Complete caps in projective spaces $\operatorname{PG}(n, q)$

Alexander A. Davydov, Stefano Marcugini and Fernanda Pambianco

Abstract. A computer search in the finite projective spaces $\operatorname{PG}(n, q)$ for the spectrum of possible sizes k of complete k-caps is done. Randomized greedy algorithms are applied. New upper bounds on the smallest size of a complete cap are given for many values of n and q. Many new sizes of complete caps are obtained.

Mathematics Subject Classification (2000): 51E21, 51E22, 94B05.
Key words: Complete caps, computer search, projective spaces.

1. Introduction

Let $\operatorname{PG}(n, q)$ be the projective space of dimension n over the Galois field GF (q). A k-cap in $\operatorname{PG}(n, q)$ is a set of k points, no three of which are collinear. A k-cap in $\operatorname{PG}(n, q)$ is called complete if it is not contained in a $(k+1)$-cap of $\operatorname{PG}(n, q)$. For an introduction to these geometric objects, see [10]-[12].

A complete cap in a geometry $\operatorname{PG}(n, q)$, points of which are treated as $(n+1)$-dimensional q-ary columns, defines a parity check matrix of a q-ary linear code with codimension $n+1$, Hamming distance 4 , and covering radius 2 [12]. For an introduction to coverings of vector spaces over finite fields and the concept of code covering radius, see [3].

We use the following notation for constants of the projective space $\operatorname{PG}(n, q)$: as usual, $m_{2}(n, q)$ is the size of the largest complete cap, $m_{2}^{\prime}(n, q)$ is the size of the second largest complete cap, and $t_{2}(n, q)$ is the size of the smallest complete cap. The corresponding best known values are denoted by $\bar{m}_{2}(n, q), \bar{m}_{2}^{\prime}(n, q)$, and $\bar{t}_{2}(n, q)$.

In this work, by computer search, we obtain a number of new values of $\bar{m}_{2}(n, q), \bar{m}_{2}^{\prime}(n, q)$, and $\bar{t}_{2}(n, q)$. Also, many new sizes k for which a complete k-cap in $\operatorname{PG}(n, q)$ exists are obtained.

This work uses results of the survey [8]. The reference to the paper [8] means "see [8] and the references therein", and similarly for [12].

An approach to computer search is considered in Section 2. The sizes of the known complete k-caps in $\operatorname{PG}(n, q)$ with $n \geq 3, q \geq 2$, are given in Section 3. New small complete k-caps with $k=\bar{t}_{2}(3, q), q<30$, are listed in the Appendix.

q	$t_{2}(3, q)$	Sizes k of the known complete caps with $t_{2}(3, q) \leq k \leq m_{2}^{\prime}$	$\frac{q^{2}+q}{2}+2$	m_{2}^{\prime}	m_{2}	References
7	≥ 12	$\begin{array}{r} 17 \leq k \leq 30 \\ \text { and } k=32 \end{array}$	30	32	50	[8], [12], [14]
8	≥ 14	$20 \leq k \leq 41$	38	≤ 60	65	[8], [14]
9	≥ 15	$24 \leq k \leq 48$	47	≤ 78	82	[8], [14], [15]
11	≥ 18	$30 \leq k \leq 69$	68	≤ 116	122	[8], [14]
13	≥ 21	$\begin{array}{r} 37 \leq k \leq 89 \\ \text { and } k=93 \end{array}$	93	≤ 162	170	[8], [14]
16	≥ 25	$41 \leq k \leq 138$	138	≤ 245	257	[8], [12], [16]
17	≥ 26	$\begin{array}{r} 51 \leq k \leq 153 \\ \text { and } k=155 \end{array}$	155	≤ 278	290	[8]
19	≥ 29	$\begin{gathered} 59 \leq k \leq 187 \\ \text { and } k=189,192 \end{gathered}$	192	≤ 348	362	[8]

Table 1 The sizes of the known complete k-caps in $\mathrm{PG}(3, q), 7 \leq q \leq 19$.

2. An approach to computer search

For the computer search we use a randomized greedy algorithm. At every step the algorithm minimizes or maximizes an objective function f, but some steps are executed in a random manner. The number of these steps and their ordinal numbers have been taken intuitively. If the same extremum of f can be obtained in distinct ways, one way is chosen randomly.

We begin to construct a complete cap using a starting set S_{0} of points. At every step one point is added to the set. As the value of the objective function f we consider the number of points in the projective space that lie on bisecants of the set obtained. As S_{0} we use a subset of points of a cap obtained in previous stages of the computer search. A random number generator is used for a random choice. To get caps with distinct sizes, starting conditions of the generator are changed for the same set S_{0}.

3. On the spectrum of sizes of complete caps in $\operatorname{PG}(n, q)$

In the beginning we consider non-binary caps with $q \geq 3$. We use bounds of [8, Tables 3.2, 4.3], [12, Section 4], and the following bounds [8, Theorems 3.3, 3.4, 4.4].

In $\mathrm{PG}(3, q)$ if K is a complete k-cap, then

$$
\begin{equation*}
k(k-1)(q+1) / 2-k(k-2) \geq|\mathrm{PG}(3, q)| ; \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
m_{2}^{\prime}(3, q) \leq q^{2}-q+6 \text { if } q \geq 7 \text { is odd; } \tag{2}\\
t_{2}(n, q)>\sqrt{2 q^{n-1}} . \tag{3}
\end{gather*}
$$

For known constructions of k-caps in $\operatorname{PG}(n, q)$ see [8],[11], [12].
Table 1 gives sizes of the known complete caps in $\operatorname{PG}(3, q)$. We used the values of the cardinality of complete caps from [8, Table 3.2], [14]-[16]. New sizes are obtained by computer. In the tables $m_{2}^{\prime}=m_{2}^{\prime}(n, q), m_{2}=m_{2}(n, q)$.

Table 2 gives the sizes of the known complete caps in $\operatorname{PG}(n, q), n \geq 4, q \geq 3$. We used the values of the cardinality of complete caps from [1], [5], [2], [8, Table 4.3], and [14]. The new sizes of caps in this table are obtained by computer.

n	q	$t_{2}(n, q)$	Sizes k of the known complete caps with $t_{2}(n, q) \leq k \leq m_{2}^{\prime}$	m_{2}^{\prime}	m_{2}	References
4	4	$16 \leq$	$k=20$ and $22 \leq k \leq 40$	40	41	[2], [8]
4	5	$21 \leq$	$31 \leq k \leq 61$		≤ 96	$\begin{gathered} {[8],[12],} \\ {[14]} \end{gathered}$
4	7	$29 \leq$	$57 \leq k \leq 113$		≤ 285	$\begin{gathered} \hline[8],[12], \\ {[14]} \end{gathered}$
5	3	$20 \leq$	$k=22,26 \leq k \leq 44$, and $k=48$	48	56	[1],[8]
5	4	$31 \leq$	$50 \leq k \leq 108$ and $k=112,126$		≤ 159	$\begin{gathered} {[8],[12],} \\ {[14]} \end{gathered}$
6	3	$34 \leq$	$\begin{gathered} 22 \cdot 2=44 \leq k \leq 94, \\ k \neq 45,47,49,51, \\ \text { and } k=56 \cdot 2=112 \end{gathered}$		≤ 137	$\begin{aligned} & {[1],[5],} \\ & {[8],[12]} \end{aligned}$
6	4	$61 \leq$	$117 \leq k \leq 254$		≤ 631	[8],[12]
7	3	$58 \leq$	$\begin{array}{r} 44 \cdot 2=88 \leq k \leq 188 \\ \text { and } k=112 \cdot 2=224 \end{array}$		≤ 407	$\begin{gathered} {[5],[8],} \\ {[12]} \end{gathered}$
8	3	$100 \leq$	$\begin{gathered} 88 \cdot 2=176 \leq k \leq 380, \\ \text { and } k=224 \cdot 2=448 \end{gathered}$		≤ 1217	$\begin{gathered} \hline[5],[8], \\ {[12]} \end{gathered}$
9	3	$172 \leq$	$\begin{gathered} 176 \cdot 2=352 \leq k \leq 784 \\ \text { and } k=448 \cdot 2=896 \end{gathered}$		≤ 3647	$\begin{gathered} {[5],[8],} \\ {[12]} \end{gathered}$

Table 2 The sizes of the known complete k-caps in $\operatorname{PG}(n, q), n \geq 4, q \geq 3$.
Tables 3 and 4 give the sizes of the known small complete caps in $\operatorname{PG}(3, q)$ and $\operatorname{PG}(n, q)$. The new sizes of caps obtained in this work are marked by the asterisk \star.
From Table 3 and [8, Table 3.1] the following is deduced.

q	$t_{2}(3, q)$	$\bar{t}_{2}(3, q)$	Refs.	q	$t_{2}(3, q)$	$\bar{t}_{2}(3, q)$	Refs.
7	≥ 12	$3 q-4=17$	$[14]$	43	≥ 63	$3 q+26=154$	\star
8	≥ 14	$3 q-4=20$	$[14]$	47	≥ 69	$3 q+33=173$	\star
9	≥ 15	$3 q-3=24$	$[14]$	49	≥ 72	$3 q+38=184$	\star
11	≥ 18	$3 q-3=30$	$[14]$	53	≥ 77	$3 q+40=199$	\star
13	≥ 21	$3 q-2=37$	$[14]$	59	≥ 86	$3 q+45=222$	\star
16	≥ 25	$3 q-7=41$	$[16]$	61	≥ 89	$3 q+50=233$	\star
17	≥ 26	$3 q=51$	\star	64	≥ 93	$3 q+2=194$	$[8]$
19	≥ 29	$3 q+2=59$	\star	67	≥ 97	$3 q+58=259$	\star
23	≥ 35	$3 q+4=73$	\star	71	≥ 103	$3 q+63=276$	\star
25	≥ 38	$3 q+7=82$	\star	73	≥ 106	$3 q+69=288$	\star
27	≥ 41	$3 q+9=90$	\star	79	≥ 114	$4 q=316$	\star
29	≥ 43	$3 q+10=97$	\star	81	≥ 117	$4 q-1=323$	\star
31	≥ 46	$3 q+13=106$	\star	83	≥ 120	$4 q=332$	\star
32	≥ 48	$3 q+2=98$	$[8]$	89	≥ 128	$4 q=356$	\star
37	≥ 55	$3 q+20=131$	\star	97	≥ 140	$4 q+8=396$	\star
41	≥ 60	$3 q+24=147$	\star				

Table 3 The sizes $\bar{t}_{2}(3, q)$ of the known small complete caps in $\operatorname{PG}(3, q)$.

THEOREM 1. In $\operatorname{PG}(3, q)$,

$$
\begin{equation*}
t_{2}(3, q) \leq 4 q \quad \text { for } 2 \leq q \leq 89 \tag{4}
\end{equation*}
$$

Now we consider binary caps with $q=2$. We use the obvious relation

$$
\begin{equation*}
t_{2}(n, 2) \geq \sqrt{2^{n+1}} \tag{5}
\end{equation*}
$$

and the bound $t_{2}(6,2) \geq 19$ based on the corresponding bound for linear covering codes [3]. We consider only k-caps with $k \leq 2^{n-1}$ since all possible parameters of binary complete caps of size $k>2^{n-1}$ are known [7].

In [9] binary k-caps in $\operatorname{PG}(n, 2)$ with $k=f(n)$ are constructed. Here

$$
\begin{equation*}
f(7)=28, f(2 m)=23 \times 2^{m-3}-3, m \geq 4, f(2 m-1)=15 \times 2^{m-3}-3, m \geq 5 \tag{6}
\end{equation*}
$$

From Table 5 and (6) the following result is deduced.
THEOREM 2. In spaces $P G(n, 2), 7 \leq n \leq 12$, there exist k-caps of all sizes with

$$
\begin{equation*}
f(n)+D(n) \leq k \leq 2^{n-1}-1, \quad 0 \leq D(n)<1.5 n . \tag{7}
\end{equation*}
$$

n	q	$t_{2}(n, q)$	$\bar{t}_{2}(n, q)$	References	n	q	$t_{2}(n, q)$	$\bar{t}_{2}(n, q)$	References
4	4	≥ 16	20	$[16]$	5	4	≥ 31	50	$[14]$
4	5	≥ 21	31	$[14]$	5	5	≥ 36	83	$[14]$
4	7	≥ 29	57	$[14]$	5	7	≥ 70	176	\star
4	8	≥ 33	72	$[14]$	5	8	≥ 91	218	$[16]$
4	9	≥ 39	87	\star	5	9	≥ 115	304	\star
4	11	≥ 52	124	\star	6	3	≥ 34	44	$[5]$
4	13	≥ 67	163	\star	6	4	≥ 61	117	\star
4	16	≥ 91	233	\star	6	5	≥ 80	131	$[5]$
4	17	≥ 100	257	\star	6	7	≥ 121	349	$[5]$
5	3	≥ 20	22	$[16]$					

Table 4 The sizes $\bar{t}_{2}(n, q)$ of the known small complete caps in $\operatorname{PG}(n, q)$.

		Sizes k of the known complete caps with	
n	$t_{2}(n, 2)$	References	
6	≥ 19	$21 \leq k \leq 31, k \neq 23,30$	$[3],[4],[9]$
7	≥ 16	$28 \leq k \leq 63$	$[9]$
8	≥ 23	$43 \leq k \leq 127$	$[9]$
9	≥ 32	$60 \leq k \leq 255, k=57$	$[9]$
10	≥ 46	$92 \leq k \leq 511, k=89$	$[9]$
11	≥ 64	$133 \leq k \leq 1023, k=117,125,126,129,130$	$[9]$
12	≥ 91	$196 \leq k \leq 2047, k=181,189,190,193,194$	$[9]$

Table 5 The sizes of the known complete k-caps in $\mathrm{PG}(n, 2), k \leq 2^{n-1}$.

In fact, from Table 5 and (6), we have $f(8)=43, f(9)=57, f(10)=89, f(11)=117$, $f(12)=181$, and $D(7)=D(8)=0, D(9)=D(10)=3, D(11)=16, D(12)=15$.

We conjecture that the relation (7) holds for all $n \geq 7$ and moreover that $D(n)=0$ for all $n \geq 7$.

Appendix

We give new small complete k-caps with $k=\bar{t}_{2}(3, q), q<30$. Similarly to [6] and [14], we represent the elements of a Galois field $\mathrm{GF}(q)$ as follows:
$\{0,1, \ldots, q-1\}$ if q is prime and we operate on these modulo $q ;\left\{0,1=\alpha^{0}, 2=\right.$ $\left.\alpha^{1}, \ldots, q-1=\alpha^{q-2}\right\}$, where α is a primitive element, if $q=p^{n}, p$ prime.

For addition we use a primitive polynomial generating the field. In this work the primitive polynomials are $x^{2}+x+1$ for $q=4, x^{3}+x+1$ for $q=8, x^{2}+2 x+2$ for $q=9$, $x^{4}+x^{3}+1$ for $q=16, x^{2}+x+2$ for $q=25, x^{3}+2 x^{2}+x+1$ for $q=27, x^{5}+x^{3}+1$ for $q=32, x^{2}+x+3$ for $q=49$, [13]. We write a cap as a set of points.

```
\mp@subsup{t}{2}{\prime}(3,17)=51:
(1,0,0,0), (0,1,7,15), (1,9,5,2), (0,1,2,9), (1,2,12,12), (1,6,15,14), (1,4,15,8),
(1,8,16,1), (1,12,6,1), (1,5,11,11), (1,16,14,11),(1,11,8,9), (1,3,7,7), (1,9,6,12),
(0,1,9,12), (1,6,5,2), (1,2,2,16), (1,4,15,16), (1,2,2,13), (1,5,3,14), (1,4,4,6),
(1,12,8,5), (1,3,16,11),(0,1,3,2), (1,12,9,15), (1,0,5,13), (1,3,6,9), (0,1,4,7),
(1,14,10,16), (1,12,12,9),(1,12,1,13), (1,8,16,10), (1,2,10,10), (1,3,3,2), (1,13,16,7),
(1,4,7,12), (1,2,9,16),(1,4,1,13),(1,15,8,3), (1,13,16,3), (1,9,7,12), (1,11,16,14),
(1,1,4,10), (1,13,1,14), (1,4,14,15), (0,1,6,4), (1,8,14,9), (1,8,0,12), (1,2,10,1),
(1,10,3,9), (1,2,5,12)
\mp@subsup{t}{2}{\prime}}(3,19)=59
(1,0,0,0), (0,1,3,4), (1,10,5,13), (1,9,14,4), (1,12,11,10), (1,17,3,8), (1,6,0,4),
(1,4,9,3), (1,13,10,10), (1,13,1,6),(0,1,15,14), (1,13,4,11),(1,15,18,17), (1,5,11,10),
(1,9,13,4), (1,4,8,15), (1,9,2,8), (1,16,18,3), (1,9,16,5), (1,7,17,16), (1,1,5,9),
(1,11,2,13), (1,11,10,3),(1,1,14,2), (1,3,9,7), (1,16,10,16), (1,5,18,0),(1,1,14,10),
(1,18,9,15), (1,8,15,13), (0,1,8,2), (1,5,14,14), (1,7,12,13), (1,5,6,6), (1,17,4,7),
(1,2,3,7), (0,1,8,3),(1,3,14,13), (1,4,13,13), (1,2,5,7),(1,16,14,16), (1,9,9,15),
(1,4,11,2), (1,8,3,8), (1,11,0,15), (1,7,11,8), (1,8,6,16), (1,13,16,16), (1,3,13,7),
(1,5,5,10), (1,6,1,6), (1,0,10,16), (1,7,1,2), (1,18,4,10), (1,2,2,2), (1,12,11,12),
(1,16,9,3), (1,14,18,0), (1,4,10,3)
```

$\bar{t}_{2}(3,23)=73:$
$(1,0,0,0),(0,1,1,7),(0,0,1,20),(1,6,22,14),(1,7,18,20),(1,8,0,12),(1,12,20,5)$,
$(1,3,1,16),(1,12,9,8),(1,19,14,9),(1,2,8,22),(1,15,18,21),(1,3,9,11),(1,21,12,9)$, $(1,1,18,21),(1,2,1,11),(1,11,4,10),(1,21,1,1),(1,20,8,13),(1,9,15,10),(1,12,9,12)$, $(0,1,16,7),(1,17,11,12),(1,8,19,13),(1,4,13,4),(1,18,4,16),(1,2,20,21),(1,7,11,4)$, $(1,22,19,19),(1,14,18,10),(1,11,2,20),(1,10,8,20),(1,8,8,22),(1,12,20,6),(1,4,9,1)$, $(1,0,5,7),(1,0,16,7),(1,2,10,10),(1,22,20,13),(1,21,7,10),(1,10,11,22),(1,22,21,15)$, $(0,1,21,20),(1,11,6,14),(1,3,10,14),(1,2,8,19),(1,1,5,13),(1,9,4,9),(1,22,16,21)$, $(1,21,7,9),(0,1,11,19),(1,12,19,15),(1,15,1,11),(1,21,5,0),(1,11,11,0),(1,19,1,15)$, $(1,13,0,1),(1,14,0,20),(1,18,20,9),(1,8,16,19),(1,21,10,10),(1,14,14,5),(1,3,19,19)$, $(1,22,18,4),(1,0,13,12),(1,21,17,13),(1,8,0,11),(1,17,16,4),(1,0,13,15),(1,0,22,21)$, $(1,15,0,19),(1,4,19,18),(1,13,1,5)$
$\bar{t}_{2}(3,25)=82$:
$(1,0,0,0),(0,1,1,23),(1,3,22,1),(1,0,1,8),(1,0,15,10),(1,8,8,2),(1,6,16,7)$,
$(1,5,20,8),(1,2,16,2),(1,4,6,19),(1,14,24,21),(1,17,24,21),(1,11,22,0),(1,18,13,2)$, $(1,4,24,15),(1,16,3,13),(1,23,2,9),(1,10,12,10),(1,14,23,20),(1,14,4,19),(1,23,5,9)$, $(1,14,13,5),(1,19,23,11),(1,3,19,13),(1,10,13,16),(1,3,5,11),(1,0,16,9),(1,7,11,3)$, $(1,2,16,22),(1,1,7,4),(1,10,1,3),(1,10,24,9),(1,1,4,23),(1,23,1,8),(1,15,0,8)$,
$(1,15,4,0),(1,14,16,20),(0,1,21,18),(1,8,9,13),(1,5,13,11),(1,7,3,20),(1,18,10,22)$, $(1,13,19,10),(1,1,15,0),(1,12,19,4),(1,24,19,1),(1,1,14,14),(1,16,3,5),(1,17,23,9)$, $(1,21,9,17),(1,1,20,14),(1,9,10,7),(1,20,0,19),(1,13,20,8),(1,1,5,19),(1,0,14,19)$, $(1,0,6,24),(1,23,1,16),(1,6,3,7),(1,8,18,10),(0,1,3,5),(1,18,7,23),(1,8,19,13)$,
$(1,19,16,23),(1,3,9,8),(1,11,14,15),(1,21,19,9),(1,15,11,7),(1,7,18,1),(1,9,14,21)$, $(1,21,0,19),(1,12,5,4),(1,19,14,14),(1,2,3,20),(1,20,18,7),(1,18,19,9),(1,0,12,24)$, $(1,21,19,4),(1,5,7,17),(1,4,15,21),(0,1,6,10),(1,11,24,9)$
$\bar{t}_{2}(3,27)=90:$
$(1,0,0,0),(0,1,0,13),(1,1,22,6),(1,2,4,1),(1,2,0,25),(1,4,12,23),(1,9,15,16)$,
$(1,19,26,24),(1,16,22,1),(1,26,21,17),(1,5,13,12),(1,8,15,7),(1,0,24,25),(1,14,16,15)$,
$(1,2,4,2),(1,21,1,21),(1,3,7,20),(1,0,7,1),(1,3,24,12),(1,14,13,12),(1,19,10,24)$,
$(1,15,26,0),(1,5,5,2),(1,11,17,4),(1,4,13,11),(1,2,17,5),(1,11,14,6),(1,25,22,26)$,
(1,24,3,22), (1,5,21,9), (1,16,8,1), (1,8,7,0), (1,6,26,18), (1,2,14,0), (1,7,11,1),
$(1,23,14,6),(1,21,3,16),(1,11,5,13),(1,26,9,18),(1,7,1,24),(1,5,24,18),(1,20,5,3)$, $(1,0,18,22),(1,19,9,13),(1,21,2,13),(1,7,26,13),(1,15,20,14),(1,24,7,3),(1,24,13,24)$, $(1,1,21,21),(1,21,22,8),(1,13,10,4),(1,2,18,7),(1,1,14,15),(1,10,17,23),(1,24,4,15)$, $(1,21,1,8),(1,11,9,12),(1,11,5,22),(1,9,25,15),(1,0,24,16),(1,22,3,4),(1,26,21,6)$, $(1,23,0,25),(1,20,24,4),(1,20,22,25),(1,13,26,5),(1,20,0,5),(1,22,21,12),(1,6,17,18)$, $(1,16,11,14),(1,17,11,14),(1,0,14,3),(1,3,0,20),(1,21,18,21),(1,5,13,19),(1,3,16,0)$, $(1,17,8,5),(1,15,17,10),(1,10,13,19),(1,0,26,21),(1,23,8,14),(1,25,18,8),(1,13,10,26)$, $(1,0,16,22),(1,4,15,19),(1,20,11,19),(1,14,2,14),(1,2,20,9),(1,25,6,16)$
$\bar{t}_{2}(3,29)=97:$
$(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,3,19),(1,6,21,25),(1,3,13,20),(1,7,19,23)$, $(1,14,25,14),(1,23,24,9),(1,16,7,27),(1,11,26,21),(1,13,14,10),(1,28,4,17)$,
$(1,20,27,5),(1,19,14,4),(1,20,3,23),(1,15,23,7),(1,14,21,2),(1,26,15,2),(1,3,5,8)$, $(1,24,8,0),(1,5,19,3),(1,17,6,13),(1,6,0,22),(1,25,11,22),(1,19,19,15),(1,5,25,24)$, $(1,6,20,11),(1,16,6,1),(1,28,22,2),(1,23,27,19),(1,7,6,4),(1,26,22,13),(1,26,26,26)$, $(1,23,16,11),(1,15,24,23),(1,3,0,6),(1,4,15,15),(1,4,0,18),(1,14,28,24),(1,11,16,14)$, $(1,2,16,21),(1,20,6,17),(1,5,27,6),(0,1,9,21),(1,21,1,11),(1,27,3,3),(1,12,18,22)$, $(1,13,1,4),(1,27,16,6),(1,10,26,12),(1,2,13,6),(1,28,7,14),(1,11,13,0),(1,4,5,3)$, $(1,24,13,8),(1,16,1,17),(1,1,0,26),(1,16,17,9),(1,12,13,26),(1,25,21,10),(1,4,1,5)$, $(1,3,22,4),(1,9,28,19),(1,6,9,12),(1,25,5,11),(1,4,28,28),(1,25,12,12),(1,28,6,7)$, $(1,9,9,10),(1,18,24,6),(1,22,21,12),(1,1,23,16),(1,19,20,12),(1,11,11,3),(1,17,21,14)$, $(1,10,12,5),(1,1,12,2),(1,12,6,19),(1,17,24,28),(1,28,11,28),(1,11,23,2),(1,8,25,8)$, $(1,14,12,25),(1,17,17,26),(1,0,20,9),(1,18,14,25),(1,5,8,4),(1,17,7,5),(1,10,3,11)$, $(1,3,26,27),(1,9,0,25),(1,22,12,4),(1,8,16,5),(1,16,25,20),(1,14,27,3)$

References

[1] J. Barát et al., Caps in $\operatorname{PG}(5,3)$ and $\operatorname{PG}(6,3)$, in: Proc. VII Intern. Workshop on Algebraic and Combinatorial Coding Theory, Bansko, Bulgaria, 2000, 65-67.
[2] J. Bierbrauer and Y. Edel, 41 is the largest size of a cap in PG(4, 4), Des. Codes Cryptogr. 16 (1999) 151-160.
[3] G. Cohen, I. Honkala, S. Litsyn and A. Lobstein, Covering Codes, North-Holland, Amsterdam, 1997.
[4] A.A. Davydov, On spectrum of possible sizes of binary complete caps, Preprint, Institute for Information Transmission Problems, Russian Academy of Science, Moscow, 2002.
[5] A.A. Davydov and P.R.J. Östergård, Recursive constructions of complete caps, J. Statist. Plann. Inference 95 (2001) 163-173.
[6] A.A. Davydov and P.R.J. Östergård, On saturating sets in small projective geometries, European J. Combin. 21 (2000) 563-570.
[7] A.A. Davydov and L.M. Tombak, Quasi-perfect linear binary codes with distance 4 and complete caps in projective geometry, Problems Inform. Transmission 25 (1989) 265-275.
[8] G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in $\operatorname{PG}(n, q)$ exists, J. Geom. 62 (1998) 84-98.
[9] E.M. Gabidulin, A.A. Davydov and L.M. Tombak, Linear codes with covering radius 2 and other new covering codes, IEEE Trans. Inform. Theory 37 (1991) 219-224.
[10] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, second edition, Oxford University Press, Oxford, 1998.
[11] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.
[12] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory, and finite projective spaces: update 2001, in: Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference, A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas, Eds., Developments in Mathematics 3, Kluwer Academic Publishers, Boston, 2000, 201-246.
[13] R. Lidl and H. Niederreiter Finite Fields, Encyclopedia of Mathematics and its Applications 20, AddisonWesley Publishing Company, Reading, 1983.
[14] P.R.J. Östergård, Computer search for small complete caps, J. Geom. 69 (2000) 172-179.
[15] F. Pambianco, A class of complete k-caps of small cardinality in projective spaces over fields of characteristic three, Discrete Math. 208-209 (1999) 463-468.
[16] F. Pambianco and L. Storme, Small complete caps in spaces of even characteristic, J. Combin. Theory Ser. A 75 (1996) 70-84.

Alexander A. Davydov
Institute for Information
Transmission Problems
Russian Academy of Science
Bolshoi Karetnyi per. 19, GSP-4
101447 Moscow
Russia
e-mail: adav@iitp.ru

Stefano Marcugini, Fernanda Pambianco
Dipartimento di Matematica
Università degli Studi di Perugia
Via Vanvitelli 1
06123 Perugia
Italy
e-mail: gino@dipmat.unipg.it
fernanda@dipmat.unipg.it

Received 16 April 2003; revised 14 January 2004.

