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Abstract—This paper presents an observer with exponential
error decay for systems described by bilinear input-state
dynamics and output functions that are ratios of polynomials in
the state. It is shown that such kind of systems can be immersed
into systems of higher dimension, with time-varying linear state
dynamics and linear output map. The observer here presented
is derived exploiting the structure of the extended system.
Conditions of global exponential convergence are given and
discussed. Computer simulations demonstrate good behavior
of the observer, even in the presence of disturbances on the
state and output equations.
Index Terms—State observers, Kronecker algebra, bilinear

systems.

I. INTRODUCTION
When designing a state observers for discrete time non-

linear systems, many authors adopt the approach to find a
nonlinear change of coordinates and an output transformation
such to put the system into a canonical form suitable for the
observer design using linear techniques. In [10],[15],[16],
where autonomous systems are considered, conditions are
given for the existence of a coordinate transformation that
allows the design of an observer with linear error dynamics.
Other papers concerned with the problem of finding con-
ditions for the existence of such a change of coordinates
are [20] and [21], for autonomous systems, and [3], [7] for
nonautonomous systems. Note that, in general, the computa-
tion of such a coordinate transformation is a very difficult
task. Another approach consists in designing observers in
the original coordinates, finding iterative algorithms that
asymptotically solve some suitable defined extensions of
the state-output map, (see e.g. [11] and [17]). Sufficient
conditions of local convergence are provided, in general,
under the assumption of Lipschitz nonlinearities. The use
of the Extended Kalman Filter as a local observer for noise-
free systems has been investigated in [19], [4], [5] and [18].
Nonlinear systems with linear measurements are considered
in [1], [6] and [22]. In [22] autonomous systems with the
Lipschitz nonlinearities are considered and an observer with
constant gain is proposed. Sufficient convergence conditions
are given in terms of LMI’s.
This paper presents an asymptotic observer for the class of

systems whose state evolves according to bilinear difference
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equations, and whose outputs are ratios of polynomials of the
state. Such kind of output structure is useful to approximate
generic nonlinear output functions. It is shown that the
dynamics of systems in this class can be immersed into the
dynamics of a linear time-varying system of larger dimension,
that can be used for the observer construction. Conditions
of global exponential convergence are given, in terms of
observability and reachability Gramians of the extended
system. The observer here presented can be implemented
without computing any nonlinear change of coordinates or
Jacobian of the output function.
The paper is organized as follows. In section II the class of

systems considered is introduced and an useful representation
for them is derived. The extended system is defined in Section
III and the observation algorithm is presented in Section IV.
Section V reports simulations results. Conclusions follow. A
short Appendix reports the definitions of Kronecker products
and powers and some of their properties, used in sections II
and III.

II. SYSTEMS WITH BILINEAR DRIFT AND
RATIONAL OUTPUT

The class of systems considered in this paper is char-
acterized by discrete-time bilinear input-state dynamics and
by output functions that are ratios of polynomials (BDRO
Systems: Bilinear Drift-Rational Output). Such systems are
described, for all integers t ≥ t0, by equations of the form

x(t + 1) = A(t)x(t) + B0(t)u(t) +
p∑

i=1

ui(t)Bi(t)x(t),

yk(t) =
nk

(
t, x(t)

)
dk

(
t, x(t)

) , k = 1, . . .q, (1)

where x(t) ∈ IRn is the system state, y(t) ∈ IRq is the
measured output, u(t) ∈ IRp is a known input, and nk(t, x)
and dk(t, x) are polynomials of x, with possibly time-varying
coefficients. In this paper the Kronecker formalism is used for
the representation of polynomials of vectors. The definition of
Kronecker products and powers and some of their properties
are reported in the Appendix. Using the Kronecker powers
of the state, the output of the system (1) can be written as

yk(t) =
nk,0(t) +

∑rk

j=1 nT
k,j(t)x

[j](t)

dk,0(t) +
∑sk

j=1 dT
k,j(t)x[j](t)

k = 1, . . .q, (2)

where rk and sk are the degrees of the numerator and denom-
inator polynomials of each scalar output, and nk,j(t) ∈ IRnj

and dk,j(t) ∈ IRnj

are the vector coefficients of the powers
x[j](t) ∈ IRnj . Denoting with m the maximal degree of the
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polynomials, i.e. m = maxk=1,...,q(rk, sk), and defining a
polynomial extended state vector Xm(t) as follows

Xm(t) =

⎛⎜⎜⎜⎝
x(t)
x[2](t)
...

x[m](t)

⎞⎟⎟⎟⎠ ∈ IRb(n,m), (3)

where b(n, m) =
∑m

i=1 ni, the components of the system
output can be written in the following compact form

yk(t) =
nk,0(t) + NT

k (t)Xm(t)
dk,0(t) + DT

k (t)Xm(t)
(4)

where Nk(t) ∈ IRb(n,m) and Dk(t) ∈ IRb(n,m) are defined
as follows

NT
k (t) = [nT

k,1(t) · · · nT
k,m(t)],

DT
k (t) = [dT

1,m(t) · · · dT
k,m(t)].

(5)

Moreover, defining the matrix function

B
(
t, u
)

=
p∑

i=1

Bi(t)ui, (6)

the BDRO system (1) can be written in the form

x(t + 1) = A(t)x(t) + B
(
t, u(t)

)
x(t) + B0(t)u(t),

yk(t) =
nk,0(t) + NT

k (t)Xm(t)
dk,0(t) + DT

k (t)Xm(t),
k = 1, . . .q,

(7)

Each scalar output in system (7) can put in the form

yk(t)dk,0(t) − nk,0(t) = NT
k (t)Xm(t)− yk(t)DT

k (t)Xm(t),
(8)

so that, defining transformed outputs ỹk(t) as

ỹk(t) = yk(t)dk,0(t) − nk,0(t), k = 1, . . . , q, (9)

the following q output equations can be written

ỹk(t) =
(
NT

k (t) − yk(t)DT
k (t)

)
Xm(t), (10)

where the new outputs ỹk(t) appears as a linear function of
the extended state. The equations (10) can be put in matrix
form as follows

ỹ(t) = Cy(t)Xm(t) (11)

where

ỹ(t) =

⎛⎜⎝y1(t)d1,0(t) − n1,0(t)
...

yq(t)dq,0(t) − nq,0(t)

⎞⎟⎠ , (12)

and

Cy(t) =

⎛⎜⎝NT
1 (t) − y1(t)DT

1 (t)
...

NT
q (t) − yq(t)DT

q (t).

⎞⎟⎠ (13)

Defining the matrices

Au(t) = A(t) + B
(
t, u(t)

)
, Bu(t) = B0(t)u(t). (14)

The BDRO system (7) with the transformed output (12) can
be written in the following compact form

x(t + 1) = Au(t)x(t) + Bu(t),
ỹ(t) = Cy(t)Xm(t).

(15)

Thanks to the definition (14) of matrix Au(t) the input-state
equation in (15) appears as a linear time-varying system, and
thanks to the definition of the transformed output ỹ(t), given
in (12), the output function appears as a polynomial of degree
m of the state.

III. THE EXTENDED SYSTEM
This section shows that a BDRO system can be immersed

into a system of larger dimension, characterized by a linear
time-varying dynamics. The main result consists in showing
that the dynamics of the polynomial extended stateXm(t) de-
fined in (3) obeys the time varying-linear equation presented
by the following lemma:

Lemma III.1. Consider the bilinear input-state equation of
system (1) and its representation given by the first of (15),
with Au(t) and Bu(t) defined in (14). The dynamics of the
polynomial extended state Xm(t) defined in (3) is governed
by the following recursive equation:

Xm(t + 1) = Au(t)Xm(t) + Bu(t), (16)

where matrixAu has the following block-triangular structure

Au(t) =

⎡⎢⎢⎢⎢⎢⎣
A1,1 0 · · · 0 0
A2,1 A2,2 · · · 0 0
A3,1 A3,2 · 0 0
...

...
. . . . . .

...
Am,1 0 · · · Am,m−1 Am,m

⎤⎥⎥⎥⎥⎥⎦ , (17)

where the matrices Ah,k , defined for h = 1, . . . , m and k =
1, . . . , h, are recursively defined by the following equations,
defined for h = 1, · · · , m − 1 and k = 2, · · · , h

A1,1 = Au,

Ah+1,1 = B[h]
u ⊗ Au + Ah,1 ⊗ Bu,

Ah+1,k = Ah,k−1 ⊗ Au + Ah,k ⊗ Bu,

Ah+1,h+1 = Ah,h ⊗ Au.

(18)

and

Bu =

⎡⎢⎢⎢⎣
Bu

B
[2]
u

...
B

[m]
u

⎤⎥⎥⎥⎦ . (19)

(in equations (17), (18) and (19) time-dependence is omitted
for brevity).

Proof: Taking into account the definitions (17) and
(19), the state dynamics (16) is equivalent to the following
equations

x[h](t + 1) =
h∑

i=1

Ah,ix
[i](t) + B[h]

u (t), h = 1, . . . , m.

(20)
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The equation with h = 1 is readily proved by observing that,
by definition, A1,1 = Au(t).
Now, proceed by induction: assume that (20) is true for a

given h > 1 and prove that it is also true for h + 1. Indeed

x[h+1](t + 1) = x[h](t + 1) ⊗ x(t + 1)

=

(
h∑

i=1

Ah,ix
[i](t) + B[h]

u (t)

)(
Au(t)x(t) + Bu(t)

)
(21)

From this

x[h+1](t + 1) =
h∑

i=1

(
Ah,ix

[i] ⊗ (Aux) + Ah,ix
[i] ⊗ Bu

)
+ B[h]

u ⊗ (Aux) + B[h+1]
u

(22)

By means of property (69)

x[h+1](t + 1) =
h∑

i=1

(
(Ah,i ⊗ Au)x[i+1] + (Ah,i ⊗ Bu)x[i]

)
+ (B[h]

u ⊗ Au)x + B[h+1]
u

(23)

Reorganizing the summation this can be put in the form

x[h+1](t + 1) = (Ah,h ⊗ Au)x[h+1]+

+
h∑

k=2

(
Ah,k−1 ⊗ Au + Ah,k ⊗ Bu

)
x[k]

+
(
B[h]

u ⊗ Au + Ah,1 ⊗ Bu

)
x + B[h+1]

u

(24)

Thus, from definitions (18), it follows that also x[h+1](t)
obeys the recursive equation (20) and the induction is proved.

Remark III.2. The state dynamics of system (1) is said to
be immersed into the dynamics

X(t + 1) = Au(t)X(t) + Bu(t), (25)

whose state X(t) ∈ IRb(m,n) is of larger dimension than
x(t). Such an immersion is to be intended as follows: if
X(t0) = Xm(t0), where

Xm(t0) =

⎛⎜⎜⎜⎝
x(t0)
x[2](t0)
...

x[m](t0)

⎞⎟⎟⎟⎠ ∈ IRb(n,m), (26)

then the following identity relates the state x(t) of (1) and
the state X(t) of (25) for t ≥ t0

x(t) = SmX(t), (27)

with
Sm =

[
In On×(n2+···+nm)

]
. (28)

This happens because, thanks to Lemma III.1, the initial-
ization (26) implies that X(t) = Xm(t) for all t ≥ t0, so
that the product SmX(t) in (27) simply selects the first n
components of Xm(t), that is the state x(t) of system (1).

From what discussed, the following equations can be used
to represent system (15) for t ≥ t0

X(t + 1) = Au(t)X(t) + Bu(t), X(t0) = Xm(t0) (29)
ỹ(t) = Cy(t)X(t) (30)

It must be stressed that the Kronecker powers of vectors
contain redundant terms. It follows that redundant compo-
nents are present in the extended state vector Xm, so that the
extended state space results to be output-indistinguishable.
Such redundancy can be eliminated by considering suitably
defined reduction matrices. First of all note that x[i], the i-th
Kronecker power of x ∈ IRn, has ni components, but only(
n+i−1

i

)
are distinct terms (the number of ways to choose i

elements from a set of n, with repetitions allowed). Defining
the following functions of pairs of integers

b(n, m) = n
1 − nm

1 − n
=

m∑
i=1

ni, (31)

c(n, m) =
(

n + m

m

)
− 1 =

m∑
i=1

(
n + i − 1

i

)
, (32)

it is easy to see that the vector Xm has b(n, m) components,
but only c(n, m) are distinct (obviously c(n, m) < b(n, m)).
A block-diagonal reduction matrix Tn,m ∈

IRc(n,m)×b(n,m) can be suitably defined, as described in
detail in [8], for the selection of a nonredundant subvector
Xm ∈ IRc(n,m) from Xm ∈ IRb(n,m). A block-diagonal
matrix Tn,m ∈ IRb(n,m)×c(n,m) allows to reconstruct the
redundant vector Xm from Xm. In formulas

Xm(k) = Tn,mXm, Xm = Tn,mXm(k). (33)

Using Lemma III.1 and the reduction matrices (33), system
(III) is obviously equivalent to the following system

X (t + 1) = Āu(t)X (t) + Bu(t)

ỹ(t) = CyX (t),
(34)

where X (t) ∈ IRc(n,m) and

Āu(t) = Tn,mAu(t)Tn,m, Bu(t) = Tn,mBu(t),

Cy(t) = Cy(t)Tn,m.
(35)

The equivalence of the system (15) with the reduced system
(34) should be intended as follows: if the initial value of the
extended state of (34) is set to

X (t0) = Tn,m

⎛⎜⎜⎜⎝
x(t0)
x[2](t0)
...

x[m](t0)

⎞⎟⎟⎟⎠ = Tn,mXm(t0), (36)

then the outputs of the two systems is the same for any input,
and the state x(t) of system (15) is recovered by selecting
the first n components of the extended state X (t):

x(t) = ΣmX (t),
where Σm =

[
In 0n×(c(n,m)−n)

]
.

(37)
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IV. AN EXPONENTIAL STATE OBSERVER
FOR BDRO SYSTEMS

The construction of an observer for system (1) is achieved
in this section through the construction of an observer for
the extended system (34) that provides an estimate X̂ (t)
(observation) of the true extended state X (t). The observation
of the original state x(t) is achieved by selecting the first n
components of X̂ (t) through the selection matrix Σm defined
in (37). The observer presented in this section is sought
among dynamic systems of the form

Z(τ + 1) = Āu(τ )Z(τ ) + Bu(τ ) + v(τ ), (38)
Z(t0) = Z0, (39)

where v(τ ) is some driving sequence and Z0 is some initial
observer state. Let X̂0 be an a priori estimate of the true
state X (t0), and let w(t) be the output error for the observer
(38)-(39), defined as

w(τ ) = ỹ(τ ) − Cy(t)Z(τ ). (40)

Let J[t0,t] be an energy cost functional defined over the
interval [t0, t] as follows

J[0,t](Z0 , v[t0,t], w[t0,t]) =
1
2
(Z0 − X̂0)T S0(Z0 − X̂0)

+
1
2

t∑
τ=t0

(
vT (τ )Qτv(τ ) + wT (τ )Rτw(τ )

)
,

(41)

where S0, Rτ and Qτ , τ ∈ [0, t], are positive definite
symmetric weight matrices that can be defined by the user.
The minimum energy triple (Z∗

0 , v∗[t0,t], w
∗
[t0,t]), given all

observations in [t0, t], is the one that provides the minimum
value for J[t0,t] under constraints (38)–(40). Let Z∗(τ |t),
τ ∈ [t0, t], denote the trajectory provided by equations
(38) and (39) driven by the minimum energy input v∗[t0,t]

and with initial state Z∗
0 . For τ < t the solution Z∗(τ |t)

is the optimal smoothing (minimum energy non-causal es-
timate), while the endpoint Z∗(t|t) of the trajectory is
the optimal causal estimate. Let X̂ (t) = Z∗(t|t). It is
known that X̂ (t) can be computed through the Kalman
Filter equations (forward recursion), while a backward re-
cursion is needed for the computation of Z∗(τ |t), τ < t
(see e.g. [2], [14]). When a new observation y(t + 1) is
available, the solution of the constrained minimization prob-
lemminJ[t0,t+1](Z0, v[t0,t+1], w[t0,t+1]) subject to (38)–(40)
provides a different trajectory Z∗(τ |t + 1), whose endpoint
is the optimal estimate X̂ (t + 1). The sequence of minimum
energy estimates can be computed through the following
recursion

Kt = P̃tCT
y (t)

(
Cy(t)P̃tCT

y (t) + R−1
t

)−1

, (42)

X̂ (t) = X̂p(t) + Kt

(
ỹ(t) − Cy(t)X̂p(t)

)
, (43)

Pt =
(
I − KtCy(t)

)
P̃t, (44)

X̂p(t + 1) = Āu(t)X̂ (t) + Bu(t), (45)
P̃t+1 = Āu(t)PtĀT

u (t) + Q−1
t . (46)

The initialization of the algorithm is

X̂p(t0) = X̂0, P̃t0 = S−1
0 . (47)

The state observation of the original system (1) is computed
as

x̂(t) = ΣmX̂ (t) (48)

where the selection matrix Σm is defined in (37) (see the
discussion at the beginning of the section).
In order to present conditions that ensure convergence, let

Φ(t, τ ) denote the transition matrix associated to system (34),
recursively defined as

Φ(t, t) = Ic(n,m), ∀t

Φ(t + 1, τ ) = Āu(t)Φ(t, τ ), t > τ.
(49)

Theorem IV.1. Consider the BDRO system (1) and the
construction that has led to the extended system (34) and to
the observer (42)–(48), where the sequences Qt and Rt are
chosen uniformly upper and lower bounded. Assume that for
a given pair (x(t0), u[t0,∞)

)
the matrix Āy(t) is nonsingular

and bounded for all t ≥ t0. Let

γ = sup
t∈[t0,∞)

‖Āy(t)‖. (50)

Assume that the pair (Āu(t), Cy(t)) is such that there exist
an integer N and positive scalars α1, α2, β1, β2 such that
for all t ≥ t0 + N

α1I ≥
t∑

τ=t−N

Φ(t, τ )Q−1
τ ΦT (t, τ ) ≥ α2I, (51)

and

β1I≤
t∑

τ=t−N

ΦT (τ, t − N)CT

y (τ )RτCy(τ )Φ(τ, t − N) ≤ β2I,

(52)
where I is the identity in IRc(n,m)×c(n,m) (obviously α1 ≥ α2

and β1 ≤ β2).
Then, the observation error exponentially converges to 0

with the following bound

‖x(t) − x̂(t)‖ ≤ at−t0b‖X̂ (t0) − Xm(t0)‖. (53)

where a ∈ (0, 1) and b > 0 are as follows:

a =
1√

1 + (γ2qM )−1pm

, b =
√

pM

pm
, (54)

where qM is the upper bound of the sequence Qt, i.e. qMI ≥
Qt, ∀t ≥ t0, and

pm =
β1

1 + α1β1
, pM =

1 + α2β2

α2
. (55)

Remark IV.2. Note that (52) is an assumption of uniform
observability of the linear time-varying system (34), while
the assumption (51) is an assumption of uniform reachability
of the pair (Āu(t), Qt), and is satisfied provided that both
Āu(t) and Qt are uniformly lower and upper bounded.

The proof of Theorem IV.1, omitted due to lack of space, is
based on the fact that inequalities (51) and (52) imply that the
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Riccati sequence Pt satisfies the following lower and upper
bounds

1
pM

I ≤ Pt ≤ 1
pm

I, (56)

with pM and pM defined in (55) (see [12]). Then, defining
the extended state observation error εt = X (t) − X̂ (t), by
showing the asymptotic convergence to zero of the following
positive definite function of εt

V
(
t, εt

)
= εT

t P−1
t εt, (57)

suitable computations lead to inequality (53).

Remark IV.3. Since the matrices Cu(t) depend on the
measurements y(t), the condition (52) can only be checked
on-line. On the other hand, the condition (51) can be verified
off-line only when the input u(t) is a priory known. From a
practical point of view, it is easier to check the observability
on-line by monitoring the minimum and maximum eigenval-
ues of Pt during its evolution. Note that if the uniform bounds
pm and pM of inequality (56) exist, then

p−1
m ≥ λMax

(
Pt

)
, p−1

M ≤ λmin

(
Pt

)
. (58)

V. SIMULATION RESULTS

Simulations results are here reported in order to show
the effectiveness of the proposed observer. Consider the
following system, with x ∈ IR3, u ∈ IR and y ∈ IR,

x(t + 1) = Ax(t) + B0u(t) + u(t)Bx(t), (59)

y(t) =
x1 + 0.2x3

2

1 + 0.1x2
1 + 0.1x2

2

, (60)

where:

A =

⎡⎣ 0 −0.8 0
0.4 0 0.4
0 −0.4 0.4

⎤⎦ (61)

B =

⎡⎣ 0 0 0.2
−0.1 0.4 0
0.4 0 0

⎤⎦ , B0 =

⎡⎣ 0
−2
−2

⎤⎦ . (62)

The output in (60) can be put in the form (2) with:

n0 = 0, nT
1 =

[
1 0 0

]
,

nT
2 = 01×9, [n3]1,14 = 0.2, [n3]1,j = 0, j �= 14,

d0 = 1, dT
1 = 01×3, dT

3 = 01×27,

[d2]1,1 = 0.1, [d2]1,5 = 0.1, [d2]1,j = 0,
j �= 1
j �= 5.

(63)

Figures 1–3 report the true and the observed states over the
interval [0, 70] when the input is

u(t) = 1.5 + 0.5sign(cos(4πt/70)) (64)

(u(t) switches five times between 1 and 2 in the interval
[0, 70]). The weight matrices S0,Qt and Rt in this simulation
are constant and equal to the identity matrices.
The performance of the observer in the presence of un-

known disturbances, both in the state equation and in the
measurements, has been also evaluated through simulations.
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Fig. 1. The first component of the true and observed state without
noise.
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15
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Fig. 2. The second component of the true and observed state without
noise.

Figure 4 reports simulation results (due to lack of space,
only the third component is reported) on the same system,
with the same input, when additive standard Gaussian noises
(unitary variance) are present as forcing terms and as mea-
surement noise in the equations (1). Good performances are
obtained.

VI. CONCLUSIONS
This paper presents an exponential observer for the class

of systems with bilinear input-state dynamics and state-
output functions that are ratios of polynomials (Bilinear Drift,
Rational Output). The dimension of the state space of the
observer depends on the state space of the system and on
the degree of the maximal polynomial present in the output
functions. The observer gain is time varying and is obtained
on-line as the solution of discrete-time Riccati equations. The
Jacobian of the output function does not need to be computed.
Global convergence conditions are provided. The observer
behavior has been numerically tested on some examples, even
in the presence of disturbances, and has always given good
results.
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Fig. 3. The third component of the true and observed state without
noise.
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Fig. 4. The third component of the true and observed state with, state
and output noise.

APPENDIX
The Kronecker product of two matrices M and N of

dimensions r×s and p× q respectively, is the (r · p)× (s · q)
matrix

M ⊗ N =

⎡⎢⎣m11N . . . m1sN
...

. . .
...

mr1N . . . mrsN

⎤⎥⎦ , (65)

where the mij are the entries of M . The Kronecker power
of a matrix M is recursively defined as

M [0] = 1, M [i] = M ⊗ M [i−1], i ≥ 1. (66)

Note that if M ∈ IRa×b, then M [i] ∈ IRai×bi

. See the
Appendix in [9] for a quick survey on the Kronecker algebra.
Some properties of the Kronecker product used throughout
the paper are the following:

(A + B) ⊗ (C + D) =A ⊗ C + A ⊗ D+
B ⊗ C + B ⊗ D (67)

A ⊗ (B ⊗ C) =(A ⊗ B) ⊗ C (68)
(A · C) ⊗ (B · D) =(A ⊗ B) · (C ⊗ D) (69)

In particular, repeated application of properties (68) and
(69) provides the identity

(Ax)[i] = A[i]x[i], (70)

intensively used throughout the paper. See [13] for more
properties.

References
[1] V.C. Aitken and H.M. Schwartz, “On the exponential stability of

discrete-time systems with applications in observer design.” IEEE
Trans. A. C., Vol. 39, No. 9, pp. 1959–1962, 1994.

[2] B.D.O. Anderson and J.B. Moore, Optimal filtering, Prentice-Hall,
Englewood Cliffs, New Jersey, 1979.
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