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Wave Propagation in Periodic
Composites: Higher-Order
Asymptotic Analysis Versus
Plane-Wave Expansions Method
This work is devoted to a comparison of different methods determining stop-bands in 1D
and 2D periodic heterogeneous media. For a 1D case, the well-known dispersion equa-
tion is studied via asymptotic approach. In particular, we show how homogenized solu-
tions can be obtained by elementary series used up to any higher-order. We illustrate and
discuss a possible application of asymptotic series regarding parameters other than
wavelength and frequency. In addition, we study antiplane elastic shear waves propagat-
ing in the plane through a spatially infinite periodic composite material consisting of an
infinite matrix and a square lattice of circular inclusions. In order to solve the problem,
a homogenization method matched with asymptotic solution on the cell with inclusion of
the large volume fracture is proposed and successfully applied. First and second approxi-
mation terms of the averaging method provide the estimation of the first stop-band. For
validity and comparison with other approaches, we have also applied the Fourier
method. The Fourier method is shown to work well for relatively small inclusions, i.e.,
when the inclusion-associated parameters and matrices slightly differ from each other.
However, for evidently contrasting structures and for large inclusions, a higher-order
homogenization method is advantageous. Therefore, a higher-order homogenization
method and the Fourier analysis can be treated as mutually complementary.
�DOI: 10.1115/1.4002389�
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Introduction

In many cases, the investigation of wave propagating in peri-
dic media can be reduced to the solution of differential equations
ith periodic coefficients. One of the most popular approxima-

ions applied in this challenging field of science is the homogeni-
ation approach �1–4�. However, the most interesting phenom-
non exhibited by wave propagation in a nonhomogeneous
edium is the so-called stop-band effect. Notice that the homog-

nization approach does not permit this effect to be determined in
he first-order approximation of the averaging method. In prin-
iple, the second-order approximation of the averaging procedure
llows us to arrive at the solution sought, but there is a problem
ith the accuracy of this approximation.
Let us begin with a study of the problem for the 1D case. In
athematical literature, the study of differential equations with

eriodic coefficients is known as Floquet theory �5�. In physics, it
oes under the name of “Bloch method” since Bloch used that
pproach in his study of motion of an electron in a crystalline
olid �6�. Observe that for a periodic 1D composite consisting of
wo types of components, the Floquet–Bloch approach allows us
o get an exact form of dispersive equation �7�. An asymptotical
nalysis of that equation allows us to get a few terms of a homog-
nized solution and enables the application of a higher-order ho-
ogenization approach to detect the stop-band effect. Besides, in

he 1D case, a possibility to apply asymptotic series regarding

Contributed by the Design Engineering Division of ASME for publication in the
OURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received May 25,
009; final manuscript received July 30, 2010; published online October 7, 2010.

ssoc. Editor: Lawrie Virgin.

ournal of Computational and Nonlinear Dynamics
Copyright © 20

 https://computationalnonlinear.asmedigitalcollection.asme.org on 06/30/2019 Ter
parameters other than wavelength and frequency is addressed. The
series mentioned may be treated as an alternative to a higher-order
homogenization approach.

For 2D composites in the low frequency range, the wave dis-
persion phenomena can be analyzed by the higher-order
asymptotic homogenization method �AHM� �8�, the Fourier ap-
proach �the so-called plane-wave �PW� expansion method
�9–13��, the Rayleigh multipole-expansion method and its gener-
alizations �14�, and the Korringa–Kohn–Rostoker method �also
known as the multiple scattering method �15��. All these methods
represent a solution represented by the infinite series expansions,
and their convergence usually depends on the contrast between
properties of the components.

The first key idea of using homogenization to study spectral
properties of the problems with periodic coefficients, in particular,
the Floquet–Bloch spectrum, can be found in Refs. �16,17� �see
also further references therein�. More recent papers �18–21� are
devoted to further theoretical development of the relations be-
tween the Floquet–Bloch theory and homogenization. Next, the
idea of using the higher-order asymptotic homogenization in a
similar context is also partially referred to in literature. Apart from
the references mentioned above, see also Ref. �22�, where, in par-
ticular, the two-scale asymptotic expansion is combined with a
variational truncation to derive higher-order homogenized equa-
tions in � �higher-order error bounds were obtained as well�.

The applications of asymptotic series regarding parameters
other than wavelengths and frequencies are treated in literature
rather marginally. For example, in Refs. �23,24�, the asymptotics
of the Floquet–Bloch spectrum, with � related not only to the

small periodicity but also to the �critically scaled� high contrast,
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re studied. Recent developments include those, for e.g., high con-
rasts in both stiffness and density �25,26� and for more general
igh contrast elasticity �27,28�.

Elastic and acoustic wave band structures were investigated in
he works �11,12� using the plane-wave expansion method. An-
ther widely used approach to study wave propagation in periodic
edia is the finite difference time domain method �see, for in-

tance, Ref. �29� and references cited therein�. A recent review of
lassical vibration modes in phononic lattices is given in Ref.
13�.

In this paper, we study antiplane shear waves in a fiber-
einforced composite material with a square lattice of circular in-
lusions. In order to solve the problem formulated so far, we apply
he homogenization method with an asymptotic solution regarding

cell for large inclusion dimensions. The first and second ap-
roximations of the homogenization procedure are obtained,
hich enables detection of the first stop-band. For comparison and

eliability estimation, the problem is solved additionally using the
ethod of Fourier series. It has been shown that the Fourier
ethod yields good results for relatively small inclusion dimen-

ions and when the inclusion parameters and matrices differ
lightly from each other. In the case of contrasting structures, the
igher-order homogenization method is recommended. Therefore,
oth methods studied can be treated as mutually complementary.

This paper is organized as follows. In Sec. 2, we describe a
ispersion equation for the 1D case. Long-wave asymptotic for
he 1D case is obtained in Sec. 3. Asymptotics regarding relative
mpedance are proposed in Sec. 4. A governing boundary value
roblem �BVP� for the 2D case is formulated in Sec. 5. Higher-
rder AHM and PW expansion methods are applied to the 2D
roblem in Secs. 6 and 7, respectively. Numerical examples are
roposed in Sec. 8. Finally, a brief discussion of the obtained
esults is presented in Sec. 9.

Dispersion Equation for 1D Case
Below, we consider longitudinal vibrations of a multicompo-

ent rod �see Fig. 1�. The equations of motion of the neighboring
od parts follow �30�:

Ekukxx − �kuktt = 0, k = 1,2 �1�

here Ek are the Young’s moduli, �k are the material densities,
nd uk denotes the displacements �k=1,2�.

On the contact surfaces, the following boundary conditions
hould be satisfied:

u1 = u2, E1u1x = E2u2x for x = 0 �2�
Besides, the following quasi-periodicity condition is applied:

uk�x + d,t� = uk�x,t�exp�ird� �3�

here k=1, 2, and r denotes the quasi-momentum �wave number�.
In particular, one obtains

uk�d,t� = uk�0,t�exp�ird�, k = 1,2 �4�

Fig. 1 1D composite material „L1+L2=d…
olutions on rod parts are sought in the following form:

11015-2 / Vol. 6, JANUARY 2011

 https://computationalnonlinear.asmedigitalcollection.asme.org on 06/30/2019 Ter
uk�x,t� = Ak exp�i�pkx + �t�� + Bk exp�i�− pkx + �t�� �5�

where pk=� /Ck, Ck=�Ek /�k, and k=1,2.
Substituting Eq. �5� into Eqs. �2� and �4�, a system of four

linear homogeneous algebraic equations regarding coefficients Ak
and Bk is obtained. The system determinant gives the following
transcendental dispersion equation:

cos rd = cos � cos���� −
�2 + 1

2�
sin � sin���� �6�

where �=�L1 /C1, �=L2C1 /L1C2, �=�E1�1 /�E2�2, � is the fre-
quency, r=2� /� is the effective wave number, and � is the wave-
length �7�.

In Eq. �6�, parameter � represents the relative impedance of the
composite and parameter � represents the ratio of the times taken
by a wave to cross the layers of the composite. It is clear that one
may consider only interval 0	�	1; otherwise, we can appropri-
ately change the numeration of the composite layers.

If the frequency falls within a stop-band, the wave number
becomes complex. In this case, the amplitude of the global wave
is attenuated exponentially so no propagation is possible. The
boundaries of the stop-bands are determined by equating the
group velocity to zero, i.e., d� /dr=0. Equation �6� gives the fol-
lowing result for the boundary of the first stop-band:

� = �/�1 + �� �7�

3 Long-Wave Asymptotics and Stop-Band for 1D Case
The derived transcendental dispersion Eq. �6� is further used for

a detailed analysis of the solutions to the stated problem including
the system fundamental singularities. However, this approach is
impossible in the 2D case since a similar equation does not exist.
This remark has an influence on the averaging process. Namely,
having in mind Eq. �6�, there is no need to construct an averaged
equation directly from the boundary value problems �1�–�3�. On
the contrary, dispersion Eq. �6� for small � and small r directly
yields the following relation:

� = rd��1 + ��2 +
�� − 1�2�

�
�−1/2

�8�

It should be mentioned that for the particular case �=1 �physi-
cally, it means that time instants of wave propagation through
neighboring rod parts are equal�, Eq. �6� can be written as follows:

cos rd = cos2 � −
�2 + 1

2�
sin2 � �9�

and hence one gets

� = �k +
rd��

� + 1
, k = 0, 
 1, 
 2, . . . �10�

Observe that from exact dispersion Eq. �6�, one can obtain,
arbitrarily, many terms of the homogenized solution. Conse-
quently, a higher-order homogenization problem is analyzed fur-
ther.

Since 0	�	1, the application of the homogenization approach
depends on the relative impedance of composite �. Owing to for-
mula �8�, it is evident that in the case of large values of �, the
homogenization approach allows us only to estimate properly fre-
quencies ���1 /�.

The following frequency series is applied:

�2 = �0
2�1 + �2�1 + �4�2 + �6�3 + ¯� �11�

where �=d /� and �0��.
We substitute Eq. �11� into the right-hand side of Eq. �5�, de-

velop both parts of Eq. �5� into a series regarding �, and compare
the coefficients standing by �2i, and we find �i, i=1,2 ,3 , . . . �Ap-

pendix�. A numerical example has been computed for the follow-
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ng two components: �1� steel, E1=210 GPa, �1=7800 kg /m3,
nd �=0.3 and �2� aluminum, E2=70 GPa and �2=2700 kg /m3.
n Fig. 2, acoustic modes of dispersion curves �within intervals of
he first transmitting zone� are constructed according to the fol-
owing formulas: �1� series Eq. �11� with the accuracy of O��0� �it
orresponds to the quasi-homogeneous case�, �2� series Eq. �11�
ith the accuracy of O��2�, �3� series Eq. �11� with the accuracy
f O��4�, �4� series Eq. �11� with the accuracy of O��6�, and �5� an
xact solution to dispersion Eq. �6�.

Asymptotics Regarding Relative Impedance
The governing Eq. �6� contains parameters � and �, which en-

ble the construction of alternative asymptotic solutions beside
hose via the homogenization approach. It should be emphasized
hat for �=1, an exact solution of Eq. �6� can be obtained. Fur-
hermore, if �=1+�1 and �1�1, then

cos rd = cos���1 + ��� − 
 sin � sin���� �12�

here 
=�1
2 /2�1+�1��1.

Zeroth approximation of the averaging procedure yields

cos rd = cos��0�1 + ���
nd hence

�0 = �rd + 2�k�/�1 + ��, k = 0, 
 1, 
 2, . . .

Assuming that

� = �0 + 
�1 + ¯ �13�
nd substituting Eq. �13� in Eq. �12� after a routine transforma-
ion, one obtains

�1 = −
sin �0 sin��0��
�1 + ��sin�rd�

If ��1, small parameter �2=1 /� can be introduced and a solu-
ion to Eq. �6� has the following form:

�2 cos rd = �2 cos � cos���� − 1
2 �1 + �2

2�sin � sin���� �14�

The possible simplifications of Eq. �14� depend on an order of
he quantity �. For instance, if ��1, i.e., L1 /L2��2, then a solu-
ion to Eq. �13� can have the following form:

� = ��2�0 + �2�1 + ¯ �15�
Substituting series Eq. �15� into Eq. �14� gives the following

rst approximation:

cos rd = 1 −
1

sin���2�0�sin���2�0�� �16�

ig. 2 Dispersion curves in the first pass band for the steel-
luminum 1D composite
2�2

ournal of Computational and Nonlinear Dynamics
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Development of the right-hand side of expression �16� into a
series regarding �0 and keeping the terms of the second and
fourth orders enables approximation of the investigated system by
a 1D periodic array of particles of two different types coupled by
springs �14� with a relatively high accuracy.

On the other hand, if ���2, i.e., L1 /L2�1, a solution to Eq.
�14� can have the following form:

� = ��0� + �2��1� + ¯ �17�
Substituting series Eq. �17� into Eq. �14� gives the following

first-order approximation:

cos rd = cos ��0� − 0.5 ��0�� sin ��0�

Therefore, an analysis of the 1D problem indicates that one
may obtain an analytical solution to the stated problem, assuming
that the characteristics of the occurring components strongly differ
from each other and a small component exhibits the so-called
small volume fracture.

5 Analysis of 2D Problem
Now, let us consider antiplane elastic shear waves propagating

in the transverse x1 and x2 planes through a spatially infinite pe-
riodic composite material, which consists of an infinite matrix �m

and a square lattice of cylindrical fibers � f �Fig. 3�.
The governing wave equation has the following form:

�x · �G�xu� = �
�2u

�t2 �18�

where G and � are the shear modulus and mass density, respec-
tively, u is the displacement in the x3 direction, �x=e1� /�x1
+e2� /�x2, and e1 and e2 are the unit Cartesian vectors.

Due to the heterogeneity of the composite medium, physical
properties G and � are represented by piecewise continuous func-
tions of coordinates, i.e.,

G�x� = 	Gm for x � �m

Gf for x � � f 
, ��x� = 	�m for x � �m

� f for x � � f 

�19�

where x=x1e1+x2e2.
Taking into account representation Eq. �19�, the input wave Eq.

�18� can be written as follows:

Ga�xx
2 u = �a�2u

�t2 �20�

where Ga and �a display the physical properties of the compo-
nents and �xx

2 =�2 /�x1
2+�2 /�x2

2. Here and in the sequel variables

Fig. 3 Composite structure under consideration „l is the size
of the unit cell and � is the wavelength of the traveling signal…
indexed by m correspond to the matrix, these indexed by f corre-

JANUARY 2011, Vol. 6 / 011015-3

ms of Use: http://www.asme.org/about-asme/terms-of-use



s
a
b
i

a

w

6

t

c
t
o
b
t
w

w
t

n
s
A
d
r
r

w
a
=

w
a

0

Downloaded From:
pond to the fibers while index a takes both of these references
=m and f . Equation �20� has to be accompanied by the perfect
onding conditions at the interface �� of the components, imply-
ng equalities of the displacement,

um = uf on � � �21�
nd of the tangential stress across the interface

Gm�um

�n
= Gf �uf

�n
on � � �22�

here � /�n is the normal derivative to ��.

Higher-Order AHM for 2D Problem
We start with the analysis of the dynamic BVPs �19�–�21� by

he AHM �8�. Let us define a natural small parameter

� = l/� �23�
haracterizing the rate of nonhomogeneity of the composite struc-
ure. Here, microscopic size l corresponds to the length of a peri-
dically repeated unit cell �Fig. 4� while macroscopic size � can
e associated with the wavelength of the traveling signal. In order
o separate the macro- and microscale components of the solution,
e introduce the so-called slow x and fast y variables

x = x, y = �−1x �24�

here y=y1e1+y2e2 and we search for the displacement field in
he form of the following asymptotic expansion:

ua = u0�x� + �u1
a�x,y� + �2u2

a�x,y� + ¯ �25�

The first term u0 of expansion Eq. �25� represents a homoge-
eous part of the solution; it changes slowly within the whole
ample of the material and does not depend on fast coordinates.
ll other terms ui

a, i=1,2 ,3 , . . ., describe local variations in the
isplacements on the scale of nonhomogeneities. The spatial pe-
iodicity of the medium induces the same periodicity for ui

a with
espect to the fast coordinate,

ui
a�x,y� = ui

a�x,y + �p� �26�

here �p=�−1lp, lp= p1l1+ p2l2, p1 , p2=0, 
1, 
2, . . ., l1 and l2
re the fundamental translation vectors of the square lattice l1
le1 and l2= le2. The differential operators are as follows:

�x = �x + �−1�y, �xx
2 = �xx

2 + 2�−1�xy
2 + �−2�yy

2 �27�

here �y =e1� /�y1+e2� /�y2, �xy
2 =�2 / ��x1�y1�+�2 / ��x2�y2�,

2 2 2 2

Fig. 4 A periodically repeated unit cell
nd �yy =� /�y1+� /�y2.

11015-4 / Vol. 6, JANUARY 2011
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Substituting formulas �23�–�25� and �27� into the input BVPs
�20�–�22� and splitting them with respect to �, we come to a
recurrent sequence of cell BVPs involving microscopic wave
equations,

Ga��xx
2 ui−2

a + 2�xy
2 ui−1

a + �yy
2 ui

a� = �a�2ui−2
a

�t2 �28�

where i=1,2 ,3 , . . ., ui−1
a =0, and microscopic perfect bonding con-

ditions,

ui
m = ui

f on � � �29�

Gm� �ui−1
m

�n
+

�ui
m

�k
� = Gf� �ui−1

f

�n
+

�ui
f

�k
� on � � �30�

where � /�k is the normal derivative to �� defined in fast vari-
ables and k is the normal vector to �� also defined in fast vari-
ables. Due to the periodicity condition Eq. �26�, the BVPs
�28�–�30� can be considered only within one periodically repeated
unit cell �Fig. 4� of the composite structure.

Solution of the ith BVPs �26� and �28�–�30� allows us to evalu-
ate the term ui

a. Knowing ui
a, we apply the homogenizing operator



�0
f � · �dy1dy2+

�0

m� · �dy1dy2 over the unit cell domain �0

=�0
f +�0

m to the �i+1�th Eq. �28�. The term ui+1
a is eliminated by

means of Green theorem and condition Eq. �30�, which imply

Gf� �
�0

f
��xy

2 ui
f + �yy

2 ui+1
f �dy1dy2 + Gm� �

�0
m

��xy
2 ui

m

+ �yy
2 ui+1

m �dy1dy2 = 0

As a result, the homogenized equation of the �i−1 order is ob-
tained,

Gf� �
�0

f
��xx

2 ui−1
f + �xy

2 ui
f�dy1dy2 + Gm� �

�0
m

��xx
2 ui−1

m

+ �xy
2 ui

m�dy1dy2 = � f� �
�0

f

�2ui−1
f

�t2 dy1dy2

+ �m� �
�0

m

�2ui−1
m

�t2 dy1dy2 �31�

Combining the homogenized Eq. �31� at i=1,2 ,3, we deter-
mine the macroscopic wave equation of the order �2 in the fol-
lowing form:

�G�0�xx
2 u0 + �2�2�G�2�1

4u0 + O��4� = ���
�2u0

�t2 �32�

where �G�0 is the effective shear modulus in the quasi-static case,
coefficient �G�2 can be treated as the effective shear modulus of
the order �2, ���= �1−���m+�� f is the homogenized mass den-
sity, � is the volume fraction of fibers, 0	�	� /4, and �1

4

=�4 /�x1
4+�4 /�x2

4. Modules �G�0 and �G�2 are evaluated by the
calculation of the integrals in formula �31�. This was performed
numerically in the program package MAPLE using standard in-built
subroutines.

A solution of the cell problems presents one of the main diffi-
culties in practical applications of the AHM. Owing to the ob-
tained results regarding the 1D case, we develop an approximate
asymptotic solution of BVPs �26� and �28�–�30� using as a natural
small parameter, the nondimensional distance 
=2h /� between
the neighboring fibers. Let us suppose that 
�1 and Gf /Gm�1.
The length scales of thin matrix strips d�1 and d�2 in directions
y1 and y2 are essentially different so the following first approxi-

mations are assumed:
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�2ui
m

�y1
2 �

�2ui
m

�y2
2 in the strip d�1,

�2ui
m

�y1
2 �

�2ui
m

�y2
2 in the strip d�2 �33�

Estimations of Eq. �33� are similar to the lubrication theory
pproach �see Ref. �31� for more details� because solutions in thin
ayers are changed in “thin” directions faster than normal to it.

The estimations allow us to simplify the cell BVPs and to de-
ive approximate expressions for ui

a in a closed analytical form. It
hould be noted that estimations of Eq. �33� and, therefore, the
implified solutions of the cell BVPs are obtained under assump-
ions of high contrast densely packed composites. However, nu-

erical results for the effective modulus �G�0 practically show
cceptable accuracy at all values of the volume fractions and
roperties of the components.

The second term appearing on the left-hand side of Eq. �32�
redicts the effect of dispersion caused by the scattering of the
lobal wave at the local heterogeneities of the composite medium.
et us consider a harmonic wave,

u0 = U exp�− i�xs�exp�i�t� �34�

ropagating parallel to axis xs, s=1,2 with amplitude U, fre-
uency �, and wave number �=2� /�. Substituting expression
34� into wave Eq. �32�, we obtain the dispersion relation

�2 = �0
2�1 − 4�2 �G�2

�G�0
�2 + O��4�� �35�

here �0=�v0 is the frequency and v0=��G�0 / ��� is the wave
elocity in the quasi-static case. Phase vp and group vg velocities
ollow:

vp
2 = ��

�
�2

= v0
2�1 − 4�2�2 �G�2

�G�0
+ O��4�� �36�

vg
2 = �d�

d�
�2

= v0
2� �1 − 8�2�2�G�2/�G�0�2

1 − 4�2�2�G�2/�G�0
+ O��4�� �37�

The obtained asymptotic solutions �35�–�37� represent the long-
ave approach, assuming that the wavelength � is relatively large

n comparison to the size of heterogeneity l of the composite
tructure.

PW Expansion Method and 2D Problem
In order to explore the high frequency range and to develop a

olution valid for short waves, we study the input wave Eq. �18�
y the PW expansion method �9,13�. According to the Floquet–
loch theorem �5,6�, a harmonic wave propagating through the
eterogeneous composite material can be presented in the form

u = F�x�exp�i� · x�exp�i�t� �38�

here � is the wave vector, �=�1e1+�2e2, F�x� is the modula-
ion function with the aim to describe the influence of spatial
eriodicity of the medium, and F�x�=F�x+ lp�.

Let us expand function F�x� and material properties G�x� and
�x� in terms of the infinite Fourier series

F�x� = �
k1=−�

�

�
k2=−�

�

Ak1k2
exp�i

2�

l
�k1x1 + k2x2��

G�x� = �
k =−�

�

�
k =−�

�

Bk1k2
exp�i

2�

l
�k1x1 + k2x2��
1 2
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��x� = �
k1=−�

�

�
k2=−�

�

Ck1k2
exp�i

2�

l
�k1x1 + k2x2�� �39�

where

Bk1k2
=

1

l2� �
�0

G�x�exp�− i
2�

l
�k1x1 + k2x2��dx1dx2

Ck1k2
=

1

l2� �
�0

��x�exp�− i
2�

l
�k1x1 + k2x2��dx1dx2

Substituting Eq. �38� and expansion Eq. �39� into the wave Eq.
�18� and collecting terms exp�i2�l−1�j1x1+ j2x2�� and j1 , j2
=0, 
1, 
2, . . ., we come to an infinite system of linear algebraic
equations for the unknown coefficient Ak1k2

,

�
k1=−�

�

�
k2=−�

�

Ak1k2	Bj1−k1,
j2−k2

��2�

l
k1 + �1��2�

l
j1 + �1�

+ �2�

l
k2 + �2��2�

l
j2 + �2�� − Cj1−k1,

j2−k2

�2
 = 0 �40�

System of linear algebraic Eq. �40� has a nontrivial solution if
and only if the determinant of the matrix of the coefficient Ak1k2

is
zero. In the numerical examples presented below, the dispersion
relations are calculated approximately by truncation of the infinite
system �40� �and hence its corresponding infinite determinant�,
assuming that −jmax	 js	 jmax. The introduced truncation proce-
dure allows us to study the finite determinant instead of the infi-
nite one. The number of the kept equations is n=2jmax+1. We
expect that an increase in jmax shall improve the accuracy of the
solution. From the physical point of view, such a truncation means
cutting off higher frequencies. It should be noted that the PW
expansion method does not use explicitly bonding condition Eqs.
�21� and �22�, whereas they are “embedded” implicitly into Eq.
�18� and expansion Eq. �39�.

To illustrate the occurrence of phononic band gaps, let us re-
write expression �38�, separating real �R and imaginary �I parts
of the wave vector �=�R+ i�I

u = F�x�exp�− �I · x�exp�i�R · x�exp�i�t� �41�
It can easily be seen that if the wave propagates at a frequency

making the wave number complex, then the signal Eq. �41� at-
tenuates exponentially; the imaginary part �I of the wave number
represents the attenuation factor. Thus, the frequency bands where
�I�0 are called stop-bands, while the bands where �I=0 are
called the pass bands.

8 Numerical Examples and Discussion
As the first example, let us consider a low contrast composite

consisting of nickel fibers �Gf =75.4 GPa, � f =8936 kg /m3, and
�=0.35� and an aluminum matrix �Gm=27.9 GPa and � f

=2697 kg /m3�. Figure 5 displays the dispersion curves within the
first and the second pass bands calculated by the PW expansion
method. The plot is divided into two �left and right� parts. The left
part displays results for the diagonal OB, whereas the right part
displays results for the directions of the wave propagation being
orthogonal to OA. Results obtained at jmax=1 and jmax=2 are very
close, which confirms the fast convergence of the procedure.

The qualitative behavior of the solution can be described as
follows. At very low frequencies, the dispersion curve is almost
straight ���0 and the phase and group velocities are nearly
equal and independent of the frequency vp�vg�v0, so the waves
propagate in the composite medium as if it was homogeneous
�this is a so-called quasi-static case�.

As the frequency increases, the slope of the dispersion curve in

the first pass band decreases. Both phase and group velocities
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ecrease, but the group velocity decreases faster vp�vg. At the
ighest frequency in the first pass band, the dispersion curve has
ero slope vg=0, which corresponds to the case of a stationary
ave. Within the stop-band �shaded area in Fig. 5�, wave number
is complex so the amplitude of the wave attenuates exponen-

ially and no propagation is possible. In the second pass band, the
roup velocity varies from zero at the edges to a maximum value
ear the center. The dispersion curve is flatter than in the first pass
and, which indicates lower values of the group velocity.

Figure 5 reveals that in the quasi-static case, the problem under
onsideration is isotropic. With the increase in frequency �and in
he higher-order approximations of the AHM�, we observe the
nisotropic behavior of the 2D square lattice. This can easily be
xplained because the ratio of the wavelength to the distance be-
ween neighboring fibers depends on the direction of propagation.
ence, the phononic band structures in orthogonal OA and diag-
nal OB directions are different.

Figure 6 compares the dispersion curves in the first pass band
alculated by the AHM and the PW expansion methods. We can
bserve that the AHM allows us to predict the dispersion phenom-
non, but the accuracy of the obtained results is acceptable only at
ow frequencies.

As the second example, let us consider a high contrast compos-
te consisting of carbon fibers �Gf =86 GPa, � f =1800 kg /m3, and
=0.5� and an epoxy matrix �Gm=1.53 GPa and �m

1250 kg /m3�. Figure 7 displays the dispersion curves calculated
or the first pass band. It can be seen that the PW expansion

ig. 5 „a… Phononic bands for the nickel-aluminum composite
dashed line: jmax=1 and solid line: jmax=2… and „b… directions of
he wave vector �

ig. 6 Dispersion curves in the first pass band for the nickel-

luminum 2D composite
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method converges significantly worse than in the low contrast
case; meanwhile, the AHM provides qualitatively correct results
up to the beginning of the first stop-band.

9 Concluding Remarks
The main conclusion of our research may be formulated as

follows. The obtained asymptotic solutions for the 1D problem
allow us to study the cases, where construction of an exact dis-
persion equation is impossible, for instance, in nonlinear cases or
in linear 2D and 3D cases. Besides, the analysis of exact disper-
sion equation indicates that the homogenization procedure is only
part of a wide spectrum of approximated methods. Namely, one
may effectively apply asymptotic series regarding other param-
eters being suitable in investigation not only in low but also in
higher frequency oscillation regions.

Let us have a deeper insight into this question. The following
nondimensional parameters occur in the dispersion equation: r,
�=L2C1 / �L1C2�, and �=�E1�1 /E2�2. Parameter r plays a key role
in the averaging procedure. However, we have shown that there is
also other limiting asymptotics not related to r, which can be
applied for the arbitrary length of waves, for example, for �= j,
where j is the integer; �=1+�, ��1, and �1=1 /�. Proceeding like
in the 1D case, a similar expansion for 2D case can be found.

In the present paper, antiplane shear waves in a fiber-reinforced
composite material with a square lattice of cylindrical fibers are
also studied. Successive reflections and refractions of the signal at
the interface of the components result in the formation of pass and
stop frequency bands so the composite acts as a discrete wave
filter. The application of a higher-order AHM provides a long-
wave approach valid in the low frequency range. The solution for
the high frequencies is obtained by the PW expansion method.
However, this approach may run into convergence problems with
the increase in contrast between properties of the components.
Eventually, we may conclude that the higher-order AHM and the
PW expansion method can be treated as complementary to each
other. The dispersion curves are obtained and the pass and stop-
bands are identified.
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ppendix
Expressions of �1, �2, and �3 are obtained using MAPLE and the following notation is applied: E1�E1, E2�E2, �1��1, �2��2,

nd �=L1 /d,

�1 ª −
�2�− E1�1 + E2�2�2�� − 1�2�2

3��E1 − E2�� − E1�2���2 − �1�� − �2�2

�2 ª − 4�4�− E1�1 + E2�2�2���− 3E1E2 −
1

2
E22 + E12��22 − 3�1�11

3
E1E2 + E12 + E22��2 −

�12�− 2E22 + 6E1E2 + E12�
2

��4

+ ��9E1E2 − 4E12 + E22��22 + �9E12�1 + 3�1E22 − 22E1E2�1��2 + �12E1�E1 + 3E2���3 + ��−
1

2
E22 + 6E12 − 9E1E2��22

− 9�−
11E2

9
+ E1��1E1�2 −

E12�12

2
��2 + ��3E1E2 − 4E12��22 + 3�2E12�1�� + �22E12��� − 1�2�2/�45���2 − �1�� − �2�4��E1

− E2�� − E1�4�

�3 ª − 32�6�2�� − 1�2���E14 + 6E12E22 +
3

32
E24 +

27

8
E1E23 − 5E13E2��24 − 5�−

59

10
E13E2 −

27

40
E24 +

79

8
E12E22

+
3

40
E1E23 + E14��1�23 + 6�−

395

48
E13E2 +

1913

96
E12E22 −

395

48
E1E23 + E24 + E14��12�22

+

27�−
40

27
E24 + E14 −

395

27
E12E22 −

1

9
E13E2 +

236

27
E1E23��13�2

8

+

3�32

3
E24 + E14 + 64E12E22 + 36E13E2 −

160

3
E1E23��14

32
��8 + ��− 8E14 − 36E12E22 −

3

8
E24 + 35E13E2

−
135

8
E1E23��24 + 35�1�395

56
E12E22 −

81

280
E24 −

177
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3

70
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−
79
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135� 1

15
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79
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118
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E23��13E1�2

4
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9�E12 + 18E1E2 +
32

3
E22��14E12

16
��6
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3

8
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4
E1E23 − 56E14 + 175E13E2��24 + 175�118

35
E13E2 + E14 −

27

1400
E24 +

3

350
E1E23

+
79

28
E12E22��1�23 − 120�12�1913
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E1E22 −
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E12E2 −

79
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E23 + E13�E1�22 −

135�E12 −
79
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E22 −

2
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E1E2��13E12�2

4

−
3�14E13�E1 + 9E2�

8
��5 + ��− 175E13E2 + 70E14 +

135

8
E1E23 +

3
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56
E1E22

−
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3
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