

J. Geom. 80 (2004) 23 – 30 0047–2468/04/020023 – 8 © Birkhäuser Verlag, Basel, 2004 DOI 10.1007/s00022-004-1778-3

Journal of Geometry

## Complete caps in projective spaces PG(n, q)

Alexander A. Davydov, Stefano Marcugini and Fernanda Pambianco

Abstract. A computer search in the finite projective spaces PG(n, q) for the spectrum of possible sizes k of complete k-caps is done. Randomized greedy algorithms are applied. New upper bounds on the smallest size of a complete cap are given for many values of n and q. Many new sizes of complete caps are obtained.

*Mathematics Subject Classification (2000):* 51E21, 51E22, 94B05. *Key words:* Complete caps, computer search, projective spaces.

### 1. Introduction

Let PG(n, q) be the projective space of dimension *n* over the Galois field GF(q). A *k*-cap in PG(n, q) is a set of *k* points, no three of which are collinear. A *k*-cap in PG(n, q) is called complete if it is not contained in a (k + 1)-cap of PG(n, q). For an introduction to these geometric objects, see [10]–[12].

A complete cap in a geometry PG(n, q), points of which are treated as (n + 1)-dimensional q-ary columns, defines a parity check matrix of a q-ary linear code with codimension n + 1, Hamming distance 4, and covering radius 2 [12]. For an introduction to coverings of vector spaces over finite fields and the concept of code covering radius, see [3].

We use the following notation for constants of the projective space PG(n, q): as usual,  $m_2(n, q)$  is the size of the largest complete cap,  $m'_2(n, q)$  is the size of the second largest complete cap, and  $t_2(n, q)$  is the size of the smallest complete cap. The corresponding *best* known values are denoted by  $\bar{m}_2(n, q)$ ,  $\bar{m}'_2(n, q)$ , and  $\bar{t}_2(n, q)$ .

In this work, by computer search, we obtain a number of new values of  $\bar{m}_2(n, q)$ ,  $\bar{m}'_2(n, q)$ , and  $\bar{t}_2(n, q)$ . Also, many new sizes k for which a complete k-cap in PG(n, q) exists are obtained.

This work uses results of the survey [8]. The reference to the paper [8] means "see [8] and the references therein", and similarly for [12].

An approach to computer search is considered in Section 2. The sizes of the known complete *k*-caps in PG(*n*, *q*) with  $n \ge 3$ ,  $q \ge 2$ , are given in Section 3. New small complete *k*-caps with  $k = \overline{t}_2(3, q)$ , q < 30, are listed in the Appendix.

#### Alexander A. Davydov, Stefano Marcugini and Fernanda Pambianco

J. Geom.

|    |             | Sizes $k$ of the known complete caps with |                     |              |                       |                 |
|----|-------------|-------------------------------------------|---------------------|--------------|-----------------------|-----------------|
| q  | $t_2(3, q)$ | $t_2(3,q) \le k \le m_2'$                 | $\frac{q^2+q}{2}+2$ | $m'_2$       | <i>m</i> <sub>2</sub> | References      |
|    |             | $17 \le k \le 30$                         |                     |              |                       |                 |
| 7  | ≥ 12        | and $k = 32$                              | 30                  | 32           | 50                    | [8], [12], [14] |
| 8  | ≥ 14        | $20 \le k \le 41$                         | 38                  | $\leq 60$    | 65                    | [8], [14]       |
| 9  | ≥ 15        | $24 \le k \le 48$                         | 47                  | $\leq 78$    | 82                    | [8], [14], [15] |
| 11 | ≥ 18        | $30 \le k \le 69$                         | 68                  | ≤ 116        | 122                   | [8], [14]       |
|    |             | $37 \le k \le 89$                         |                     |              |                       |                 |
| 13 | ≥ 21        | and $k = 93$                              | 93                  | ≤ 162        | 170                   | [8], [14]       |
| 16 | ≥ 25        | $41 \le k \le 138$                        | 138                 | ≤ 245        | 257                   | [8], [12], [16] |
|    |             | $51 \le k \le 153$                        |                     |              |                       |                 |
| 17 | $\geq 26$   | and $k = 155$                             | 155                 | $\leq 278$   | 290                   | [8]             |
|    |             | $59 \le k \le 187$                        |                     |              |                       |                 |
| 19 | ≥ 29        | and $k = 189, 192$                        | 192                 | <i>≤</i> 348 | 362                   | [8]             |

Table 1 The sizes of the known complete *k*-caps in PG(3, q),  $7 \le q \le 19$ .

### 2. An approach to computer search

For the computer search we use a randomized greedy algorithm. At every step the algorithm minimizes or maximizes an objective function f, but some steps are executed in a random manner. The number of these steps and their ordinal numbers have been taken intuitively. If the same extremum of f can be obtained in distinct ways, one way is chosen randomly.

We begin to construct a complete cap using a starting set  $S_0$  of points. At every step one point is added to the set. As the value of the objective function f we consider the number of points in the projective space that lie on bisecants of the set obtained. As  $S_0$  we use a subset of points of a cap obtained in previous stages of the computer search. A random number generator is used for a random choice. To get caps with distinct sizes, starting conditions of the generator are changed for the same set  $S_0$ .

### **3.** On the spectrum of sizes of complete caps in PG(n, q)

In the beginning we consider non-binary caps with  $q \ge 3$ . We use bounds of [8, Tables 3.2, 4.3], [12, Section 4], and the following bounds [8, Theorems 3.3, 3.4, 4.4].

In PG(3, q) if K is a complete k-cap, then

$$k(k-1)(q+1)/2 - k(k-2) \ge |\mathsf{PG}(3,q)|; \tag{1}$$

24

Vol. 80, 2004

#### Complete caps in projective spaces PG(n, q)

$$m'_2(3,q) \le q^2 - q + 6$$
 if  $q \ge 7$  is odd; (2)

$$t_2(n,q) > \sqrt{2q^{n-1}}.$$
 (3)

For known constructions of k-caps in PG(n, q) see [8],[11], [12].

Table 1 gives sizes of the known complete caps in PG(3, q). We used the values of the cardinality of complete caps from [8, Table 3.2], [14]–[16]. New sizes are obtained by computer. In the tables  $m'_2 = m'_2(n, q)$ ,  $m_2 = m_2(n, q)$ .

Table 2 gives the sizes of the known complete caps in PG(n, q),  $n \ge 4$ ,  $q \ge 3$ . We used the values of the cardinality of complete caps from [1], [5], [2], [8, Table 4.3], and [14]. The new sizes of caps in this table are obtained by computer.

|   |   |             | Sizes $k$ of the known                             |    |             |            |
|---|---|-------------|----------------------------------------------------|----|-------------|------------|
|   |   |             | complete caps with                                 |    |             |            |
| n | q | $t_2(n,q)$  | $t_2(n,q) \le k \le m_2'$                          |    | $m_2$       | References |
| 4 | 4 | 16 ≤        | $k = 20 \text{ and } 22 \le k \le 40$              | 40 | 41          | [2], [8]   |
|   |   |             |                                                    |    |             | [8],[12],  |
| 4 | 5 | 21 ≤        | $31 \le k \le 61$                                  |    | <i>≤</i> 96 | [14]       |
|   |   |             |                                                    |    |             | [8],[12],  |
| 4 | 7 | 29 <i>≤</i> | $57 \le k \le 113$                                 |    | $\leq 285$  | [14]       |
| 5 | 3 | 20 ≤        | $k = 22, \ 26 \le k \le 44, \ \text{and} \ k = 48$ | 48 | 56          | [1],[8]    |
|   |   |             |                                                    |    |             | [8],[12],  |
| 5 | 4 | 31 ≤        | $50 \le k \le 108$ and $k = 112, 126$              |    | ≤ 159       | [14]       |
|   |   |             | $22 \cdot 2 = 44 \le k \le 94,$                    |    |             |            |
|   |   |             | $k \neq 45, 47, 49, 51,$                           |    |             | [1], [5],  |
| 6 | 3 | 34 ≤        | and $k = 56 \cdot 2 = 112$                         |    | ≤ 137       | [8],[12]   |
| 6 | 4 | 61 ≤        | $117 \le k \le 254$                                |    | $\leq 631$  | [8],[12]   |
|   |   |             | $44 \cdot 2 = 88 \le k \le 188$                    |    |             | [5],[8],   |
| 7 | 3 | $58 \leq$   | and $k = 112 \cdot 2 = 224$                        |    | $\leq 407$  | [12]       |
|   |   |             | $88 \cdot 2 = 176 \le k \le 380,$                  |    |             | [5], [8],  |
| 8 | 3 | $100 \leq$  | and $k = 224 \cdot 2 = 448$                        |    | ≤ 1217      | [12]       |
|   |   |             | $176 \cdot 2 = 352 \le k \le 784$                  |    |             | [5], [8],  |
| 9 | 3 | 172 ≤       | and $k = 448 \cdot 2 = 896$                        |    | ≤ 3647      | [12]       |

Table 2 The sizes of the known complete k-caps in PG(n, q),  $n \ge 4$ ,  $q \ge 3$ .

Tables 3 and 4 give the sizes of the known small complete caps in PG(3, q) and PG(n, q). The new sizes of caps obtained in this work are marked by the asterisk  $\star$ . From Table 3 and [8, Table 3.1] the following is deduced.

25

### Alexander A. Davydov, Stefano Marcugini and Fernanda Pambianco

| q  | $t_2(3,q)$ | $\overline{t}_2(3,q)$ | Refs. | q  | $t_2(3, q)$ | $\overline{t}_2(3,q)$ | Refs. |
|----|------------|-----------------------|-------|----|-------------|-----------------------|-------|
| 7  | ≥ 12       | 3q - 4 = 17           | [14]  | 43 | ≥ 63        | 3q + 26 = 154         | *     |
| 8  | ≥ 14       | 3q - 4 = 20           | [14]  | 47 | ≥ 69        | 3q + 33 = 173         | *     |
| 9  | ≥ 15       | 3q - 3 = 24           | [14]  | 49 | ≥ 72        | 3q + 38 = 184         | *     |
| 11 | ≥ 18       | 3q - 3 = 30           | [14]  | 53 | ≥ 77        | 3q + 40 = 199         | *     |
| 13 | ≥ 21       | 3q - 2 = 37           | [14]  | 59 | ≥ 86        | 3q + 45 = 222         | *     |
| 16 | ≥ 25       | 3q - 7 = 41           | [16]  | 61 | ≥ 89        | 3q + 50 = 233         | *     |
| 17 | ≥ 26       | 3q = 51               | *     | 64 | ≥ 93        | 3q + 2 = 194          | [8]   |
| 19 | $\geq 29$  | 3q + 2 = 59           | *     | 67 | ≥ 97        | 3q + 58 = 259         | *     |
| 23 | ≥ 35       | 3q + 4 = 73           | *     | 71 | ≥ 103       | 3q + 63 = 276         | *     |
| 25 | ≥ 38       | 3q + 7 = 82           | *     | 73 | ≥ 106       | 3q + 69 = 288         | *     |
| 27 | ≥ 41       | 3q + 9 = 90           | *     | 79 | ≥ 114       | 4q = 316              | *     |
| 29 | ≥ 43       | 3q + 10 = 97          | *     | 81 | ≥ 117       | 4q - 1 = 323          | *     |
| 31 | ≥ 46       | 3q + 13 = 106         | *     | 83 | ≥ 120       | 4q=332                | *     |
| 32 | $\geq 48$  | 3q + 2 = 98           | [8]   | 89 | ≥ 128       | 4q = 356              | *     |
| 37 | ≥ 55       | 3q + 20 = 131         | *     | 97 | ≥ 140       | 4q + 8 = 396          | *     |
| 41 | $\geq 60$  | 3q + 24 = 147         | *     |    |             |                       |       |

Table 3 The sizes  $\bar{t}_2(3, q)$  of the known small complete caps in PG(3, q).

THEOREM 1. In PG(3, q),

$$t_2(3,q) \le 4q$$
 for  $2 \le q \le 89$ . (4)

Now we consider binary caps with q = 2. We use the obvious relation

$$t_2(n,2) \ge \sqrt{2^{n+1}}$$
 (5)

and the bound  $t_2(6, 2) \ge 19$  based on the corresponding bound for linear covering codes [3]. We consider only *k*-caps with  $k \le 2^{n-1}$  since all possible parameters of binary complete caps of size  $k > 2^{n-1}$  are known [7].

In [9] binary k-caps in PG(n, 2) with k = f(n) are constructed. Here

$$f(7) = 28, \ f(2m) = 23 \times 2^{m-3} - 3, \ m \ge 4, \ f(2m-1) = 15 \times 2^{m-3} - 3, \ m \ge 5.$$
 (6)

From Table 5 and (6) the following result is deduced.

THEOREM 2. In spaces PG(n, 2),  $7 \le n \le 12$ , there exist k-caps of all sizes with

$$f(n) + D(n) \le k \le 2^{n-1} - 1, \quad 0 \le D(n) < 1.5n.$$
 (7)

26

# J. Geom.

Vol. 80, 2004

### Complete caps in projective spaces PG(n, q)

| n | q  | $t_2(n,q)$ | $\overline{t}_2(n,q)$ | References | п | q | $t_2(n,q)$ | $\bar{t}_2(n,q)$ | References |
|---|----|------------|-----------------------|------------|---|---|------------|------------------|------------|
| 4 | 4  | ≥ 16       | 20                    | [16]       | 5 | 4 | ≥ 31       | 50               | [14]       |
| 4 | 5  | ≥ 21       | 31                    | [14]       | 5 | 5 | ≥ 36       | 83               | [14]       |
| 4 | 7  | ≥ 29       | 57                    | [14]       | 5 | 7 | ≥ 70       | 176              | *          |
| 4 | 8  | ≥ 33       | 72                    | [14]       | 5 | 8 | ≥ 91       | 218              | [16]       |
| 4 | 9  | ≥ 39       | 87                    | *          | 5 | 9 | ≥ 115      | 304              | *          |
| 4 | 11 | ≥ 52       | 124                   | *          | 6 | 3 | ≥ 34       | 44               | [5]        |
| 4 | 13 | ≥ 67       | 163                   | *          | 6 | 4 | ≥ 61       | 117              | *          |
| 4 | 16 | ≥ 91       | 233                   | *          | 6 | 5 | $\geq 80$  | 131              | [5]        |
| 4 | 17 | $\geq 100$ | 257                   | *          | 6 | 7 | ≥ 121      | 349              | [5]        |
| 5 | 3  | $\geq 20$  | 22                    | [16]       |   |   |            |                  |            |

Table 4 The sizes  $\overline{t}_2(n, q)$  of the known small complete caps in PG(n, q).

|    |             | Sizes k of the known complete caps with             |             |
|----|-------------|-----------------------------------------------------|-------------|
| n  | $t_2(n, 2)$ | $t_2(n,q) \le k \le 2^{n-1}$                        | References  |
| 6  | ≥ 19        | $21 \le k \le 31, \ k \ne 23, 30$                   | [3],[4],[9] |
| 7  | ≥ 16        | $28 \le k \le 63$                                   | [9]         |
| 8  | ≥ 23        | $43 \le k \le 127$                                  | [9]         |
| 9  | ≥ 32        | $60 \le k \le 255, \ k = 57$                        | [9]         |
| 10 | ≥ 46        | $92 \le k \le 511, \ k = 89$                        | [9]         |
| 11 | ≥ 64        | $133 \le k \le 1023, \ k = 117, 125, 126, 129, 130$ | [9]         |
| 12 | ≥ 91        | $196 \le k \le 2047, \ k = 181, 189, 190, 193, 194$ | [9]         |

Table 5 The sizes of the known complete *k*-caps in PG(*n*, 2),  $k \le 2^{n-1}$ .

In fact, from Table 5 and (6), we have f(8) = 43, f(9) = 57, f(10) = 89, f(11) = 117, f(12) = 181, and D(7) = D(8) = 0, D(9) = D(10) = 3, D(11) = 16, D(12) = 15.

We conjecture that the relation (7) holds for all  $n \ge 7$  and moreover that D(n) = 0 for all  $n \ge 7$ .

## Appendix

We give new small complete *k*-caps with  $k = \bar{t}_2(3, q)$ , q < 30. Similarly to [6] and [14], we represent the elements of a Galois field GF(q) as follows:

 $\{0, 1, \dots, q-1\}$  if q is prime and we operate on these modulo q;  $\{0, 1 = \alpha^0, 2 = \alpha^1, \dots, q-1 = \alpha^{q-2}\}$ , where  $\alpha$  is a primitive element, if  $q = p^n$ , p prime.

J. Geom.

For addition we use a primitive polynomial generating the field. In this work the primitive polynomials are  $x^2 + x + 1$  for q = 4,  $x^3 + x + 1$  for q = 8,  $x^2 + 2x + 2$  for q = 9,  $x^4 + x^3 + 1$  for q = 16,  $x^2 + x + 2$  for q = 25,  $x^3 + 2x^2 + x + 1$  for q = 27,  $x^5 + x^3 + 1$  for q = 32,  $x^2 + x + 3$  for q = 49, [13]. We write a cap as a set of points.

 $\bar{t}_2(3, 17) = 51:$ (1,0,0,0), (0,1,7,15), (1,9,5,2), (0,1,2,9), (1,2,12,12), (1,6,15,14), (1,4,15,8), (1,8,16,1), (1,12,6,1), (1,5,11,11), (1,16,14,11), (1,11,8,9), (1,3,7,7), (1,9,6,12), (0,1,9,12), (1,6,5,2), (1,2,2,16), (1,4,15,16), (1,2,2,13), (1,5,3,14), (1,4,4,6),(1,12,8,5), (1,3,16,11), (0,1,3,2), (1,12,9,15), (1,0,5,13), (1,3,6,9), (0,1,4,7), (1,14,10,16), (1,12,12,9), (1,12,1,13), (1,8,16,10), (1,2,10,10), (1,3,3,2), (1,13,16,7),(1,4,7,12), (1,2,9,16), (1,4,1,13), (1,15,8,3), (1,13,16,3), (1,9,7,12), (1,11,16,14),(1,1,4,10), (1,13,1,14), (1,4,14,15), (0,1,6,4), (1,8,14,9), (1,8,0,12), (1,2,10,1), (1,10,3,9), (1,2,5,12)

 $\bar{t}_2(3, 19) = 59$ :

 $(\overline{1},0,0,0), (0,1,3,4), (1,10,5,13), (1,9,14,4), (1,12,11,10), (1,17,3,8), (1,6,0,4),$ (1,4,9,3), (1,13,10,10), (1,13,1,6), (0,1,15,14), (1,13,4,11), (1,15,18,17), (1,5,11,10),(1,9,13,4), (1,4,8,15), (1,9,2,8), (1,16,18,3), (1,9,16,5), (1,7,17,16), (1,1,5,9), (1,11,2,13), (1,11,10,3), (1,1,14,2), (1,3,9,7), (1,16,10,16), (1,5,18,0), (1,1,14,10),(1,18,9,15), (1,8,15,13), (0,1,8,2), (1,5,14,14), (1,7,12,13), (1,5,6,6), (1,17,4,7),(1,2,3,7), (0,1,8,3), (1,3,14,13), (1,4,13,13), (1,2,5,7), (1,16,14,16), (1,9,9,15), (1,4,11,2), (1,8,3,8), (1,11,0,15), (1,7,11,8), (1,8,6,16), (1,13,16,16), (1,3,13,7), (1,5,5,10), (1,6,1,6), (1,0,10,16), (1,7,1,2), (1,18,4,10), (1,2,2,2), (1,12,11,12),(1,16,9,3), (1,14,18,0), (1,4,10,3)

 $\bar{t}_2(3, 23) = 73$ :

(1,1,18,21), (1,2,1,11), (1,11,4,10), (1,21,1,1), (1,20,8,13), (1,9,15,10), (1,12,9,12), $\begin{array}{l} (1,1,16,21), (1,22,1,11), (1,11,12), (1,11,1,10), (1,22,1,11), (1,22,0,0,15), (1,2,10,10), (1,12,12), (12,12), (12,11,12), (1,12,11,12), (1,12,12), (1,14,13,4), (1,18,4,16), (1,2,20,21), (1,7,11,4), (1,22,19,19), (1,14,18,10), (1,11,2,20), (1,10,8,20), (1,8,8,22), (1,12,20,6), (1,4,9,1), (1,0,5,7), (1,0,16,7), (1,2,10,10), (1,22,20,13), (1,21,7,10), (1,10,11,22), (1,22,21,15), (1,0,10), (1,12,12,10), (1,12,12,10), (1,10,11,22), (1,22,21,15), (1,0,10), (1,12,12,10), (1,10,11,22), (1,22,21,15), (1,0,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,10,11,22), (1,22,21,15), (1,0,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,10), (1,12,1$ (0,1,21,20), (1,11,6,14), (1,3,10,14), (1,2,8,19), (1,1,5,13), (1,9,4,9), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16,21), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,22,16), (1,2(1,21,7,9), (0,1,11,19), (1,12,19,15), (1,15,1,11), (1,21,5,0), (1,11,11,0), (1,19,1,15), (1,13,0,1), (1,14,0,20), (1,18,20,9), (1,8,16,19), (1,21,10,10), (1,14,14,5), (1,3,19,19),(1,22,18,4), (1,0,13,12), (1,21,17,13), (1,8,0,11), (1,17,16,4), (1,0,13,15), (1,0,22,21), (1,15,0,19), (1,4,19,18), (1,13,1,5)

 $\bar{t}_2(3, 25) = 82$ :

(1,0,0,0), (0,1,1,23), (1,3,22,1), (1,0,1,8), (1,0,15,10), (1,8,8,2), (1,6,16,7),(1,5,20,8), (1,2,16,2), (1,4,6,19), (1,14,24,21), (1,17,24,21), (1,11,22,0), (1,18,13,2), (1,4,24,15), (1,16,3,13), (1,23,2,9), (1,10,12,10), (1,14,23,20), (1,14,4,19), (1,23,5,9),(1,14,13,5), (1,19,23,11), (1,3,19,13), (1,10,13,16), (1,3,5,11), (1,0,16,9), (1,7,11,3), (1,2,16,22), (1,1,7,4), (1,10,1,3), (1,10,24,9), (1,1,4,23), (1,23,1,8), (1,15,0,8),(1,15,4,0), (1,14,16,20), (0,1,21,18), (1,8,9,13), (1,5,13,11), (1,7,3,20), (1,18,10,22), (1,13,19,10), (1,1,15,0), (1,12,19,4), (1,24,19,1), (1,1,14,14), (1,16,3,5), (1,17,23,9), (1,12,19,4), (1,24,19,1), (1,1,14,14), (1,16,3,5), (1,17,23,9), (1,12,19,4), (1,24,19,1), (1,1,14,14), (1,16,3,5), (1,17,23,9), (1,12,19,4), (1,24,19,1), (1,1,14,14), (1,16,3,5), (1,17,23,9), (1,12,19,4), (1,24,19,1), (1,12,19,4), (1,24,19,1), (1,12,19,4), (1,24,19,1), (1,12,19,4), (1,24,19,1), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,4), (1,12,19,19), (1,12,19,19), (1,12,19,19), (1,12,19,19), (1,12,19,19), (1,(1,21,9,17), (1,1,20,14), (1,9,10,7), (1,20,0,19), (1,13,20,8), (1,1,5,19), (1,0,14,19), (1,0,6,24), (1,23,1,16), (1,6,3,7), (1,8,18,10), (0,1,3,5), (1,18,7,23), (1,8,19,13),(1,21,0,19), (1,12,5,4), (1,19,14,14), (1,2,3,20), (1,20,18,7), (1,18,19,9), (1,0,12,24), (1,21,19,4), (1,5,7,17), (1,4,15,21), (0,1,6,10), (1,11,24,9)

Vol. 80, 2004

$$\begin{split} \bar{r}_2(3,27) &= 90: \\ (1,0,0,0), (0,1,0,13), (1,1,22,6), (1,2,4,1), (1,2,0,25), (1,4,12,23), (1,9,15,16), \\ (1,19,26,24), (1,16,22,1), (1,26,21,17), (1,5,13,12), (1,8,15,7), (1,0,24,25), (1,14,16,15), \\ (1,2,4,2), (1,21,1,21), (1,3,7,20), (1,0,7,1), (1,3,24,12), (1,14,13,12), (1,19,10,24), \\ (1,15,26,0), (1,5,5,2), (1,11,17,4), (1,4,13,11), (1,2,17,5), (1,11,14,6), (1,25,22,26), \\ (1,24,3,22), (1,5,21,9), (1,16,8,1), (1,8,7,0), (1,6,26,18), (1,2,14,0), (1,7,11,1), \\ (1,23,14,6), (1,21,3,16), (1,11,5,13), (1,26,9,18), (1,7,1,24), (1,5,24,18), (1,20,5,3), \\ (1,0,18,22), (1,19,9,13), (1,21,2,13), (1,7,26,13), (1,15,20,14), (1,24,7,3), (1,24,13,24), \\ (1,1,21,21), (1,21,22,8), (1,13,10,4), (1,2,18,7), (1,11,4,15), (1,10,17,23), (1,24,4,15), \\ (1,23,0,25), (1,20,24,4), (1,20,22,25), (1,13,26,5), (1,20,0,5), (1,22,21,12), (1,6,17,18), \\ (1,16,11,14), (1,17,11,14), (1,0,14,3), (1,3,0,20), (1,21,18,21), (1,5,13,19), (1,3,16,0), \\ (1,7,8,5), (1,15,17,10), (1,10,13,19), (1,0,26,21), (1,23,8,14), (1,25,18,8), (1,13,10,26), \\ (1,0,16,22), (1,4,15,19), (1,20,11,19), (1,14,2,14), (1,2,20,9), (1,25,6,16) \end{split}$$

 $\bar{t}_2(3, 29) = 97$ :

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,3,19), (1,6,21,25), (1,3,13,20), (1,7,19,23), (1,14,25,14), (1,23,24,9), (1,16,7,27), (1,11,26,21), (1,13,14,10), (1,28,4,17), (1,20,27,5), (1,19,14,4), (1,20,3,23), (1,15,23,7), (1,14,21,2), (1,26,15,2), (1,3,5,8), (1,24,8,0), (1,5,19,3), (1,17,6,13), (1,6,0,22), (1,25,11,22), (1,19,19,15), (1,5,25,24), (1,6,20,11), (1,16,6,1), (1,28,22,2), (1,23,27,19), (1,7,6,4), (1,26,22,13), (1,26,26,26), (1,23,16,11), (1,15,24,23), (1,3,0,6), (1,4,15,15), (1,4,0,18), (1,14,28,24), (1,11,16,14), (1,2,16,21), (1,20,6,17), (1,5,27,6), (0,1,9,21), (1,21,11), (1,27,3,3), (1,12,18,22), (1,31,4), (1,27,16,6), (1,10,26,12), (1,2,13,6), (1,28,7,14), (1,11,13,0), (1,4,5,3), (1,24,13,8), (1,16,1,17), (1,10,26), (1,16,17,9), (1,12,13,26), (1,25,12,12), (1,28,67), (1,9,9,10), (1,18,24,6), (1,22,21,12), (1,25,5,11), (1,4,28,28), (1,25,12,12), (1,28,67), (1,9,9,10), (1,18,24,6), (1,22,21,12), (1,12,3,16), (1,19,20,12), (1,11,13), (1,17,21,14), (1,10,12,5), (1,1,22), (1,26,19), (1,17,24,28), (1,28,11,28), (1,11,23,2), (1,8,25,8), (1,14,22,5), (1,7,17,26), (1,02,09), (1,18,14,25), (1,5,8,4), (1,17,7,5), (1,10,3,11), (1,3,26,27), (1,9,0,25), (1,22,12,4), (1,8,16,5), (1,16,25,20), (1,14,27,3)

## References

- [1] J. Barát et al., Caps in PG(5, 3) and PG(6, 3), in: Proc. VII Intern. Workshop on Algebraic and Combinatorial Coding Theory, Bansko, Bulgaria, 2000, 65–67.
- [2] J. Bierbrauer and Y. Edel, 41 is the largest size of a cap in PG(4, 4), Des. Codes Cryptogr. 16 (1999) 151–160.
- [3] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland, Amsterdam, 1997.
- [4] A.A. Davydov, On spectrum of possible sizes of binary complete caps, Preprint, Institute for Information Transmission Problems, Russian Academy of Science, Moscow, 2002.
- [5] A.A. Davydov and P.R.J. Östergård, Recursive constructions of complete caps, J. Statist. Plann. Inference 95 (2001) 163–173.
- [6] A.A. Davydov and P.R.J. Östergård, On saturating sets in small projective geometries, European J. Combin. 21 (2000) 563–570.
- [7] A.A. Davydov and L.M. Tombak, Quasi-perfect linear binary codes with distance 4 and complete caps in projective geometry, Problems Inform. Transmission 25 (1989) 265–275.
- [8] G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in PG(n, q) exists, J. Geom. 62 (1998) 84–98.
- [9] E.M. Gabidulin, A.A. Davydov and L.M. Tombak, Linear codes with covering radius 2 and other new covering codes, IEEE Trans. Inform. Theory 37 (1991) 219–224.
- [10] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, second edition, Oxford University Press, Oxford, 1998.

#### Alexander A. Davydov, Stefano Marcugini and Fernanda Pambianco

J. Geom.

- [11] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.
- [12] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory, and finite projective spaces: update 2001, in: Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference, A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas, Eds., Developments in Mathematics 3, Kluwer Academic Publishers, Boston, 2000, 201–246.
- [13] R. Lidl and H. Niederreiter Finite Fields, Encyclopedia of Mathematics and its Applications 20, Addison-Wesley Publishing Company, Reading, 1983.
- [14] P.R.J. Östergård, Computer search for small complete caps, J. Geom. 69 (2000) 172–179.
- [15] F. Pambianco, A class of complete k-caps of small cardinality in projective spaces over fields of characteristic three, Discrete Math. 208–209 (1999) 463–468.
- [16] F. Pambianco and L. Storme, Small complete caps in spaces of even characteristic, J. Combin. Theory Ser. A 75 (1996) 70–84.

Alexander A. Davydov Institute for Information Transmission Problems Russian Academy of Science Bolshoi Karetnyi per. 19, GSP-4 101447 Moscow Russia e-mail: adav@iitp.ru Stefano Marcugini, Fernanda Pambianco Dipartimento di Matematica Università degli Studi di Perugia Via Vanvitelli 1 06123 Perugia Italy e-mail: gino@dipmat.unipg.it fernanda@dipmat.unipg.it

Received 16 April 2003; revised 14 January 2004.



To access this journal online: http://www.birkhauser.ch

30