the yl-weighted level will be 
calculated at the measurement point. 

The spectra for valves operating at subcritical pressure 
ratios have a single marked peak, which is commonly ex­
pressed in terms of a nondimensional frequency called the 
Strouhal number, Sn, given by the ratio of frequency times jet 
diameter Dj divided by jet velocity Vj. For the subcritical case, 
and also the turbulent mixing dominated choked region, the 
peak amplitude occurs at a Strouhal number of 0.2, which 
agrees with free jet theory and experiment. Thus the peak fre­
quency fp for the subcritical region is given by 

, 0.2 Mvca2 
fP= J ~ - (16) 

For conventional valves, the characteristic dimension Dj is 
given by: 

Dj = 0.0046 
(CyFL\ 

(17) 

The valve industry also uses a trim coefficient, Fd, which has 
been defined as: 

© (18) 

The characteristic dimension then becomes: 

Dj = 0.0046(CvFLy/2Fd (19) 

For the shock cell-turbulence interaction caused noise, the 
peak frequency is obtained by calculating the time rate with 
which pressure disturbances are convected through successive 
stationary shock cells. Based on both theoretical and ex­
perimental work on free jets and valves, in both the strong 
shock cell regime and the high-pressure ratio, weak shock cell 
regime, an expression for the peak frequency shall be used 

which is in effect the ratio of disturbance convection velocity 
and shock cell spacing: 

fP-
0.4a, 

l.25Dj(M/-iy 
(20) 

Tests have confirmed the theory, for dipole sources, that 
spectrum roll-off occurs a t / 4 below a n d / " 2 above the peak 
frequency. The transition from the peak frequency to the two 
flanks is obtained by fitting suitable equations between the 
peak frequency and the flanks. The relationship which has 
been used to calculate each one-third octave band is given by 

Lw(fl) = Lm(O.A.)-5.3 

l°^4i+(lt) ][1 + (f)1 • 2 V J L - V 2 / / J ™ 

where /• are the one-third octave band center frequencies for 
the respective / = 1 to / = 21 bands. The logarithmic sum of 
all the Lw's will be equal to the overall sound power level in­
side the pipe. 

Throughout the analysis it has been assumed that perfect 
gas relationships are valid. Should operation of the valve oc­
cur near the critical conditions, the ratio P/pRT is no longer 
constant and equal to 1, and the ratio of specific heats y is also 
affected. For steam, petrochemical gases, and other organic 
gases, corrections will become important to assure reliable 
noise prediction. The required correction relationships can be 
obtained from the thermodynamics literature and should be 
used to calculate the correct speed of sound and ratio of 
specific heats. 

Propagation of Sound Inside the Pipe With Flow 

Research has shown that, from the orifice of the valve to 
about 6 effective orifice diameters downstream, disturbances 
travel at the convection velocity of the stream. In this region 
the acoustic field develops. Beyond this region, the acoustic 
field is fully developed and disturbances propagate at the 
acoustic velocity of the medium, traveling essentially unat-
tenuated down the pipe in a very complex manner [10]. Since 
typical industrial applications contain expansions, elbows, 
tees and other valves, acoustic reflections will exist, which in 
turn result in standing waves. The analysis of the acoustic field 
in such situations usually becomes intractable. For this predic­
tion method, the pipe downstream of the valve is assumed to 
be of constant diameter and infinitely long. 

The solution to the wave equation for such cylindrical ducts 
has been well developed [11, 12]. A multiplicity of higher-
order modes, called spinning modes, is excited by a broad­
band sound source. Each of these modes is characterized by a 
critical frequency called the "cutoff" frequency. For frequen­
cies above the cutoff frequency, each mode will travel down 
the pipe unattenuated, with increasing group velocity (energy 
propagation) and decreasing phase velocity as frequency in­
creases. Below the cutoff frequency the amplitude of each 
mode attenuates rapidly with distance. The solution of the 
wave equation in cylindrical coordinates, with the imposition 
of hard-walled boundary conditions (zero radial velocity con­
dition at the wall), defines the characteristic radial wave 
number kmn and permits the development of the following 
dispersion relationship: 

_ -M1k-4k2-(\-M1
2)kmn

2 

1-M 2
2 (22) 

where kmn is the radial wave number for the /nth circumferen­
tial and nth radial mode. 

One of the more important assumptions of this analysis is 
that the pipe wall flexural vibrations do not affect the internal 
acoustic field, yet the acoustic field does uniquely determine 
the flexural excitation of the pipe wall. This assumption of 
separability is valid for the widely differing acoustic im-

332/Vol. 108, JULY 1986 Transactions of the ASME 
Downloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



-10 

T3 

-30 

-40 AW¥^^AV*A-
J _ 

1.0 
_L I 

2.5 10.0 

Fig. 4 
pipe. 

5.0 

Frequency — kHz 

Narrow band pipe wall acceleration spectrum of a 3-in. steel 

2.0-1 

.5-1 

V 
E I.8-, 

8.5j 
: 

1 
/ 
I 
N fl.Bi 
C 
H 

1 N S H E O E 0 R B 
FLUGGE AND KENNARD SHELL THEORIES 

PLUS=FLUGGES THEORY 
STAR=KENNARD'S THEORY 

MEAN PIPE RADIUS=2.I6 I N , THICKNESS=0.3 IN. 

i i i i i i i i i i I r i i i i i i i i | -r-r-i-r 

pedances of steel pipe and gases even at high pressures, but 
breaks down for gases in PVC pipe or liquids in steel pipe [13]. 

The fluctuating pressures acting on the inside surface of the 
pipe must be calculated for each of the modes that is excited. 
It will be shown in the next section that the pipe wall responds 
at the coincidence frequencies of each acoustic mode (m, ri) 
and the similar wth order pipe wall mode. It shall be assumed 
that the sound field is distributed uniformly across the pipe's 
internal area; in effect this corresponds to a plane wave ap­
proximation. The relationship between acoustic power and 
pressure is given by: 

p2=P2a2Wac/Trp
2 (23) 

Pipe Wall Vibratory Response 

The internal acoustic field, acting radially on the inside wall 
of the pipe, will excite a multiplicity of pipe wall normal flex-
ural modes. For each acoustic spinning mode, there is a 
similar pipe wall vibratory mode which may exhibit a match in 
its axial phase velocity at a particular frequency. The phase 
velocity equality requires an equality of axial wave numbers, a 
condition termed coincidence. At the coincidence frequency, it 
can be shown that the acoustic pressure field and transverse 
bending motions remain in phase over long axial distances, in­
teracting constructively as they propagate. At all other fre­
quencies above the coincidence frequencies, the two waves 
quickly go out of phase, interfering destructively and resulting 
in little if any pipe wall motion. Therefore, significant acoustic 
energy from inside the pipe is only transmitted at the coin­
cidence frequencies. 

The results of pipe wall acceleration measurements on a 
long, straight, 3-in. schedule 40 steel pipe, with a globe valve 
as a noise source, are given in Fig. 4. The 20-Hz bandwidth 
spectrum clearly shows that the spectrum is dominated by the 
energy transmitted at the coincidence frequencies of, for ex­
ample, the (3,1) mode. The peaks are as much as 25 dB higher 
than the broadband levels. Precise frequency measurements of 
the peak frequencies have consistently shown that the peaks 
do occur at exactly the respective modes' coincidence frequen-

FREOUENCY ( H Z ) 

Fig. 5 Comparison of axial wavenumbers for Flugge and Kennard thin 
shell theories 

1 . 0 _ 

0 . 4 -

FRESUENCY ( k H z ) 

Fig. 6 Dispersion plot for the (2,1) (2,2) modes 

cies [14]. For smaller pipe sizes, such as the 3-in. pipe (shown 
in Fig. 4) the number of coincidence conditions is very low, in­
dicating that one-third octave levels will be clearly dominated 
by only one coincidence. As pipe size increases, the modal 
density (the number of coincidence conditions per unit fre­
quency), increases markedly. Thus a 2-in. schedule 80 pipe has 
only 6 coincidences for frequencies up to 20,000 Hz, whereas 
an 8-in. schedule 40 pipe has 68 such coincidences. 

The analytical expressions for the pipe wall vibrational 
response are based on thin shell theory. The assumptions of 
this theory are: 

1 The thickness of the shell is restricted to values 
thickness to diameter ratios less than 1/10 to 1/20. 

of 
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Table 1 

M „ TRANSMISSION LOSS VALUES IN ANSI STEEL PIPES (DB) 
N W (2 
» = 3 (STANDARD AIR, MACH NO - 0.0) 
U u 0 
£ £ £ THIRD OCTAVE CENTER FREQUENCY, HZ 

* 200* 250* 315* 400* 500* 600* 800*1000*1250*1600*2000*2500*3150*4000*5000*6300*8000* 10K*12.5* 16K* 20K* 
In. 

1 

1 

1 

2 

2 

2 

3 

3 

3 

4 

4 

4 

6 

6 

6 

8 

8 

8 

10 

10 

10 

40 

80 

160 

40 

80 

160 

40 

80 

160 

40 

80 

160 

40 

80 

160 

40 

80 

160 

40 

80 

160 

0. 

0, 

0. 

0, 

0, 

0. 

0, 

0, 

0, 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

0. 

1. 

.133 

, 179 

.250 

.154 

.218 

,343 

,216 

,300 

,437 

,237 

,337 

,531 

,280 

,432 

,718 

,322 

,500 

,906 

365 

,593 

, 125 

87.6 

92.9 

94.9 

78.6 

83.3 

86.4 

77.7 

79.6 

80.9 

72.8 

78.5 

79.0 

70.6 

72.1 

74.3 

66.6 

75.5 

72.0 

64.3 

75.3 

70.0 

* 200' 

85.6 

90.9 

92.9 

76.6 

81.3 

84.4 

75.7 

77.6 

78.9 

70.8 

76.5 

77.0 

68.6 

70. 1 

72.3 

64.6 

73.5 

70.0 

62.3 

73.3 

68.0 

> 250' 

83.6 

88.9 

90.9 

74.6 

79.3 

82.4 

73.7 

75.6 

76.9 

68.8 

74.5 

75.0 

66.6 

68.1 

70.3 

62.6 

71.5 

68.0 

60.3 

71.3 

66.0 

' 315' 

81.6 

86.9 

88.9 

72.6 

77.3 

80.4 

71.7 

73.6 

74.9 

66.8 

72.5 

73.0 

64.6 

66.1 

68.3 

60.6 

69.5 

66.0 

58.3 

69.3 

64.0 

» 400' 

79.6 

84.9 

86.9 

70.6 

75.3 

78.4 

69.7 

71.6 

72.9 

64.8 

70.5 

71.0 

62.6 

64.1 

66.3 

58.6 

67.5 

64.0 

56.3 

67.3 

62.0 

> 500' 

77.6 

82.9 

84.9 

68.6 

73.3 

76.4 

67.7 

69.6 

70.9 

62.8 

68.5 

69.0 

60.6 

62.1 

64.3 

56.6 

65.5 

62.0 

54.3 

65.3 

60.0 

» 600' 

75.6 

80.9 

82.9 

66.6 

71.3 

74.4 

65.7 

67.6 

68.9 

60.8 

66.5 

67.0 

58.6 

60. 1 

62.3 

54.6 

63.5 

60.0 

52.3 

63.3 

58.0 

» 800' 

73.6 

78.9 

80.9 

64.6 

69.3 

72.4 

63.7 

65.6 

66.9 

58.8 

64.5 

65.0 

56.6 

58. 1 

60.3 

52.6 

61.5 

58.0 

54.2 

53.9 

56.0 

•1000' 

71.6 

76.9 

78.9 

62.6 

67.3 

70.4 

61.7 

63.6 
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Note to Table 1: This table is based on standard air. Accuracy at higher downstream pressures can be improved through use of a modified 
transmission loss defined below: 

f 408(1 + P,/105) + 4.93(/n 
LTL(fi)mod =^7B(/,)tab + 10 log10 TTT-T^J. " 1 0 log10[G(M2)] 

L 816 + 4.93;'/; J 
(Symbols and their units are as defined in the body of the paper. G(M2) is found from equation (32) for downstream Mach numbers greater 
than zero.) 
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Fig. 7 One-third octave sound pressure levels at 3 ft from pipe wall for 
a 6-in. cage-glove valve 

2 The material is linearly elastic, isotropic and homo­
geneous. 

3 The displacements are assumed to be small relative to the 
pipe thickness. 

4 Normal stress in the shell is negligible compared to the 
plane stresses. 

5 The Euler hypothesis that perpendicular deflection lines 
will remain perpendicular and unstrained is considered valid. 

6 Higher-order terms in the strain-displacement relation­
ship can be neglected. 

7 Shear deformations and rotary inertia effects are 
neglected. 

These relationships are based on the well-known Fliigge's 
thin shell theory [15]. 

The three differential equations of motion for the thin cylin­
drical shell, in the cylindrical coordinates x, 6, and r, can be 
written in matrix form, as given in equation (24) 

[L]fU,)=[0] (24) 

where (UJ,- is the displacement vector in the u, v, and w coor­
dinates, and [L] is the matrix differential operator given in 
Appendix A. 

The differential equation is solved for the axial wave 
number kx by assuming a harmonic time dependence for the 
displacements, of the form of equations (25) 
u = Blcos(kxsx)cos(m6);v = Bl8lsm(kxsx)sm(m,8); 

w = Bl8lsin(tkxsx)cos(m,6) (25) 

These relations are substituted into equation (24). After taking 
suitable derivatives and using the following dimensionless 
parameters: 

e = hkx;P = h/r;Q = coAVp(l - v2)/E (26) 

The differential equations are thereby reduced to a set of three 
algebraic equations, which can be written in matrix form, as in 
equation (27) 

(27) 

The terms of the A matrix are given in Appendix B. This 

AuA12A13 

A21A22A23 

A31A32A33 _ 

1 " 

« i 

. 8 2 . 

= 

"0 

0 

0 

matrix gives the important characteristic (or eigen) equation, 
which permits the structural wave number kxs to be deter­
mined as a function of frequency for each mode m. Figure 5 
shows an example of a shell wave number dispersion plot for 
mode 1. Solutions to a simplified form of Fliigge's equations, 
due to Kennard [16, 17], are also shown on the figure. Ken-
nard neglected second-order thickness terms in the shell equa­
tions of motion; therefore, Fliigge's formulation should pro­
vide more accurate results, particularly for pipes with thicker 
walls. This fact has been mentioned because Fagerlund's work 
[18, 19] on transmission loss in pipes is based on Kennard's 
approximation. The need for Fliigge's more complex formula­
tion has been questioned on several occasions; however, Ken­
nard's theory will often give higher wave number values (and 
thus higher coincidence frequencies). 

The dispersion relationship for the internal acoustic field, 
given in equation (22) can, for particular circumferential 
modes m and radial modes n, be combined with a dispersion 
relation of the similar pipe wall flexural mode, also of order 
AW, on a plot of axial wave numbers, kx and kxs, versus fre­
quency. An example is given in Fig. 6 for the second cir­
cumferential mode (jn = 2) and two radial acoustic modes 
(«=1 and n = 2) for a 3-in. pipe. The effect of convection 
velocity of the gas in the pipe is also shown on the acoustic 
dispersion plot, for Mach number values of M = 0, 0.15, and 
0.30. The coincidence frequencies are obtained by determining 
the intersection of the appropriate dispersion relationships, 
using an iterative procedure. 

From equation (27) it can be seen that the acoustic disper­
sion characteristic is dependent on the wave number k, which 
is inversely proportional to the speed of sound (a2) in the pipe. 
Thus, for M2 = 0, 

= Va7 -k 2 (28) 

where a2 = \lyRT2. At cutoff, kx = 0 and wco = a2km„. 
Therefore, the acoustic dispersion plots are functions of gas 
properties and gas temperature. The coincidence frequencies 
will shift to higher values with increasing gas temperature. It is 
necessary, therefore, to include gas properties 7 and R, as well 
as gas temperature, in the formulation of the dispersion 
relationship. 
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Fig. 8 Overall (A-weighted) sound pressure level comparison for a 6-in. 
cage globe valve at 3 ft downstream of valve and 3 ft away from pipe 
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Fig. 9 Overall (^-weighted) sound pressure level comparisons for a 
2-in. semi-spherical ball valve at 3 ft downstream of valve and 3 ft away 
from pipe 

Transmission Loss Relationship 

General Considerations. The transmission loss through the 
walls of a pipe is defined as 10 times the logarithm (base 10) of 
the ratio of acoustic energy inside the pipe to the energy in the 
external acoustic field. Several modes of transmission exist, 
depending on frequency regimes and dynamic characteristics 
of the acoustic field-pipe wall vibratory mode interaction. At 
frequencies below the first coincidence frequency, where 
energy propagation can occur only in plane wave ([0, 0]) 
modes, the transmission is controlled by stiffness. Above the 
first coincidence frequency, the transmission through the pipe 
wall is dominated by the subsequent coincidence conditions, 
which can be likened to resonances. Between coincidences, it is 
assumed that the transmission is controlled by the mass law. 
In terms of mechanical impedance concepts: 

•-Rm-J i(wne~) (29) 

The energy transmitted is related to the square of the im­
pedance; thus, in the stiffness controlled, low frequency 
region, the transmission loss is inversely proportional to the 

square of increasing frequency, and in the mass controlled 
region, transmission increases proportional to frequency 
squared. In terms of decibel measures, the transmission loss 
decreases in the stiffness controlled region by 6 dB per halving 
of frequency, and increases at the rate of 6 dB per doubling of 
frequency for mass controlled regions. 

The four general classes of solution methods to vibrating 
system are the classical, the statistical energy, the finite ele­
ment, and the integral transform methods. The use of a com­
bination of classical and statistical energy methods will reduce 
the analytical complexities to manageable levels. The com­
bined method is based on the work of Walter [12], Szechenji 
[20], Holmer and Anderson [21], Fahy [22], Mani [23] and is 
largely an adaption of Fagerlund's procedure [18, 19]. 

Transmission Loss Calculations. A relationship for each of 
the terms in the energy balance equation can be developed [18, 
19], and the structural to acoustic energy ratio can be ob­
tained, providing an expression for the transmission loss LTL 

equation (30) for each frequency band: 
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(Akxsi)G{M)ao0 J 

This general transmission loss relationship utilizes the internal 
and externa] gas properties, the pipe diameter and thickness, 
and the sum of the changes in the structural wave numbers, 
Akxsi, which occur after each coincidence and within a fre­
quency band of width AGJ and center frequency oo,-. The value 
of Akxsi is obtained for each coincidence from the previously 
discussed dispersion plots. It shall be assumed that radiation 
efficiencies are unity above the coincidence frequencies, up to 
the upper frequency of the one-third octave band struck about 
the coincidence frequency, and zero elsewhere. This assump­
tion can be justified for one-third octaves, but may result in 
significant errors for wider or narrower bands. If this upper 
frequency is higher than the limit of the standard one-third oc­
tave band which contains the coincidence, the spillover is add­
ed to contributions from the coincidences in the next higher 
band. 

The convection correction factor G(M) is given by equation 
(31): 

12 / 1+M \ T M / 2 - M \ "! 
G(M) = H ) ( ) + l n ( l - M ) (31) 

M3 V 2 + M / L 2 V 1 - M / J 

The one-third octave band transmission losses for pipe sizes 
ranging from 1 in. to 24 in. and the most common schedules 
have been calculated for convection velocities of zero and 
Mach 0.3. Table 1 is a sample of this result for 3 in. schedule 
40 pipe and a Mach number of 0.3. The downstream pipe con­
ditions are 14.7 psi and 68°F; the gas is air. The table also con­
tains a correction for differences in downstream density. 

An increase (decrease) in the speed of sound compared to 
air at standard conditions will shift the coincidence frequen­
cies upward (downward), changing the Akxs distributions in 
the one-third octave bands. Thus a significant change in LTL 

will occur; hence in order to fully account for changes in 
sound speed, a complete recalculation is required. 

Radiation From the Pipe Wall. The methods described in 
the previous sections calculate, in one-third octave bands, the 
power generated by the valve's orificial element, the conver­
sion of that power to a fluctuating pressure at the inner sur­
face of the pipe wall, and the transmission loss resulting in the 
sound pressures at the outer surface of the pipe wall. If the 
pipe is assumed to act as an infinitely long cylindrical radiator, 
radiating into a free field, the sound pressure levels at a 
distance (m) from the center of the pipe can be calculated by 

L , = L e - 1 0 1 o g 1 0 [ ^ - ] (32) 

The A weighted level is then obtained in the usual manner. 
Verification of Prediction Method. The accuracy of the 

comprehensive theoretically based prediction method has been 
tested by comparing the calculated sound pressure levels, for 
several styles of conventional valves, with actual test data pro­
vided by several major valve manufacturers. The test data are 
in one-third octave band sound pressure levels at a number of 
pressure ratios, ranging from subcritical (such as P]/P2 = 
1.12) to high-pressure ratios of 14 in the choked region. The 
complete method was programmed on the Penn State College 
of Engineering's VAX 11/780 minicomputer. A typical com­
parison resulting from a 6-in. cage-globe valve, is shown in 
Fig. 7. Satisfactory agreement over the whole spectrum is in­
dicated. The slopes of the skirts below and above the peak fre­
quency are well reproduced. The overall values on the A 
weighting have a better than 2-dB agreement. 

Figure 8 gives comparisons on the same 6-in. valve with 

pressure ratios ranging from 1.43 to 6.8. Agreement appears 
quite satisfactory between prediction and test data with this 
and most cases lying within 2-dB differences. The prediction 
method has also been applied with favorable results to the 
swage-piping systems, for example, a 4-in. valve opening into 
an 8-in. downstream pipe. Figure 9 shows the results for a 
2-in. semispherical ball valve. The predictions are consistently 
higher, by as much as 10 dB, for the 50 percent open valve, 
with the noise measurements deviating quite substantially 
from a smooth progression as pressure ratios increase. The 
agreement is somewhat better for the full open ball valve. It is 
suggested, based on the valve orifice configuration, that jet 
wall attachments and detachments occur, which could explain 
the somewhat erratic decrease in noise generation in this valve. 
The prediction method is of course not able to take account of 
any C„ and FL uncertainties, significant friction or multiple 
flow direction changes. Of great concern are the effects of 
bistable flows due to wall attachment, the Coanda effect 
which has been observed in Schlieren studies [6]. Noise reduc­
tions of 8 to 10 dB have been noted as a result of wall attach­
ment. The method provides reliable prediction for the much 
more common detached jets, and in fact predicts the max­
imum noise generation for this ball valve quite well. 

Conclusions 

A valve noise prediction method for compressible fluids 
have been developed which is based on analytical expressions 
which are derived from fundamental principles of fluid and 
applied mechanics. At this time, the method is limited to con­
ventional type control valves as opposed to quiet trims with 
very complex throttling elements. Also, the downstream pip­
ing must have a reasonably long length of straight section 
without fittings. On the other hand, swage type installations 
are acceptable provided the resulting changes in C„ and FL are 
incorporated. 

The method predicts the one-third octave (or octave) band 
levels and the A -weighted sound levels at any location from 
the pipe in a free acoustic field. 

The analytical details of the four pressure ratio regimes of 
sound generation, the calculation of the acoustic field inside 
the pipe, the pipe vibration characteristics, the resulting coin­
cidence frequencies, and the resulting transmission loss 
calculations require the computation capabilities of a 
minicomputer. 

For gases at a fixed sound speed, the method can be used 
with a hand-held programmable calculator, such as Hewlett-
Packard HP 41 CV with magnetic card reader. 

A large number of comparisons has been made between 
predicted A -weighted sound level and measurements provided 
by Fisher Controls Co. and Masoneilan International, wide 
pressure ratio ranges, for several valve styles and openings 
(lifts). With the exception of a ball valve, the agreement has 
been good with variations within ± 3 dB. The method has not 
been tested for high-temperature high-pressure steam, or gases 
other than air, because reliable data is simply not yet 
available. This fundamental-based valve noise predictiion 
method is a considerable improvement over the presently 
available methods, which are primarily based on empiricisms. 
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A P P E N D I X B 

The Terms of the Characteristics Matrix to be Solved for the 
Wave Number-Frequency-Mode Relationships 
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Differential Operator [L] in Fliigge's Formulation of the Thin 
Shell Equations 
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