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Complete caps in projective spaces PG(n, q)

Alexander A. Davydov, Stefano Marcugini and Fernanda Pambianco

Abstract. A computer search in the finite projective spaces PG(n, q) for the spectrum of possible sizes k of
complete k-caps is done. Randomized greedy algorithms are applied. New upper bounds on the smallest size of
a complete cap are given for many values of n and q. Many new sizes of complete caps are obtained.
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1. Introduction

Let PG(n, q) be the projective space of dimension n over the Galois field GF(q). A k-cap
in PG(n, q) is a set of k points, no three of which are collinear. A k-cap in PG(n, q) is
called complete if it is not contained in a (k + 1)-cap of PG(n, q). For an introduction to
these geometric objects, see [10]–[12].

A complete cap in a geometry PG(n, q), points of which are treated as (n+1)-dimensional
q-ary columns, defines a parity check matrix of a q-ary linear code with codimension n+1,
Hamming distance 4, and covering radius 2 [12]. For an introduction to coverings of vector
spaces over finite fields and the concept of code covering radius, see [3].

We use the following notation for constants of the projective space PG(n, q): as usual,
m2(n, q) is the size of the largest complete cap, m′

2(n, q) is the size of the second largest
complete cap, and t2(n, q) is the size of the smallest complete cap. The corresponding best
known values are denoted by m̄2(n, q), m̄ ′

2(n, q), and t̄2(n, q).

In this work, by computer search, we obtain a number of new values of m̄2(n, q), m̄
′
2(n, q),

and t̄2(n, q). Also, many new sizes k for which a complete k-cap in PG(n, q) exists are
obtained.

This work uses results of the survey [8]. The reference to the paper [8] means “see [8] and
the references therein”, and similarly for [12].

An approach to computer search is considered in Section 2. The sizes of the known complete
k-caps in PG(n, q) with n ≥ 3, q ≥ 2, are given in Section 3. New small complete k-caps
with k = t̄2(3, q), q < 30, are listed in the Appendix.
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Sizes k of the known
complete caps with

q t2(3, q) t2(3, q) ≤ k ≤ m′
2

q2+q
2 + 2 m′

2 m2 References

17 ≤ k ≤ 30
7 ≥ 12 and k = 32 30 32 50 [8], [12], [14]
8 ≥ 14 20 ≤ k ≤ 41 38 ≤ 60 65 [8], [14]
9 ≥ 15 24 ≤ k ≤ 48 47 ≤ 78 82 [8], [14], [15]

11 ≥ 18 30 ≤ k ≤ 69 68 ≤ 116 122 [8], [14]
37 ≤ k ≤ 89

13 ≥ 21 and k = 93 93 ≤ 162 170 [8], [14]
16 ≥ 25 41 ≤ k ≤ 138 138 ≤ 245 257 [8], [12], [16]

51 ≤ k ≤ 153
17 ≥ 26 and k = 155 155 ≤ 278 290 [8]

59 ≤ k ≤ 187
19 ≥ 29 and k = 189, 192 192 ≤ 348 362 [8]

Table 1 The sizes of the known complete k-caps in PG(3, q), 7 ≤ q ≤ 19.

2. An approach to computer search

For the computer search we use a randomized greedy algorithm. At every step the algorithm
minimizes or maximizes an objective function f , but some steps are executed in a random
manner. The number of these steps and their ordinal numbers have been taken intuitively.
If the same extremum of f can be obtained in distinct ways, one way is chosen randomly.

We begin to construct a complete cap using a starting set S0 of points. At every step one
point is added to the set. As the value of the objective function f we consider the number of
points in the projective space that lie on bisecants of the set obtained. As S0 we use a subset
of points of a cap obtained in previous stages of the computer search. A random number
generator is used for a random choice. To get caps with distinct sizes, starting conditions
of the generator are changed for the same set S0.

3. On the spectrum of sizes of complete caps in PG(n, q)

In the beginning we consider non-binary caps with q ≥ 3. We use bounds of [8, Tables 3.2,
4.3], [12, Section 4], and the following bounds [8, Theorems 3.3, 3.4, 4.4].

In PG(3, q) if K is a complete k-cap, then

k(k − 1)(q + 1)/2 − k(k − 2) ≥ |PG(3, q)|; (1)
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m′
2(3, q) ≤ q2 − q + 6 if q ≥ 7 is odd; (2)

t2(n, q) >

√
2qn−1. (3)

For known constructions of k-caps in PG(n, q) see [8],[11], [12].

Table 1 gives sizes of the known complete caps in PG(3, q). We used the values of the
cardinality of complete caps from [8, Table 3.2], [14]–[16]. New sizes are obtained by
computer. In the tables m′

2 = m′
2(n, q), m2 = m2(n, q).

Table 2 gives the sizes of the known complete caps in PG(n, q), n ≥ 4, q ≥ 3. We used
the values of the cardinality of complete caps from [1], [5], [2], [8, Table 4.3], and [14].
The new sizes of caps in this table are obtained by computer.

Sizes k of the known
complete caps with

n q t2(n, q) t2(n, q) ≤ k ≤ m′
2 m′

2 m2 References

4 4 16 ≤ k = 20 and 22 ≤ k ≤ 40 40 41 [2], [8]
[8],[12],

4 5 21 ≤ 31 ≤ k ≤ 61 ≤ 96 [14]
[8],[12],

4 7 29 ≤ 57 ≤ k ≤ 113 ≤ 285 [14]
5 3 20 ≤ k = 22, 26 ≤ k ≤ 44, and k = 48 48 56 [1],[8]

[8],[12],
5 4 31 ≤ 50 ≤ k ≤ 108 and k = 112, 126 ≤ 159 [14]

22 · 2 = 44 ≤ k ≤ 94,
k �= 45, 47, 49, 51, [1], [5],

6 3 34 ≤ and k = 56 · 2 = 112 ≤ 137 [8],[12]
6 4 61 ≤ 117 ≤ k ≤ 254 ≤ 631 [8],[12]

44 · 2 = 88 ≤ k ≤ 188 [5],[8],
7 3 58 ≤ and k = 112 · 2 = 224 ≤ 407 [12]

88 · 2 = 176 ≤ k ≤ 380, [5], [8],
8 3 100 ≤ and k = 224 · 2 = 448 ≤ 1217 [12]

176 · 2 = 352 ≤ k ≤ 784 [5], [8],
9 3 172 ≤ and k = 448 · 2 = 896 ≤ 3647 [12]

Table 2 The sizes of the known complete k-caps in PG(n, q), n ≥ 4, q ≥ 3.

Tables 3 and 4 give the sizes of the known small complete caps in PG(3, q) and PG(n, q).
The new sizes of caps obtained in this work are marked by the asterisk �.
From Table 3 and [8, Table 3.1] the following is deduced.



26 Alexander A. Davydov, Stefano Marcugini and Fernanda Pambianco J. Geom.

q t2(3, q) t̄2(3, q) Refs. q t2(3, q) t̄2(3, q) Refs.

7 ≥ 12 3q − 4 = 17 [14] 43 ≥ 63 3q + 26 = 154 �

8 ≥ 14 3q − 4 = 20 [14] 47 ≥ 69 3q + 33 = 173 �

9 ≥ 15 3q − 3 = 24 [14] 49 ≥ 72 3q + 38 = 184 �

11 ≥ 18 3q − 3 = 30 [14] 53 ≥ 77 3q + 40 = 199 �

13 ≥ 21 3q − 2 = 37 [14] 59 ≥ 86 3q + 45 = 222 �

16 ≥ 25 3q − 7 = 41 [16] 61 ≥ 89 3q + 50 = 233 �

17 ≥ 26 3q = 51 � 64 ≥ 93 3q + 2 = 194 [8]
19 ≥ 29 3q + 2 = 59 � 67 ≥ 97 3q + 58 = 259 �

23 ≥ 35 3q + 4 = 73 � 71 ≥ 103 3q + 63 = 276 �

25 ≥ 38 3q + 7 = 82 � 73 ≥ 106 3q + 69 = 288 �

27 ≥ 41 3q + 9 = 90 � 79 ≥ 114 4q = 316 �

29 ≥ 43 3q + 10 = 97 � 81 ≥ 117 4q − 1 = 323 �

31 ≥ 46 3q + 13 = 106 � 83 ≥ 120 4q=332 �

32 ≥ 48 3q + 2 = 98 [8] 89 ≥ 128 4q = 356 �

37 ≥ 55 3q + 20 = 131 � 97 ≥ 140 4q + 8 = 396 �

41 ≥ 60 3q + 24 = 147 �

Table 3 The sizes t̄2(3, q) of the known small complete caps in PG(3, q).

THEOREM 1. In PG(3, q),

t2(3, q) ≤ 4q for 2 ≤ q ≤ 89. (4)

Now we consider binary caps with q = 2. We use the obvious relation

t2(n, 2) ≥
√

2n+1 (5)

and the bound t2(6, 2) ≥ 19 based on the corresponding bound for linear covering codes [3].
We consider only k-caps with k ≤ 2n−1 since all possible parameters of binary complete
caps of size k > 2n−1 are known [7].

In [9] binary k-caps in PG(n, 2) with k = f (n) are constructed. Here

f (7) = 28, f (2m) = 23 × 2m−3 − 3, m ≥ 4, f (2m − 1) = 15 × 2m−3 − 3, m ≥ 5. (6)

From Table 5 and (6) the following result is deduced.

THEOREM 2. In spaces PG(n, 2), 7 ≤ n ≤ 12, there exist k-caps of all sizes with

f (n) + D(n) ≤ k ≤ 2n−1 − 1, 0 ≤ D(n) < 1.5n. (7)
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n q t2(n, q) t̄2(n, q) References n q t2(n, q) t̄2(n, q) References

4 4 ≥ 16 20 [16] 5 4 ≥ 31 50 [14]
4 5 ≥ 21 31 [14] 5 5 ≥ 36 83 [14]
4 7 ≥ 29 57 [14] 5 7 ≥ 70 176 �

4 8 ≥ 33 72 [14] 5 8 ≥ 91 218 [16]
4 9 ≥ 39 87 � 5 9 ≥ 115 304 �

4 11 ≥ 52 124 � 6 3 ≥ 34 44 [5]
4 13 ≥ 67 163 � 6 4 ≥ 61 117 �

4 16 ≥ 91 233 � 6 5 ≥ 80 131 [5]
4 17 ≥ 100 257 � 6 7 ≥ 121 349 [5]
5 3 ≥ 20 22 [16]

Table 4 The sizes t̄2(n, q) of the known small complete caps in PG(n, q).

Sizes k of the known complete caps with
n t2(n, 2) t2(n, q) ≤ k ≤ 2n−1 References

6 ≥ 19 21 ≤ k ≤ 31, k �= 23, 30 [3],[4],[9]
7 ≥ 16 28 ≤ k ≤ 63 [9]
8 ≥ 23 43 ≤ k ≤ 127 [9]
9 ≥ 32 60 ≤ k ≤ 255, k = 57 [9]

10 ≥ 46 92 ≤ k ≤ 511, k = 89 [9]
11 ≥ 64 133 ≤ k ≤ 1023, k = 117, 125, 126, 129, 130 [9]
12 ≥ 91 196 ≤ k ≤ 2047, k = 181, 189, 190, 193, 194 [9]

Table 5 The sizes of the known complete k-caps in PG(n, 2), k ≤ 2n−1.

In fact, from Table 5 and (6), we have f (8) = 43, f (9) = 57, f (10) = 89, f (11) = 117,

f (12) = 181, and D(7) = D(8) = 0, D(9) = D(10) = 3, D(11) = 16, D(12) = 15.

We conjecture that the relation (7) holds for all n ≥ 7 and moreover that D(n) = 0
for all n ≥ 7.

Appendix

We give new small complete k-caps with k = t̄2(3, q), q < 30. Similarly to [6] and [14],
we represent the elements of a Galois field GF(q) as follows:

{0, 1, . . . , q − 1} if q is prime and we operate on these modulo q; {0, 1 = α0, 2 =
α1, . . . , q − 1 = αq−2}, where α is a primitive element, if q = pn, p prime.
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For addition we use a primitive polynomial generating the field. In this work the primitive
polynomials are x2 + x + 1 for q = 4, x3 + x + 1 for q = 8, x2 + 2x + 2 for q = 9,

x4 + x3 + 1 for q = 16, x2 + x + 2 for q = 25, x3 + 2x2 + x + 1 for q = 27, x5 + x3 + 1
for q = 32, x2 + x + 3 for q = 49, [13]. We write a cap as a set of points.

t2(3, 17) = 51:
(1,0,0,0), (0,1,7,15), (1,9,5,2), (0,1,2,9), (1,2,12,12), (1,6,15,14), (1,4,15,8),
(1,8,16,1), (1,12,6,1), (1,5,11,11), (1,16,14,11), (1,11,8,9), (1,3,7,7), (1,9,6,12),
(0,1,9,12), (1,6,5,2), (1,2,2,16), (1,4,15,16), (1,2,2,13), (1,5,3,14), (1,4,4,6),
(1,12,8,5), (1,3,16,11), (0,1,3,2), (1,12,9,15), (1,0,5,13), (1,3,6,9), (0,1,4,7),
(1,14,10,16), (1,12,12,9), (1,12,1,13), (1,8,16,10), (1,2,10,10), (1,3,3,2), (1,13,16,7),
(1,4,7,12), (1,2,9,16), (1,4,1,13), (1,15,8,3), (1,13,16,3), (1,9,7,12), (1,11,16,14),
(1,1,4,10), (1,13,1,14), (1,4,14,15), (0,1,6,4), (1,8,14,9), (1,8,0,12), (1,2,10,1),
(1,10,3,9), (1,2,5,12)

t2(3, 19) = 59:
(1,0,0,0), (0,1,3,4), (1,10,5,13), (1,9,14,4), (1,12,11,10), (1,17,3,8), (1,6,0,4),
(1,4,9,3), (1,13,10,10), (1,13,1,6), (0,1,15,14), (1,13,4,11), (1,15,18,17), (1,5,11,10),
(1,9,13,4), (1,4,8,15), (1,9,2,8), (1,16,18,3), (1,9,16,5), (1,7,17,16), (1,1,5,9),
(1,11,2,13), (1,11,10,3), (1,1,14,2), (1,3,9,7), (1,16,10,16), (1,5,18,0), (1,1,14,10),
(1,18,9,15), (1,8,15,13), (0,1,8,2), (1,5,14,14), (1,7,12,13), (1,5,6,6), (1,17,4,7),
(1,2,3,7), (0,1,8,3), (1,3,14,13), (1,4,13,13), (1,2,5,7), (1,16,14,16), (1,9,9,15),
(1,4,11,2), (1,8,3,8), (1,11,0,15), (1,7,11,8), (1,8,6,16), (1,13,16,16), (1,3,13,7),
(1,5,5,10), (1,6,1,6), (1,0,10,16), (1,7,1,2), (1,18,4,10), (1,2,2,2), (1,12,11,12),
(1,16,9,3), (1,14,18,0), (1,4,10,3)

t2(3, 23) = 73:
(1,0,0,0), (0,1,1,7), (0,0,1,20), (1,6,22,14), (1,7,18,20), (1,8,0,12), (1,12,20,5),
(1,3,1,16), (1,12,9,8), (1,19,14,9), (1,2,8,22), (1,15,18,21), (1,3,9,11), (1,21,12,9),
(1,1,18,21), (1,2,1,11), (1,11,4,10), (1,21,1,1), (1,20,8,13), (1,9,15,10), (1,12,9,12),
(0,1,16,7), (1,17,11,12), (1,8,19,13), (1,4,13,4), (1,18,4,16), (1,2,20,21), (1,7,11,4),
(1,22,19,19), (1,14,18,10), (1,11,2,20), (1,10,8,20), (1,8,8,22), (1,12,20,6), (1,4,9,1),
(1,0,5,7), (1,0,16,7), (1,2,10,10), (1,22,20,13), (1,21,7,10), (1,10,11,22), (1,22,21,15),
(0,1,21,20), (1,11,6,14), (1,3,10,14), (1,2,8,19), (1,1,5,13), (1,9,4,9), (1,22,16,21),
(1,21,7,9), (0,1,11,19), (1,12,19,15), (1,15,1,11), (1,21,5,0), (1,11,11,0), (1,19,1,15),
(1,13,0,1), (1,14,0,20), (1,18,20,9), (1,8,16,19), (1,21,10,10), (1,14,14,5), (1,3,19,19),
(1,22,18,4), (1,0,13,12), (1,21,17,13), (1,8,0,11), (1,17,16,4), (1,0,13,15), (1,0,22,21),
(1,15,0,19), (1,4,19,18), (1,13,1,5)

t2(3, 25) = 82:
(1,0,0,0), (0,1,1,23), (1,3,22,1), (1,0,1,8), (1,0,15,10), (1,8,8,2), (1,6,16,7),
(1,5,20,8), (1,2,16,2), (1,4,6,19), (1,14,24,21), (1,17,24,21), (1,11,22,0), (1,18,13,2),
(1,4,24,15), (1,16,3,13), (1,23,2,9), (1,10,12,10), (1,14,23,20), (1,14,4,19), (1,23,5,9),
(1,14,13,5), (1,19,23,11), (1,3,19,13), (1,10,13,16), (1,3,5,11), (1,0,16,9), (1,7,11,3),
(1,2,16,22), (1,1,7,4), (1,10,1,3), (1,10,24,9), (1,1,4,23), (1,23,1,8), (1,15,0,8),
(1,15,4,0), (1,14,16,20), (0,1,21,18), (1,8,9,13), (1,5,13,11), (1,7,3,20), (1,18,10,22),
(1,13,19,10), (1,1,15,0), (1,12,19,4), (1,24,19,1), (1,1,14,14), (1,16,3,5), (1,17,23,9),
(1,21,9,17), (1,1,20,14), (1,9,10,7), (1,20,0,19), (1,13,20,8), (1,1,5,19), (1,0,14,19),
(1,0,6,24), (1,23,1,16), (1,6,3,7), (1,8,18,10), (0,1,3,5), (1,18,7,23), (1,8,19,13),
(1,19,16,23), (1,3,9,8), (1,11,14,15), (1,21,19,9), (1,15,11,7), (1,7,18,1), (1,9,14,21),
(1,21,0,19), (1,12,5,4), (1,19,14,14), (1,2,3,20), (1,20,18,7), (1,18,19,9), (1,0,12,24),
(1,21,19,4), (1,5,7,17), (1,4,15,21), (0,1,6,10), (1,11,24,9)
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t2(3, 27) = 90 :
(1,0,0,0), (0,1,0,13), (1,1,22,6), (1,2,4,1), (1,2,0,25), (1,4,12,23), (1,9,15,16),
(1,19,26,24), (1,16,22,1), (1,26,21,17), (1,5,13,12), (1,8,15,7), (1,0,24,25), (1,14,16,15),
(1,2,4,2), (1,21,1,21), (1,3,7,20), (1,0,7,1), (1,3,24,12), (1,14,13,12), (1,19,10,24),
(1,15,26,0), (1,5,5,2), (1,11,17,4), (1,4,13,11), (1,2,17,5), (1,11,14,6), (1,25,22,26),
(1,24,3,22), (1,5,21,9), (1,16,8,1), (1,8,7,0), (1,6,26,18), (1,2,14,0), (1,7,11,1),
(1,23,14,6), (1,21,3,16), (1,11,5,13), (1,26,9,18), (1,7,1,24), (1,5,24,18), (1,20,5,3),
(1,0,18,22), (1,19,9,13), (1,21,2,13), (1,7,26,13), (1,15,20,14), (1,24,7,3), (1,24,13,24),
(1,1,21,21), (1,21,22,8), (1,13,10,4), (1,2,18,7), (1,1,14,15), (1,10,17,23), (1,24,4,15),
(1,21,1,8), (1,11,9,12), (1,11,5,22), (1,9,25,15), (1,0,24,16), (1,22,3,4), (1,26,21,6),
(1,23,0,25), (1,20,24,4), (1,20,22,25), (1,13,26,5), (1,20,0,5), (1,22,21,12), (1,6,17,18),
(1,16,11,14), (1,17,11,14), (1,0,14,3), (1,3,0,20), (1,21,18,21), (1,5,13,19), (1,3,16,0),
(1,17,8,5), (1,15,17,10), (1,10,13,19), (1,0,26,21), (1,23,8,14), (1,25,18,8), (1,13,10,26),
(1,0,16,22), (1,4,15,19), (1,20,11,19), (1,14,2,14), (1,2,20,9), (1,25,6,16)

t2(3, 29) = 97:
(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,3,19), (1,6,21,25), (1,3,13,20), (1,7,19,23),
(1,14,25,14), (1,23,24,9), (1,16,7,27), (1,11,26,21), (1,13,14,10), (1,28,4,17),
(1,20,27,5), (1,19,14,4), (1,20,3,23), (1,15,23,7), (1,14,21,2), (1,26,15,2), (1,3,5,8),
(1,24,8,0), (1,5,19,3), (1,17,6,13), (1,6,0,22), (1,25,11,22), (1,19,19,15), (1,5,25,24),
(1,6,20,11), (1,16,6,1), (1,28,22,2), (1,23,27,19), (1,7,6,4), (1,26,22,13), (1,26,26,26),
(1,23,16,11), (1,15,24,23), (1,3,0,6), (1,4,15,15), (1,4,0,18), (1,14,28,24), (1,11,16,14),
(1,2,16,21), (1,20,6,17), (1,5,27,6), (0,1,9,21), (1,21,1,11), (1,27,3,3), (1,12,18,22),
(1,13,1,4), (1,27,16,6), (1,10,26,12), (1,2,13,6), (1,28,7,14), (1,11,13,0), (1,4,5,3),
(1,24,13,8), (1,16,1,17), (1,1,0,26), (1,16,17,9), (1,12,13,26), (1,25,21,10), (1,4,1,5),
(1,3,22,4), (1,9,28,19), (1,6,9,12), (1,25,5,11), (1,4,28,28), (1,25,12,12), (1,28,6,7),
(1,9,9,10), (1,18,24,6), (1,22,21,12), (1,1,23,16), (1,19,20,12), (1,11,11,3), (1,17,21,14),
(1,10,12,5), (1,1,12,2), (1,12,6,19), (1,17,24,28), (1,28,11,28), (1,11,23,2), (1,8,25,8),
(1,14,12,25), (1,17,17,26), (1,0,20,9), (1,18,14,25), (1,5,8,4), (1,17,7,5), (1,10,3,11),
(1,3,26,27), (1,9,0,25), (1,22,12,4), (1,8,16,5), (1,16,25,20), (1,14,27,3)
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