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ABSTRACT: The objective of this work was to evalu-
ate the Nelore beef cattle, growth curve parameters
using the Von Bertalanffy function in a nested Bayesian
procedure that allowed estimation of the joint posterior
distribution of growth curve parameters, their (co)vari-
ance components, and the environmental and additive
genetic components affecting them. A hierarchical
model was applied; each individual had a growth trajec-
tory described by the nonlinear function, and each pa-
rameter of this function was considered to be affected
by genetic and environmental effects that were de-
scribed by an animal model. Random samples of the
posterior distributions were drawn using Gibbs sam-
pling and Metropolis-Hastings algorithms. The data set
consisted of a total of 145,961 BW recorded from 15,386
animals. Even though the curve parameters were esti-
mated for animals with few records, given that the in-
formation from related animals and the structure of
systematic effects were considered in the curve fitting,
all mature BW predicted were suitable. A large additive
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INTRODUCTION

In the Brazilian beef cattle industry, animal growth
has been evaluated using BW at standard ages, such as
birth, weaning, and 540 d of age, or BW gains. Selection
decisions are based on information from the beginning
of the growth process. Body weights at different ages
are highly and positively genetically correlated (Lôbo
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genetic variance for mature BW was observed. The pa-
rameter a of growth curves, which represents asymp-
totic adult BW, could be used as a selection criterion
to control increases in adult BW when selecting for
growth rate. The effect of maternal environment on
growth was carried through to maturity and should be
considered when evaluating adult BW. Other growth
curve parameters showed small additive genetic and
maternal effects. Mature BW and parameter k, related
to the slope of the curve, presented a large, positive
genetic correlation. The results indicated that selection
for growth rate would increase adult BW without sub-
stantially changing the shape of the growth curve. Se-
lection to change the slope of the growth curve without
modifying adult BW would be inefficient because their
genetic correlation is large. However, adult BW could
be considered in a selection index with its corresponding
economic weight to improve the overall efficiency of beef
cattle production.

et al., 2000; Albuquerque and Meyer, 2001), and an
increase in mature BW can be expected, increasing the
costs of maintaining a parent population. Selection for
growth has a correlated response increasing adult BW
in different species (Archer et al., 1998; Mignon-Gas-
treau et al., 2000; Piles et al., 2003). Including adult
BW in selection programs would be valuable, but many
animals reach slaughter weight before maturity so that
individual adult BW can only be recorded for a few
animals.

An alternative would be to use early predictors of
adult BW estimated from individual growth curves. The
usual functions applied to describe growth are based
on differential equations that seek a biological interpre-
tation (Arango and Van Vleck, 2002). The parameters
of these equations have a biological meaning related to
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initial conditions, growth rate, or adult BW, all linked
to economic aspects of production. Usually, the growth
function is predicted for each animal and, as a second
step, environmental effects and (co)variance compo-
nents of the parameters are estimated, ignoring the
adjustment errors from the first step. Information on
relatives is not considered when the curve parameters
are estimated (i.e., not all information is used, and ani-
mals with few records cannot be included in the
analysis).

The objective of this work was to evaluate the Nelore
cattle growth curve parameters using a nonlinear
model in a nested Bayesian procedure that allowed esti-
mation of the joint posterior distribution of growth
curve parameters, their (co)variance components, and
the environmental and additive genetic components af-
fecting them.

MATERIALS AND METHODS

The data used in the present study were not obtained
in experimental conditions. Animals whose data were
collected were raised on different commercial farms,
and non-special conditions or treatment were adopted
in order to provide such records. Therefore, Animal
Care and Use Committee approval was not required.

Data

Data were supplied by the ANCP (Associação Nacio-
nal de Criadores e Pesquisadores Ribeirão Preto, São
Paulo, Brazil), which has been running the Nelore
Breeding Program since 1987 (Lôbo et al., 2005). Calves
were born throughout the year, with a natural concen-
tration in spring and summer, and were weaned and
weighed at approximately 210 d of age. Besides wean-
ing, animals were weighed at 90-d intervals from birth
to 540 d of age, and those selected for reproduction were
continuously weighed every 90 d.

Records were extracted for animals that were reared
on pasture without supplemental feeding, did not have
a foster dam, did not receive veterinary treatment, had
dams older than 2 and younger than 16 yr of age, had
birth weights greater than 20 kg, had all BW within
the range given by the mean of all animals with the
same age ± 3 SD, had at least 5 valid BW (i.e., records
meeting the above conditions), and belonged to a con-
temporary group with at least 6 animals. The contempo-
rary group included sex, herd, management group, and
year and month of birth. The data set consisted of a
total of 145,961 BW recorded from 15,386 animals,
which were the offspring of 501 sires and 7,574 dams.
Pedigree information was obtained for 5 generations,
resulting in a total of 29,897 animals in the relationship
matrix. A greater number of records were taken at the
beginning of the growth process, until 540 d of age for
males and females, and adult BW were available mainly
from females. The data set had 5,661 BW records of
1,420 animals that were more than 4 yr of age.

The Model

A hierarchical model was applied to describe the
growth curve of each animal. Each individual had a
growth trajectory described by a nonlinear function,
and each parameter of this function was considered to
be affected by genetic and environmental effects that
were described by a linear model. In the first stage of the
model, it was assumed that individual growth curves
followed the Von Bertalanffy function (Von Bertalan-
ffy, 1957):

yij = ai [1 − bi exp (−ki tj)]3 + εij,

where yij is the observed BW of individual i at age j, ai

can be interpreted as the average mature BW main-
tained independent of short-term fluctuations, bi is a
time scale parameter related to the initial conditions,
ki is a parameter related to the rate of maturing, and
εij is the fitting error, which was considered to be inde-
pendent and normally distributed among individuals.
The fitting error variance (σ2

ε) was considered to be the
same for all animals at any time, and thus:

f(yij | ai, bi, ki, σ2
ε ) ∼ N{ai [1 − bi exp (−ki tj)]3, σ2

ε}.

In a second stage of the hierarchical model, genetic
and environmental effects were described in a linear
model, explaining the variation of growth curves among
individuals. Considering θ as a vector with the parame-
ters a, b, and k for all individuals:

θ = X β + Z u + W c + e,

where β is the vector of environmental effects (contem-
porary group and age of dam nested in the order of
calving); u is the vector of additive genetic effects; c is
the vector of maternal permanent environmental ef-
fects; X, Z, and W are the incidence matrices corres-
ponding to each effect; and e is the vector of residuals
associated with each parameter. These residuals were
also considered independent among individuals and
normally distributed. However, because of the biologi-
cal meaning of the parameters, the residual covariances
between parameters from the same individual were
considered different from zero. Therefore, for each indi-
vidual i, cov(eai, ebi) ≠ 0, cov(eai, eki) ≠ 0, and cov(ebi, eki)
≠ 0.

Details about the application of hierarchical models
for growth in animal breeding can be found in Varona
et al. (1997), Blasco et al. (2003), and Piles et al. (2003).

The Inference

The joint posterior distribution for individual growth
curve parameters, their (co)variance components, and
environmental and additive genetic effects was esti-
mated under a hierarchical Bayesian framework. Mar-
kov Chain Monte Carlo Methods (MCMC) were applied,
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using Metropolis-Hastings and Gibbs sampling algo-
rithms (Casella and George, 1992; Chib and Greenberg,
1995; Sorensen and Gianola, 2002).

The Conditional Density of Data. Assuming inde-
pendence among individuals, the conditional distribu-
tion of data y, given the curve parameters, was a prod-
uct of normal distributions:

f(y | θ, σ2
ε) = Π

N

i=1
Π
ni

j=1

1

√2πσε

[1]

exp
⎧
⎨
⎩

−[yij − ai(1 − bi exp − kitj)3]2

2σ2
ε

⎫
⎬
⎭
,

where N is the number of individuals with data and ni

is the number of BW recorded on each individual i.
The density of the growth curve parameters, given

the genetic and environmental effects, was a multivari-
ate normal distribution:

f(θ | β, u, G, c, P, R) = |R|−N/2 exp
⎡
⎢
⎣
−1

2 (θ − Xβ [2]

− Zu − Wc)′(R ⊗ I)−1(θ − Xβ − Zu − Wc)
⎤
⎥
⎦
,

where G is the additive genetic (co)variance matrix; P
is the maternal permanent environmental (co)variance
matrix; R the residual (co)variance matrix between the
parameters a, b, and k; and I is an identity matrix.

The Priors. A Bayesian probability model requires
assigning prior distributions for all unknown parame-
ters. Normal prior distributions were assumed for the
environmental and genetic effects:

f(β | m, V) ∝ |V|−1/2 exp
⎡
⎢
⎣
−1
2 (β − m)′V−1(β − m),

f(u | G, A) ∝ |G|−NA/2 exp
⎡
⎢
⎣
−1
2 u′(G ⊗ A)−1u

⎤
⎥
⎦
, and

f(c | P) ∝ |P|−Nd/2 exp
⎡
⎢
⎣
−1
2 c′(I ⊗ P)−1c

⎤
⎥
⎦
,

where m and V are subjective means and (co)variances
for the prior beliefs about the systematic effects, NA is
the number of animals in the genealogy, Nd is the num-
ber of dams of animals with records, I is an identity
matrix of order N, and A is the numerator relation-
ship matrix.

Prior distributions for the (co)variance matrices and
fitting error variance were assumed to be flat, with
limits that guaranteed proper posterior distributions,
as follows:

f(G) ∝ constant,

f(P) ∝ constant,

f(R) ∝ constant, and

f(σ2
ε ) ∝ constant.

The Posterior Distributions. Bayes theorem, as-
suming independence between priors, can be ex-
pressed by

f(θ, β, u, G, c, P, R, σ2
ε | y) ∝ f(y | θ, σ2

ε)

f(θ | β, u, G, c, P, R) f(β) f(u | G) f(G)

f(c | P) f(P) f(R) f(σ2
ε).

The sampling methods require random independent
draws from the conditional posterior distribution for
each parameter. Supposing θik is the kth growth curve
parameter for the ith animal, and θ_ik are the other
parameters for the ith animal and all parameters for
all other animals:

f(θik | θ_ik, β, u, G, c, P, R, σ2
ε, y) ∝ f(y | θ, σ2

ε)

f(θ | β, u, G, c, P, R)

∝ f(yi | θi, σ2
ε)

f(θik | θ_ik, β, u, G, c, P, R) f(θ_ik | β, u, G, c, P, R)

∝ f(yi | θik, θ_ik, σ2
ε) f(θik | θ_ik, β, u, G, c, P, R).

The fully conditional distributions of parameters of
hierarchical multistage models were derived by Sore-
nsen and Gianola (2002). In the present work, the fully
conditional distributions of growth curve parameters
are products of the conditional distribution of data (Eq.
[1]) and the prior distribution of the growth curve pa-
rameters (Eq. [2]). The same conditional structure was
presented by Varona et al. (1999) in a simulation study
applying the Von Bertalanffy function.

Supposing ai, bi, and ki are the means of parameters
given the genetic and environmental effects, and raa,
rbb, rkk, rab, rak, and rbk are the corresponding elements
of the inverse of the residual (co)variance matrix (R),
then the fully conditional distribution of parameter a
can be written as

f(ai | bi, ki, β, u, G, c, P, R, σ2
ε, y)

∝ f(ai | bi, ki, σ2
ε, yi) f(ai | bi, ki, β, u, G, c, P, R ),

where

f(ai | bi, ki, σ2
ε, yi) ∼ N

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∑
ni

j=1

yij(1 − bi exp (−kitj))3

∑
ni

j=1

[(1 − bi exp (−kitj))3]2

,
σ2

ε

∑
ni

j=1

[(1 − bi exp (−kitj))3]2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

and
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f(ai | bi, ki, β, u, G, c, P, R)

∼ N
⎡
⎢
⎣
ai − (bi − bi)

rab

raa − (ki − ki)
rak

raa,
1

raa

⎤
⎥
⎦
.

The fully conditional distribution of parameter b can
be written as

f(bi | ai, ki, β, u, G, c, P, R, σ2
ε, y)

∝ f(bi | ai, ki, σ2
ε, yi) f(bi | ai, ki, β, u, G, c, P, R ),

where

f(bi | ai, ki, σ2
ε, yi)

∝ Π
ni

j=1

exp
⎧
⎨
⎩
−[yij − ai(1 − bi exp (−kitj))3]2

2σ2
ε

⎫
⎬
⎭
,

and

f(bi | ai, ki, β, u, G, c, P, R)

∼ N
⎡
⎢
⎣
bi − (ai − ai)

rab

rbb − (ki − ki)
rbk

rbb,
1

rbb

⎤
⎥
⎦
.

The fully conditional distribution of parameter k can
be written as

f(ki | ai, bi, β, u, G, c, P, R, σ2
ε, y)

∝ f(ki | ai, bi, σ2
ε, yi) f(ki | ai, bi, β, u, G, c, P, R),

where

f(ki | bi, ki, σ2
ε, yi)

∝ Π
ni

j=1

exp
⎧
⎨
⎩
−[yij − ai(1 − bi exp(−kitj))3]2

2σ2
ε

⎫
⎬
⎭
,

and

f(ki | ai, ki, β, u, G, c, P, R)

∼ N
⎡
⎢
⎣
ki − (ai − ai)

rak

rkk − (bi − bi)
rbk

rkk,
1

rkk

⎤
⎥
⎦
.

Therefore, the parameter a could be easily sampled
from a normal distribution, but the conditional poste-
rior densities of parameters b and k did not have a
known form. In these cases, the Metropolis-Hastings
algorithm with normal proposal distribution centered
on the values of bi and ki sampled in the immediately
previous iteration was used.

The mixed model equations were constructed as if
the observed traits were the growth curve parameters:

⎡
⎢
⎢
⎣

X′R−1X + V−1 X′R−1Z X′R−1W

Z′R−1X Z′R−1Z + (G ⊗ A)−1 Z′R−1W

W′R−1X W′R−1Z W′R−1W + (I ⊗ P)−1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

β

�

c

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

X′R−1θ

Z′R−1θ

W′R−1θ

⎤
⎥
⎥
⎦
.

The conditional posterior distributions for each loca-
tion parameter βi, ui, and ci were normal distributions
defined by the coefficients and the right-hand side
(RHS) of the mixed model equations built considering
θik as the record:

f(βi | β_i, θ, u, G, c, P, R, σ2
ε, y)

∼ N
⎡
⎢
⎣

RHSi − ∑
j≠i

λijtj

λii
,

1
λii

⎤
⎥
⎦
,

f(ui | u_i, θ, β, G, c, P, R, σ2
ε, y)

∼ N
⎡
⎢
⎣

RHSi − ∑
j≠i

λijtj

λii
,

1
λii

⎤
⎥
⎦
, and

f(ci | c_i, θ, β, u, G, P, R, σ2
ε, y)

∼ N
⎡
⎢
⎣

RHSi − ∑
j≠i

λijtj

λii
,

1
λii

⎤
⎥
⎦
,

where β_i, u_i, and c_i, are the vectors including the
current values of these effects after discarding the ith
one, and λ is the corresponding element from the coeffi-
cient matrix of the mixed models equations.

Letting np be the number of parameters of the growth
model, the posterior conditionals of the (co)variance ma-
trices were the following inverted Wishart distri-
butions:

f(G | θ, β, u, c, P, R, σ2
ε, y)

∼ IW [(u′A−1u), Na − (np + 1)],

f(P | θ, β, u, G, c, R, σ2
ε, y)

∼ IW [(c′c), Nd − (np + 1)], and

f(R | θ, β, u, G, c, P, σ2
ε, y)

∼ IW [(e′e), N − (np + 1)].

The conditional posterior distribution of the fitting
error variance was an inverted χ2:

f(σ2
ε | θ, β, u, G, c, P, R, y)

∼ χ−2 ⎡
⎢
⎣∑

N

i=1
∑
ni

j=1

[yij − ai(1 − bi exp (−kitj))3]2, ∑
N

i=1

ni − 2
⎤
⎥
⎦
.

The Chains. Chains of 110,000, 330,000, and 550,000
samples, with different starting values, were carried
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out with sampling intervals of 10, 30, and 50, respec-
tively. From each chain, the last 10,000 samples were
used to estimate the features of marginal distributions;
the burn-in period was greater than the minimum re-
quired according to the Raftery and Lewis (1992)
method. Convergence was tested for each chain using
the criterion of the Geweke (1992) and Gelman and
Rubin (1992) test. Autocorrelation between samples
and features of marginal distributions of Monte-Carlo
error (Geyer, 1992) were calculated.

The Goodness of Fit. The overall goodness of fit was
checked by calculating the square of the correlation
between observed BW and the predicted value’s mar-
ginal densities means. A cross-validation predictive
density was applied to assess the goodness of fit in
different parts of the curve. The observed values, yij,
were compared with their prediction, Yij, obtained using
all of the other data, y_ij. The predictive density of ob-
served data is

f(Yij | y_ij) ∝ f(Yij | θ, y_ij) f(θ | y_ij),

where y_ij is the vector of observed values discarding
the observation being predicted (yij). It was considered
that, if the model was adequate, the observed value,
yij, is a realized random sample from its respective pre-
dictive distribution, f(Yij | y_ij), and the evaluation of
model fitting was based on the comparison of the ob-
served value with some characteristic of this distri-
bution.

Applying the checking function proposed by Gelfand
et al. (1992), [g(Yij ; yij) = 1 if Yij < yij and g(Yij ; yij) = 0
if Yij ≥ yij], the E[g(Yij ; yij) | y_ij] with respect to f(Yij |
y-ij) was computed for each observed record. This expec-
tation showed the probability of a predicted value being
lower than the observed one. The average of these ex-
pectations for all individuals at each jth point of the
growth curve showed the goodness of fit in different
parts of the trajectory. If the model fit the data properly,
the averages should be close to 0.5. The estimation of
E[g(Yij ; yij) | y_ij] required the computation of the follow-
ing integral using MCMC methods:

E[g(Yij ; yij) | y_ij] =

∫∫ g(Yij ; yij) f(Yij | θ, y_ij) f(θ | y_ij) dθ dYij,

which required knowledge of f(Yij | θ, y_ij) and f(θ | y_ij),
which means that resampling all parameters of the
growth curve is needed to predict each datum. This
would require extremely demanding computing. To
avoid this problem, an importance sampling procedure
(Gelman et al., 1995) was applied using f(θ | y) as the
sampling distribution for all f(θ | y_ij). If Nmc samples
of the vector of parameters of the model have been
drawn from f(θ | y), a Monte Carlo estimator of the
expectations is

Ê[g(Yij; yij) | y_ij) =
∑

Nmc

i=1

g(Yij ; yij)wij

∑
Nmc

i=1

wij

, and

w =
f(y_ij | θ)f(θ)
f(y | θ)f(θ) =

Π
N−1

i=1
Π
ni−1

j=1

1

√2πσε

exp
⎧
⎨
⎩

−[yij − ai(1 − bi exp − kitj)3]2

2σ2
ε

⎫
⎬
⎭

Π
N

i=1
Π
ni

j=1

1

√2πσε

exp
⎧
⎨
⎩

−[yij − ai(1 − bi exp − kitj)3]2

2σ2
ε

⎫
⎬
⎭

, and

wij =
1

1

√2πσε

exp
⎧
⎨
⎩

−[yij − ai(1 − bi exp − kitj)3]2

2σ2
ε

⎫
⎬
⎭

.

The Algorithm. A program was written using For-
tran 90. Techniques related to memory use, such as data
work file reduction by storing observations, pedigree
information, and location parameters on separate files,
increased effectiveness of the software by decreasing
the reading time from the disk and avoiding storage of
large amounts of missing information. The algorithm
can be outlined as follows:

1. construct the coefficient matrix;
2. use the fully conditional distribution, sample pa-

rameters a, b, and k for all animals;
3. construct the RHS of mixed models equations;
4. sample the environmental effects, maternal per-

manent environmental effects, breeding values,
(co)variance components (G, P, and R), and fit the
error variance from their respective fully condi-
tional distributions;

5. predict the observed BW of each animal given the
growth curve parameters and estimate the Gel-
fand’s checking function for each observation us-
ing the importance sampling procedure;

6. repeat steps 2, 3, 4, and 5 for a total of Nmc times.

RESULTS AND DISCUSSION

Convergence and Goodness of Fit

Lack of convergence was not detected for any chain.
The autocorrelations between samples were low in al-
most every chain. Heritabilities and genetic correlation
estimates showed greater autocorrelations than other
parameters, but this did not lead to greater estimates
of Monte Carlo SE. Visual inspection of sample trace
plots indicated that the sampling processes were appro-
priate. Features of marginal posterior densities ob-
tained from chains with different lengths, or the same
lengths but different starting values, were very similar.

The goodness of fit was considered adequate. The
square of the correlation coefficient between the means
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Figure 1. Averages of the expectations of the Gelfand’s checking function for all individuals at each point of the
Von Bertalanffy growth curve.

of marginal densities of predicted values and observed
values was 0.94. Global criteria of fit have the disadvan-
tage of depending more on the last part of the curve
than on the first part, due to a scale effect (Blasco et
al., 2003). Absolute values of the errors are greater at
the adult BW than at the beginning of the growth curve.
Because the model could fit better in some parts of the
curve than others, and there was a specific interest in
the goodness of fit of each parameter, the whole growth
trajectory was examined. The probability of a predicted
BW being greater or lower than the true value provided
a parameter of adjustment quality for each animal at
each point of its growth curve. Figure 1 shows the aver-
ages of Gelfand’s checking function at each measured
point of the growth curve. At the beginning, there was
a trend of obtaining predictions greater than the obser-
vations. The model showed a better fit at the end of
the growth curve, after adult BW were reached. The
expectations were near 0.5 after maturity was reached;
none of the predicted values showed a high probability
of being lower than the observed one.

In designing breeding programs for beef cattle, there
is particular interest in early predictors of adult BW
(Meyer, 1995). When fitting growth curves, the reliabil-
ity of mature BW is uncertain depending on the data
range. Ideally, prediction of mature BW should be based
on all available information. The hierarchical procedure
applied here provided estimates of the parameters of
the growth curve for each animal, taking into account
the information obtained from individual performance
and the information from relatives and from individuals
whose data were affected by the same systematic ef-
fects. Even though parameters were also estimated for
animals with few records, considering the information
of related animals and the structure of systematic ef-
fects, mature BW were accurately predicted.

Variance Components

Features of the posterior marginal density of the vari-
ance components showed a large additive genetic vari-
ance for mature BW (Table 1). An important additive
genetic component for this parameter has also been
described for beef cattle by DeNise and Brinks (1985),
Oliveira et al. (1994), and Meyer (1995). The parameter
a of growth curves could be used as a selection criterion
to control adult BW increases when selecting for growth
rate, mainly in situations when slaughter weight is
reached before maturity and adult BW can be recorded
for only a few animals. Mature BW was also influenced
by maternal permanent environmental effects, proba-
bly due to substantial maternal effects on BW until
weaning (Albuquerque and Meyer, 2001) and a car-
ryover effect on postweaning growth. Rumph et al.
(2002) compared different models for estimation of ge-
netic parameters for mature BW of Hereford cattle and
reported that the model that best fit the data included
maternal genetic and maternal permanent environ-
mental effects. Archer et al. (1998) compared growth
curves from Angus cattle selected for high or low growth
rate from birth to a year of age and reported that the
effect of maternal environmental on growth was carried
through to maturity; low lines calves reared by a high-
line dam were heavier and taller at maturity compared
with their naturally reared counterparts. Few studies
have considered maternal effects when fitting growth
curves of beef cattle. Including maternal effects in the
models and separating them into genetic and environ-
mental components need to be investigated further.

Parameters b and k showed small genetic and mater-
nal effects. Parameter b is related to the initial condi-
tions of the growth curve, but because birth weight is
usually available, it can be used in selection programs
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Table 1. Features of the marginal posterior distributions of variance components of Von
Bertalanffy growth curve parameters

Genetic variance Maternal permanent environmental variance

Parameter Mean ± SD HPD95%
1 MCse2 Mean ± SD HPD95% MCse

a 864 ± 84 696; 1,028 3.1425 253 ± 44 170; 340 1.2768
b3 1.56 ± 0.01 1.55 ± 1.58 0.0012 3.12 ± 0.03 3.06; 3.17 0.0033
k3 0.07 ± 10−3 0.06; 0,07 0.0009 0.04 ± 10−3 0.03; 0.04 0.0010

Residual variance Phenotypic variance

Parameter Mean ± SD HPD95% MCse Mean ± SD HPD95% MCse
a 552 ± 42 468; 636 1.3722 1668 ± 62 1,550; 1792 1.6831
b3 47.3 ± 0.29 46.7; 47.8 0.0118 52.0 ± 0.53 51.0; 53.6 0.0221
k3 1.12 ± 0.04 1.04; 1.20 0.0016 1.23 ± 0.04 1.16; 1.30 0.0011

Heritability Maternal permanent environmental effects4

Parameter Mean ± SD HPD95% MCse Mean ± SD HPD95% MCse
a 0.52 ± 0.04 0.44; 0.61 0.0037 0.15 ± 0.02 0.11; 0.20 0.0011
b 0.03 ± 0.01 0.01; 0.05 0.0015 0.06 ± 0.02 0.02; 0.09 0.0011
k 0.06 ± 0.01 0.04; 0.09 0.0019 0.03 ± 0.01 0.01; 0.05 0.0007

1HPD95% = high posterior density interval at a 95% probability.
2MCse = Monte Carlo SE.
3To calculate the actual values, multiply the number by 0.01.
4Expressed as the percentage of phenotypic variance.

without estimates of this parameter. Parameter k is a
function of the ratio of maximum growth rate to mature
size (Fitzhugh, 1976) and could be used as a selection
criterion indicating the rate of approach to mature BW.
However, due to its low additive genetic variance, its
inclusion in selection programs would not be effective.
Large environmental effects on parameter k were also
reported in studies applying the Von Bertalanffy func-
tion in a 2-step analysis of growth curves (Oliveira et
al., 1994).

Covariance Components

Covariance estimates showed a negative genetic cor-
relation between mature BW and parameter b (Table
2). This result was expected because greater values of
parameter b lead to lower birth weights [birth weight =
a*(1 − b)3] and it is known that BW at different ages

Table 2. Features of the marginal posterior distributions of correlations between Von
Bertalanffy growth curve parameters

Genetic correlation Maternal permanent environmental correlation

Parameters Mean ± SD HPD95%
1 MCse2 Mean ± SD HPD95% MCse

a_b −0.38 ± 0.14 −0.68; −0.11 0.0182 −0.18 ± 0.12 −0.42; 0.06 0.0071
a_k 0.82 ± 0.07 0.71; 0.95 0.0087 0.46 ± 0.18 0.12; 0.82 0.0151
b_k −0.24 ± 0.18 −0.58; 0.09 0.0229 0.07 ± 0.18 −0.31; 0.40 0.0116

Phenotypic correlation Residual correlation

Parameters Mean ± SD HPD95% MCse Mean ± SD HPD95% MCse
a_b −0.02 ± 0.04 −0.09; 0.05 0.0030 0.07 ± 0.05 −0.02; 0.17 0.0028
a_k 0.28 ± 0.04 0.20; 0.36 0.0039 0.18 ± 0.05 0.08; 0.28 0.0033
b_k 0.66 ± 0.02 0.62; 0.69 0.0014 0.73 ± 0.02 0.68; 0.78 0.0019

1HPD95% = high posterior density interval at a 95% probability.
2MCse = Monte Carlo SE.

show a large positive genetic correlation (Albuquerque
and Meyer, 2001). Greater values of adult BW are
associated with greater BW in all periods of growth.
DeNise and Brinks (1985) also reported a negative
genetic correlation between the corresponding a and
b parameters of the Brody growth curve in beef cattle.
These parameters are similarly interpreted in Brody
and Von Bertalanffy curves.

Parameters a and k were estimated to have a large
positive genetic correlation, with changes in both pa-
rameters thus being expected as a consequence of se-
lection for growth rate. However, the additive genetic
variance of k was very low; thus, a large correlated
response to selection is not expected. Archer et al.
(1998) observed no responses in the rate of maturation
of cows and steers selected for different growth rates
and concluded that there was no change in the tempo-
ral pattern of maturation despite differences in mature
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size. Therefore, selection for growth rate would in-
crease adult BW without substantially changing the
shape of the growth curve as predicted by Taylor
(1985). There has been much interest over the years
in the potential for bending the growth curve to com-
bine high growth rates with small mature size to im-
prove efficiency of animal production (Fitzhugh, 1976).
However, genetic changes in the shape of the growth
curve are limited by the dependence between mature
size and rate of maturing. The large positive genetic
correlation between the parameters a and k, combined
with the positive genetic correlation between all BW
along the growth curve (Lôbo et al., 2000; Albuquerque
and Meyer, 2001), suggest that a selection program to
change the slope of the growth curve without increas-
ing adult BW would be inefficient. Decreasing growth
rates could be observed as a correlated response to
selection, if boundaries on adult BW were established.

The length of the HPD95% of the genetic correlation
between parameters b and k was too large to permit
reliable conclusions, but these parameters clearly
showed large positive phenotypic and residual correla-
tions. Regardless of that, the relationship between the
initial conditions and subsequent growth is explained
well by the large and positive genetic correlations be-
tween early BW.

The correlation between maternal permanent envi-
ronmental effects of parameters a and k suggested
that, besides additive genetic effects, variations ob-
served in both parameters in the same direction could
also be caused by these effects. Maternal environment
may have an overall influence on growth curves, but
its relevance for parameters b and k was not clear.
Optimum mature size for beef cattle is commonly de-
bated. Cattle vary widely in body size, and the opti-
mum depends on the production system. In general,
selection programs have placed emphasis on greater
growth rates. This led to changes in body size at all
ages, which may be evaluated under specific produc-
tion characteristics.

In the present work, adjustment error variance was
considered to be constant along the curve, when obvi-
ously it should be smaller at the beginning of the
growth process due to a scale effect. Growth data com-
monly present time-series errors, which were partially
overlooked in this study. Considering other error struc-
tures leads to both overparameterization of the model
and lack of convergence of the MCMC chains, as previ-
ous analyses of the data showed. Using less complex
error structures is a usual procedure to avoid these
problems, although it leads to some underestimation
of the variance components of the parameters (Glas-
bey, 1979).

Mature BW, predicted by parameter a of the growth
curves, could be included in selection programs. This
parameter could be predicted by combining individual
BW with information derived from the parents’ mature
BW, as well as BW of other relatives. Selection to
change the slope of the growth curve without modi-

fying adult BW would be inefficient because their ge-
netic correlation is large. However, adult BW could be
considered in a selection index with its corresponding
economic weight to improve the overall efficiency of
beef cattle production.
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