
Succour to the Confused Deputy
Types for Capabilities

Radha Jagadeesan, Corin Pitcher, and James Riely

DePaul University

Abstract. The possession of secrets is a recurrent theme in security literature
and practice. We present a refinement type system, based on indexed intuitonist
S4 necessity, for an object calculus with explicit locations (corresponding to prin-
cipals) to control the principals that may possess a secret. Type safety ensures that
if the execution of a well-typed program leads to a configuration with an object p
located at principal a, then a possesses the capability to p. We illustrate the type
system with simple examples drawn from web applications, including an illus-
tration of how Cross-Site Request Forgery (CSRF) vulnerabilities may manifest
themselves as absurd refinements on object declarations during type checking.
This is an extended version of a paper that appears in APLAS 2012.

1 Introduction

Many systems depend upon a prescribed usage of secrets to enforce policies that incor-
porate secrecy, integrity, authentication, authorization, and auditing concerns. Neverthe-
less, it may be computationally expensive, or impossible in some adversarial models, to
control the use of secrets directly. For this reason, it is common to control the possession
of secrets instead of their use. However, invariants about the possession of secrets can
fail due to inadequately-specified interfaces or a lack of agreement between software
components. We illustrate some of the issues with two examples.

Object References The Java security manager permits access control checks based
upon permissions assigned to code [22]. This allows control over systems composed
of code from different sources. The java.io.FileOutputStream system class
utilizes access control checks in the following manner:
– The FileOutputStream constructor checks for the relevant file write permis-

sion.
– For performance, FileOutputStreammethods do not have access control checks.
The lack of access control checks after construction means that references to in-
stances of FileOutputStream can be used to write a file by untrusted code, if the
reference is made available to the untrusted code. For this reason, sensitive object
references must be confined to trusted code.

Cross-Site Request Forgery and the Confused Deputy Cross-Site Request Forgery
(CSRF) attacks [16] are acknowledged as an instance of the Confused Deputy prob-
lem [25]. A principal is a Confused Deputy if it uses its authority to mistakenly act
on behalf of an initiating principal. The capability-based solution [25] to the Con-
fused Deputy problem requires the initiating principal to provide a capability to

2 Radha Jagadeesan, Corin Pitcher, and James Riely

the Deputy, which the Deputy requires to complete its actions. Since capabilities
authorize access to a resource without further checks, their possession must be con-
strained programmatically. For example, one might ask:
– If the initiating principal hands a capability to the Deputy, to whom can the

Deputy pass the capability?
– Is the Deputy permitted to add its own capabilities to any request from the initi-

ating principal?
In the case of a web browser, acting as a Deputy for both user and JavaScript behav-
ior on web pages, it is permitted to add cookies to outgoing HTTP requests based
on the URLs determined from the web pages. Several browser extensions provide
a more restrictive policy on forwarding cookies for cross-site requests to prevent
misunderstandings in web applications vulnerable to CSRF attacks.

In this paper, we address control over the possession of secrets via the use of logical
specifications embedded in the types of a distributed programming language. Static
analysis is used to verify that programs comply with possession policies, yielding an
upper bound on the principals that may possess a secret.
Approach. The main contribution of this paper is the application of a refinement type
system for a distributed object-oriented language. The type system controls possession
of object references, representing secrets, via specifications in a principal-indexed vari-
ant of intuitionist S4.

We specify possession of secrets using intuitionist S4 logic [9,32]. Instead of a
single modality, we consider modalities indexed by principals. An indexed modality
of the form 2aΦ represents a predicate Φ that is permissible for principal a [20,13].
We use a “may possess” predicate mp(s) representing possession of a secret s. Thus
2amp(s) means that principal a is permitted to possess secret s.

It is key to our approach that indexed modalities allow different principals to have
different possession policies. In particular, 2amp(s) and 2bmp(s) are independent state-
ments about whether the different principals a and b may possess s. The underlying
logic then provides relationships between uses of modalities:

– Indexed modalities commute, i.e., (2a2bΦ)⇒ (2b2aΦ). This permits a sequence
of indexed modalities to be treated as a multiset.

– The counit (2aΦ)⇒ Φ allows a modality to be eliminated. The converse does not
hold in general. Consequently, a right for principal a can be forgotten during logical
deduction, but cannot be manufactured.

– From 2a(Φ1⇒Φ2) and 2aΦ1, we can deduce 2aΦ2; thus, the possessions of a
principal are closed under deduction. From comultiplication, (2aΦ)⇒ (2a2aΦ),
we deduce that the deductions in the scope of a principal a includes the knowledge
of a’s posessions.

– If b is less secure than a and 2bΦ then we can deduce 2aΦ ; so, by this principle of
Principal naturality, more secure principals have access to more secrets.

These relationships yield an indexed intuitionist S4 necessity modality, representing
layers of permission for principals, over the underlying logic. This distinction in the
logic between permissions and who has those permissions, represented by principal-
indexed modalities, greatly reduces the need to quantify over principals during reason-
ing. For example, if a policy states that s2 may be possessed if s1 may be possessed,

Succour to the Confused Deputy 3

written mp(s1)⇒ mp(s2), then the indexed intuitionist S4 necessity modality structure
allows this implication to be lifted to any principal a as (2amp(s1))⇒ (2amp(s2)).

Noninterference theorems [28] justify the use of indexed intuitionist S4 necessity
modalities in this modeling. In that paper, we show that noninterference captures the
idea that there is no information flow between differently indexed modalities. Let α be
a modality free formula. The intuitive idea behind non interference is that if 2aα is
derivable from some deductively closed set of hypothesis, then it is derivable from a
subset of those hypothesis that are in the scope of the modality indexed by a, i.e. the
formulas of the form 2a·. In particular, noninterference implies the unprovability of the
following formulas:

– 2amp(s1)⇒2bmp(s1)
– (2a(mp(s1)⇒ mp(s2))∧ 2bmp(s1))⇒2amp(s2)

The unprovability of 2amp(s1)⇒2bmp(s1) shows that the logical reasoning does not
transfer capabilities unrestrictedly between principals. The unprovability of the second
formula (2a(mp(s1)⇒ mp(s2))∧ 2bmp(s1))⇒ 2amp(s2) ensures that the acquisi-
tion of a new capability (s1) by another principal (b) does not create new capabilities
for principal a by purely logical reasoning. Thus, non-interference facilitates distribu-
tion and decentralized enforcement of policies in the following sense. The reference
monitor at a location uses logical reasoning to deduce whether a principal has sufficient
capabilities to access the resource available at the location. Noninterference ensures
that this reasoning is not dependent on other principals; so, the reference monitor at a
location can function without knowledge of the principals at other locations.

We present three analyses to establish the utility of our approach:

– Sealed objects (Section 2) that demonstrate modeling of symmetric cryptography [2].
– An object encoding (Section 5) of Hardy’s Confused Deputy [25].
– A web browser and server model to explore browser security policies and Cross-Site

Request Forgery prevention solutions.

Related Work
Capability-based systems. Capabilities have been used to realize security policies in a
variety of systems, e.g., [26,34,5] to name but a few. Distributed object languages such
as E [15] illustrate the “capabilities-as-object references” paradigm where both subjects
and resources are represented uniformly as objects, and classical object-oriented mech-
anisms are used to structure the exchange and invocation of capabilities. This viewpoint
underlies Caja, a safe subset of Javascript. Caja eschews direct references to DOM ob-
jects, instead providing references to wrappers that restrict the capabilities provided on
DOM objects. [29] formalize a notion of capability-safety, show that the subset Cajita
satisfies this property and derive that Cajita programs have inter-component isolation.
Type systems for secrecy, confinement, and access control. In object-oriented lan-
guages, ownership and confinement types (see [14] for a survey of ownership type sys-
tem) aim to delimit the portions of the object reference graph that can have references
to the objects under consideration. In this paper, we generalize from confinement types
to multi-party secrecy types using refinement types built on intuitionist S4 to express
dependencies.

4 Radha Jagadeesan, Corin Pitcher, and James Riely

Abadi [4] describes a type system for controlling secret keys in the spi calculus,
using a binary division of code as either fully trusted or untrusted. This paper explores
an idea stated there: “distinguish various principals within the system, and enable us to
discuss which of these principals have a given piece of data”.

Language-based approaches to access control have long been studied in the setting
of process calculi, though these approaches are not based explicitly in logic; two early
references are [31,27]. In [18], Fournet, Gordon and Maffeis validate authorization poli-
cies statically using a specification language with “expect” assertions in a Datalog-style
language. The says family of principal-indexed modalities is used in logics for rea-
soning about authorization statements made by different principals [21,1].The says
modality has a monadic structure, as exemplified by the unit law (Φ ⇒ a says Φ). In
our prior work [12] we develop a type system based on authorization logic to capture
provenance in a distributed object calculus. [17] explores the impact of compromised
principals on authorization policies in a distributed setting.

In this paper, we carry out a similar program, albeit in the logical setting of intution-
ist S4, by reusing the infrastructure of refinement types [19] developed in the literature:
policies (and therefore types) may quantify over object references of a given class. Ob-
ject references (and variables) appear in logical formulae in equality predicates and in
the “may-possess” predicate mp(.) described previously. Our semantics and notion of
safety are from [12] and derive, ultimately, from [23] and [24].

2 Sealed Objects

In this section, we introduce the computational model and logic, by way of an example.
The details of the logic can be found in a companion paper [28]; here we summarize
the properties of the logic required to understand the example.

Computation is based on threads that communicate via a shared heap. Threads are
“located” at the principal for which the thread is running; similarly objects are “located”
at the principal that created the object. We use the terms “principal” and “location”
interchangeably. For an object p, the location is available to the programmer via the
pseudo-field p.loc.

Neither threads nor objects can change location; however, object references can be
communicated between threads using shared objects. A method invocation on an object
leads to code execution at the location of the callee object. Thus, when the caller and
callee objects are located at different locations, method invocation leads to a change of
location context.

We conflate opponents, representing them all via ⊥. Threads acting on behalf of
opponents can only instantiate classes with trivial invariants, discussed below. Threads
acting on behalf of non-opponents must obey a global policy. All threads must be well
typed according to typical object-oriented programming rules, e.g., as in Java. Addi-
tionally, our type system controls communication of object references by non-opponent
threads.

Principals are ordered by a partial order with least principal being the Opponent ⊥.
Principal naturality allows that whenever 2⊥Φ is deducible, then so is 2aΦ , for any
a. In particular, this means that any of the Opponent capabilities are available to all

Succour to the Confused Deputy 5

principals. Thus, our type system does not impose any restrictions more than those of
usual object oriented programming on Opponent programs.

A program is safe if every object reference that is available to a principal at runtime
is permitted by the global specification of permitted capabilities. Our type system en-
sures that safe well-typed programs remain safe under evaluation in the face of arbitrary
opponent processes.

Consider javax.crypto.SealedObject. It permits a serializable object to be en-
crypted with a secret key and a symmetric-key cipher. The constructor is responsible
for serialization and encryption. The resulting SealedObject contains only ciphertext.
The original object can be recovered by passing the same secret key to getObject. We
model SealedObject as:

class SealedObject {
private final SecretKey key;
private final Object contents;
public SealedObject (SecretKey key, Object contents) {

this.key = key; this.contents = contents;
}
public Object getObject (Section key) {

if (key == this.key) return this.contents;
else return null;

}
}[2⊥(mp(this.key)⇒ mp(this.contents))]

By controlling possession of the key, one controls access to the contents. This
code uses private fields guarded by object equality rather than encryption. This is suffi-
cient since the type system enforces that the caller of getObject must possess key.

Specifications in our system are divided between a global policy and a set of class
invariants. Intuitively, the combinatation of these policies indicates upper bounds on
the capabilities that can be possessed by a principal. Our safety theorem shows that at
any stage in the evolution of a system, even in the presence of opponents, any principal
only possesses references that are provided for in the policy.

The global policy describes the distribution of initial secrets, and also any potential
relationships between classes. It is informative to consider the following extremal global
policies. Suppose that all class invariants are trivial (i.e., tt).

– The extremely permissive global policy ∀η . 2⊥mp(η) does not forbid any trans-
mission of objects. Thus, typing under this global policy is essentially the same as
standard object-oriented typing.

– The extremely restrictive global policy tt in the case where there are only two prin-
cipals — Opponent (⊥) and Secret (>) — forbids all transmission of objects from
> to ⊥. Thus, typing under this global policy is essentially the same as standard
information flow.

The class invariant is intended to describe the private internals of a single class. The
mutable state in our objects is only in the form of private instance variables. The class
invariant is written at the end of each class, in square brackets. Because we are in a
concurrent setting, we make the simplifying assumption that only final fields may be

6 Radha Jagadeesan, Corin Pitcher, and James Riely

mentioned in the class invariant and that constructors may do nothing but assign fields
— we also disallow reassignment of method parameters and local variables. Thus, the
class invariant holds for every object at the point its constructor terminates.

References to SealedObjects can be safely sent anywhere because they do not
leak their contents arbitrarily. The fact that they are allowed anywhere is exemplified
by the global policy (∀o:SealedObject. 2⊥mp(o)) — type-sorted quantification is
shorthand for quantification using a “type” predicate on objects. This policy allows
SealedObjects to be given to opponents; however, they can only retrieve the contents
if they have the matching key. More restrictive policies are also possible.

The class invariant of SealedObject indicates that any principal that may possess
this.key may also possess this.contents. Opponents cannot create secrets, and
therefore are restricted to creating instances of “global” classes with invariants (i.e.
“true”) that are trivially satisfied. The invariant of SealedObject is nontrivial, and
therefore opponents may not create instances of the class.

The invariant must be statically justifiable by any code that creates an instance of
the class. For example, consider the code new SealedObject (key, acct), where key
is an instance of SecretKey and acct is an instance of a BankAccount class. We
must establish that every principal that may possess key may also possess acct, writ-
ten 2⊥(mp(key)⇒ mp(acct)). This might be accomplished using a global policy that
allows acct to be possessed anywhere, written 2⊥(mp(acct)). Stricter policies could
be specified pairwise, including 2⊥(mp(key)⇒ mp(acct)) as a fact. More flexible ar-
rangements are also possible, for example, using the invariant of the factory class that
creates new keys. In any case, the implication must be deduced from the available policy
in order to instantiate SealedObject. In all non-trivial cases, the initial ability to create
SealedObjects is specified as part of the global policy; indeed, the non-interference
theorems ensure that there is no possible creation of SealedObjects otherwise.

In order to justify safety of the getObject method, we first observe that the caller
to getObject must possess the key, i.e., 2caller(mp(key)). From the SealedObject
class invariant, we know that:

2⊥(mp(this.key)⇒ mp(this.contents))

From which we can deduce that (note the principal on 2):

2caller(mp(this.key)⇒ mp(this.contents))

After the reference equality test (key==this.key), the callee knows key= this.key.
Moreover, equality can be lifted to comodalities, and we have 2caller(key= this.key).
From 2caller(mp(key)) and 2caller(key= this.key), we deduce 2caller(mp(this.key)).
In conjunction with the implication above, we find that 2caller(mp(this.contents)).
This justifies return of this.contents to the caller. In the case where the equality test
fails, we use the property that nullmay be possessed anywhere, written 2⊥(mp(null)).

If the SealedObject class had public fields, then a higher threshold must be met
to instantiate the class. In this case, one would also need to establish that any principal
that may possess the object may also possess the values placed into the public fields.

It is worth noting that other symmetric cryptography schemes can be encoded as
simple variants of SealedObject. For example, using nested conditionals, one can
encode an object requiring n keys to encrypt and k ≤ n keys to decrypt.

Succour to the Confused Deputy 7

3 Language

To formalize the preceding discussion, we first describe a distributed class-based lan-
guage with mutable objects [12]. The operational semantics borrows heavily from [23],
adding distribution [10,11] and classes. We consider typing in Section 4.

Syntax Names for classes (c, d), methods (`), fields (f , g), variables (x, y, z), objects
(p, q) and principals (a, b) are drawn from separate namespaces, as usual. Predicate
variables (α , β) and predicate constructors (γ) occur in static annotations used during
type-checking.

The reserved words of the language include: the variable name “this”; the principal
“caller”; the class name Object; the predicate constructors “tt”, “ff”, “⇒”, “∧”, “∨”,
“¬” and “2”. We write binary constructors infix.

The language is explicitly typed. Object types (c<~φ>) include the actual predicate
parameters ~φ , which we treat formally as extended values. Value types include objects
(C), principals (Prin) and Unit. Extended value types include predicate types (P), which
are resolved during typechecking. The process type (Proc) has no values.

One may write classes and methods that are generic in the predicate variables,
achieving ML-style polymorphism with respect to effects. Class declarations thus in-
clude the formal predicate parameters ~α , which may occur in the effect Φ (see next
table) associated with instances of the class. In addition to effects, class declarations
include field and method declarations, but omit implicit constructor declarations. Fields
include mutability annotations that are used in the statics. The syntax is as follows1.

Types, Annotations, Class and Method Declarations

C,D ::= Object Typesc<~φ>
T,S ::= Value TypesC | Prin | Unit
P,Q ::= Predicate TypesPred(~T)
T ,S ::= TypesT | P | Proc

µ ::= private final | private mutable | public final
D ::= class c<~α :~P>/D{~µ ~T~f; ~M }[Φ]
M ::= <~β : ~Q>S `(~T ~x){M}

Values, Terms, Evaluation Contexts

V,W,U,A,B,φ ,ψ ::= x | p | a | unit | α | γ | φ(~V)
M,N,L,Φ ,Ψ ::= V | V.f | V.loc

if V =W then M else N | let x=N;M | N ||-M
V.f :=W | let x=new c<~φ>(~V);M | let x=V.`<~φ>(~W);M
p:C{~f =~V} | (ν p:C)M | a[M]b

c

E ::= [–] | a[E]b
c | let x=E;M | E||-N | M ||-E | (ν p)E

1 When writing definitions using classes and methods, we sometimes omit irrelevant bits of syn-
tax, e.g., we leave out the parameters to classes when empty, such as writing Object rather
than Object< /0>. We identify syntax up to renaming of bound names, and write M{[V/x]} for
substitution of V for x in M (and similarly for other categories). We often omit type informa-
tion. We use standard syntactic sugar in place of explicit sequencing. For example, we may
write “y.f.g” to abbreviate “let x= y.f;x.g”.

8 Radha Jagadeesan, Corin Pitcher, and James Riely

We use the metavariables φ , ψ , Φ and Ψ to represent values and terms of predicate
type, and the other metavariables to represent runtime values and terms, with A and
B reserved for values of principal type. Predicates are static annotations used in type-
checking; they play no role in the dynamics. An expectation “expect Φ” as in [18]
can be coded as “new Proof<Φ>()”, where class Proof is defined “class Proof<α :
Pred>{}[α]”.

The last three constructs in the definition of terms — p:C{~f =~V}, (ν p:C)M, and
a[M]b

c — are dynamic constructs. These constructs are not allowed in method declara-
tions or initial code.

With the exception of V.loc, N ||-M, and the terms on the last line of the definition,
the constructs of the language are standard for class-based languages with generics.

The special “field” loc returns the location of an object. Concurrent composition
(||-) is asymmetric. In N ||-M, the returned value comes from M; the term N is available
only for side effects. The terms on the last line are are not allowed to appear in dec-
larations, as they model the runtime heap and call stack. These include heap elements
p:C{ · · ·} (indicating that p is located at a with actual class C and fields~f =~V), name
restriction (ν p) (indicating that p is a fresh name) and frames a[M]b

c (indicating that
M is running under authority of principle a and class c, with result available to b). We
write irreducible frames simply as a[M].

Structural congruence Evaluation is defined using a structural congruence on terms.
Let ≡ be the least congruence on terms that satisfies the following axioms. The rules
for concurrent composition are from [23].. They capture properties of concurrent com-
position, including semi-associativity and the interaction with let. The rules for distri-
bution are inspired by [11]. The interpretation of a value is independent of the location
at which it occurs and the computation of a frame does not depend upon the location
from which the frame was invoked (eg. a[b[M]b′

d]
a′
c ≡ b[M]b′

d) and axiomatize the
interaction of let with distribution (eg. a[let x=N;M]a′

c ≡ let x=a[N]a′
c ;a[M]a′

c).

Structural Congruence (M ≡M′) (where p /∈ fn(M))

(M ||-N)||-L≡M ||- (N ||-L)
(M ||-N)||-L≡ (N ||-M)||-L
((ν p)N)||-M ≡ (ν p)(N ||-M)
M ||- ((ν p)N)≡ (ν p)(M ||-N)
let x= (L||-N);M ≡ L||- (let x=N;M)
let x= ((ν p)N);M ≡ (ν p)(let x=N;M)

a[let x=b[V]a
d;M]a′

c ≡ a[let x=V;M]a′
c

a[b[M]b′
d]

a′
c ≡ b[M]b′

d
a[N ||-M]a′

c ≡ a[N]a′
c ||-a[M]a′

c
a[(ν p)N]a′

c ≡ (ν p)a[N]a′
c

a[let x=N;M]a′
c ≡ let x=a[N]a′

c ;a[M]a′
c

Evaluation The evaluation relation is defined with respect to an arbitrary fixed class
table. The class table is referenced indirectly in the semantics through the lookup func-
tions fields and body. Fix a global class table ~DDD . The fields and method lookup functions
are standard.

Field Lookup (fields(C) =~µ ~T~f)

fields(Object) = /0

~DDD 3 class c<~α>/D{~µ ~T~f; · · ·}
fields(D{[~φ/~α]}) =~µD ~TD~f D

fields(c<~φ>) =~µD ~TD~f D,(~µ ~T~f){[~φ/~α]}

Succour to the Confused Deputy 9

Method Lookup (body(C.`) = <~β : ~Q>S(~T ~x){M})

~DDD 3 class c<~α :~P>/D{ · · ·<~β : ~Q>S `(~T ~x){M} · · ·}
body(c<~φ>.`) = (<~β : ~Q>S(~T ~x){M}){[~φ/~α]}
~DDD 3 class c<~α :~P>/D{ · · · ~M } ` not defined in ~M

body(D{[~φ/~α]}.`) = <~β : ~Q>S(~T ~x){M}

body(c<~φ>.`) = <~β : ~Q>S(~T ~x){M}

Term Evaluation (M→M′)

let y=new C(~V);L→ (ν p:C)(p:C{~f =~V}||-L{[p/y]})
if fields(C) =~f and |~f |= |~V |

b[p:C{ · · ·}] ||-a[let y= p.`(~W);L]a′
d → b[p:C{ · · ·}] ||-a[let y=b[M′]a

c;L′]a′
d

if body(C.`) = (~x){M} and |~x|= |~W | and M′ = M{[a/caller]}{[p/this]}{[~W/~x]} and C = c<···>
b[p:C{ · · ·}] ||-p.loc → b[p:C{ · · ·}] ||-b
b[p:C{f =V · · ·}]||-p.f :=W→ b[p:C{f =W · · ·}]||-unit

b[p:C{f =V · · ·}]||-p.f → b[p:C{f =V · · ·}] ||-V
if V =V then M else N→M
if V =W then M else N→ N if V 6=W
let x=V;M→M{[V/x]}

M ≡ N→ N′ ≡M′

M→M′
M→M′

E[M]→ E[M′]

The new construct creates an object and returns a reference to it. The result is a
concurrent composition: the new object appears on the left, the return value on the
right. Method invocation happens at the callee site, and thus a new frame is introduced
in the consequent b[M′]a

c ; the result of the method call will be made available to a. In
M′, the distinguished variables caller and this are bound to the calling principal and the
object upon which the method is invoked respectively.

4 Types

The type system controls the distribution of object references via logical policies. We
follow [18], as adapted to distributed OO languages with localities in [12].

By allowing predicates to include open values, we can reason about terms that in-
clude variables, such as x; however, we cannot reason about x.f . Thus we extend the
type system to include equations between terms and values. Allowing any term is un-
sound, however, since our language includes mutability. Thus we identify a subset of
pure terms which do not include mutable features. In addition, we require that evalua-
tion of pure terms must terminate, and therefore we disallow method calls in pure terms.
To shorten some definitions, we define a category of identifiers, η , which include bound
names and principals.

η ::= x | p | a | α

Environments have two types of data: type bindings for names (as usual) and logical
phrases, including equalities and predicates. Define dom(∆) = {η | η :T ∈ ∆}.

∆ ::= /0 | ∆ ,η :T | ∆ ,Φ | ∆ ,V =M

10 Radha Jagadeesan, Corin Pitcher, and James Riely

Predicate lookup (effect(C)=Φ) is similar to method lookup. Here “ΦD ∧Φ{[~φ/~α]}”
is sugar for “let x=ΦD; let y=Φ{[~φ/~α]};x ∧ y”.

effect(Object) = true

~DDD 3 class c<~α :~P>/D{ · · ·}[Φ] effect(D{[~φ/~α]}) = ΦD

effect(c<~φ>) = ΦD ∧Φ{[~φ/~α]}

We also define a function (enva(M) = ∆) to create an environment from a term.

enva(η:C{~f =~V}) =2amp(η),a=η.loc,V1 =η.f 1, . . . ,Vn =η.f n
enva(let x=N;M) = enva(N) enva(N ||-M) = enva(N),enva(M)

enva(b[M]a′
c) = envb(M) enva((ν p:C)M) = p :C,enva(M) enva(M) = /0, otherwise

The type system is parameterized with respect to a semantic entailment relation
(∆ �Ψ). In addition to the rules arising from indexed intuitionist necessity modali-
ties, we expect the relation to support domain specific axioms and satisfy the following
properties. Let σ stand for substitutions of pure terms M for x.

1. If ∆ �Ψ then ∆σ �Ψσ , for any substitution σ from variables to values, or from
principals to principals.

2. If ∆ ,V =V,∆ ′ �Ψ then ∆ ,∆ ′ �Ψ .
3. If ∆ ,x : T,x=M,2amp(x),∆ ′ �Ψ and ∆ ,∆ ′ �2amp(M) then ∆ ,∆ ′ �Ψ{[M/x]}.

In examples, we assume that whenever 2amp(η) and η : C are deducible, then so is
2amp(η.f) for every public field of C.

The standard judgements required for the type system are relegated to Appendix C
including subtyping (` T ′ <: T), well-formed overriding (` <~β : ~Q>S(~T) overrides
D.`), well-formed types (∆ ` T), and well-formed environments (∆ ` �). The only
noteworthy aspect of these definitions is that the implication of the effects for the same
base class also yields subtyping:

~DDD 3 class c<~α> ~φ � ~ψ |~α|= |~φ |= |~ψ|
` c<~φ><: c<~ψ>

The judgments for declarations have the standard format. The judgment for values
include a script a, indicating that the value is well typed at a specific location. The
judgment for terms carries additional structure. In ∆ `a

′
a M : T ρ d, a should be read as

the location of the term, a′ as the location of the caller, T as the type of the resulting
value, d as the class from which the code is derived, and ρ ∈ {Pure, Impure} as a purity
annotation.

The effect on a class must be a pure term of type Pred. The rule for typing meth-
ods uses a standard well-formed overriding definition. The typing of the method body
occurs in the context of an abstract principal a that is constrained to coincide with the
location of the ambient object. Similarly, the abstract principal caller is constrained to
coincide with the annotation on the typing of the body of the method. In typing the
method body, one can use the logical variables of the class, the method declaration and
assume that the caller was permitted to possess the arguments.

Succour to the Confused Deputy 11

Well-Formed Declarations (∆ `D) (∆ `M in c<~α :~P>/D)

∆ ,~α :~P ` D,~T ∆ ,~α :~P,a : Prin,this : c<~α>,a= this.loc,2amp(this) `aa Φ : Pred Pure c
∆ ` ~M in c<~α :~P>/D fields(D) =~µD ~TD~fD

~f D∩~f = /0 a /∈ fn(M)

∆ ` class c<~α :~P>/D{~µ ~T~f; ~M }[Φ]

∆ ,~α :~P,~β : ~Q ` S,~T ` S′ <: S ` <~β>S(~T) overrides D.`
∆ ,~α :~P,~β : ~Q,~x :~T ,a : Prin,this : c<~α>,a= this.loc,2a(mp(this)∧mp(~x)),

caller : Prin,2callermp(~x) `callera M : S′ ρ c a /∈ fn(M)

∆ ` <~β : ~Q>S `(~T ~x){M} in c<~α :~P>/D

The judgment for values requires that well-formed objects satisfy their class invari-
ants. In addition, the object value, as well as the objects held in its public fields must be
permitted at the given location.

Well-Formed Values and Terms (∆ à V : T) (∆ `a
′

a M : T ρ d) (ρ ::= Pure | Impure)

∆ 3 b : Prin

∆ à b : Prin

∆ 3 x : T ∆ �2amp(x)
∆ à x : T

∆ 3 p :C ∆ �2amp(p)
∆ à p : C ∆ à unit : Unit

∆ 3 α : Pred(~T)
∆ à α : Pred(~T)

arity(γ) = ~T

∆ à γ : Pred(~T)
∆ à φ : Pred(~T) ∆ à ~V : ~T

∆ à φ(~V) : Pred

∆`� ∆ à p : C fields(C) =~µ ~T~f ∆ à ~V : ~T ′ ` ~T ′ <: ~T
∆ ,enva(p:C{~f =~V}) � effect(C){[p/this]}
∆ `a

′

a p:C{~f =~V} : Proc ρ d

∆ ` � ∆ `C fields(C) =~µ ~T~f ∆ à ~V : ~T ′ ` ~T ′ <: ~T
∆ ,enva(x:C{~f =~V}) � effect(C){[x/this]} ∆ ,x :C,enva(x:C{~f =~V}) `a

′

a M : T ρ d
∆ `a

′

a let x=new C(~V);M : T Impure d

∆ ` � ∆ à V : C body(C.`) = <~β : ~Q>S(~T) ∆ à ~φ : ~Q ∆ à ~W : ~T ′ ` ~T ′ <: ~T{[~φ/~β]}
∆ ,b : Prin,b=V.loc �2bmp(~W) b 6∈ dom(∆) ∆ ,x : S{[~φ/~β]},2amp(x) `a

′

a M : T ρ d
∆ `a

′

a let x=V.`<~φ>(~W);M : T Impure d

∆ ` � ∆ à V : d<~φ> fields(d<~φ>) =~µ ~T~f µi = private mutable ∆ à W : T ′ ` T ′ <: Ti

∆ `a
′

a V.f i :=W : Unit Impure d

∆ ` � ∆ à V : c<~φ> fields(c<~φ>) =~µ ~T~f If µi 3 private then c = d
If µi 3mutable then ρ = Impure

∆ `a
′

a V.f i : Ti ρ d

∆ ` � ∆ à V : T ∆ à W : S ∆ ,V =W `a
′

a M : T ρ d ∆ `a
′

a N : T ′ ρ d
Either `T ′ <: T = T ′′ or `T <: T ′ = T ′′

∆ `a
′

a if V =W then M else N : T ′′ ρ d

∆ `aa N : T Impure d
∆ ,enva(N),x : T,2amp(x) `a

′

a M : T ρ d
∆ `a

′

a let x=N;M : T Impure d

right(N) = N′

∆ `aa N : T ρ d ∆ ,enva(N) `aa N′ : T Pure d
∆ ,enva(N),x : T,x=N′,2amp(x) `a

′

a M : T ρ d
∆ `a

′

a let x=N;M : T ρ d

∆ ,enva(M) `a
′ ′

a N : T ′ ρ d ∆ ,enva(N) `a
′

a M : T ρ d
∆ `a

′

a N ||-M : T ρ d
∆ , p :C `a

′

a M : T ρ d
∆ `a

′

a (ν p:C)M : T ρ d

12 Radha Jagadeesan, Corin Pitcher, and James Riely

∆ ` � ∆ à′ V : T

∆ `a
′

a V : T ρ d
∆ ` � ∆ à V : C
∆ `a

′

a V.loc : Prin ρ d
∆ à b : Prin ∆ `b

′

b M : T ρ c
∆ `a

′

a b[M]b′
c : T ρ d

The typing rules for terms are designed to establish several invariants, which we
now discuss.
Well located. The rules for terms use the value judgment to ensure that value occur-
rences are available at a given location. The rule for located terms switches principals
as expected.
Purity annotations. Field updates and constructor calls are impure because they mutate
the heap. Field accesss to mutable fields are impure because they rely on mutable state.
Method invocations are impure because they might not terminate. In all other cases,
the purity annotation is constructed inductively. For example, a let is pure only if both
terms involved are pure. Similarly for concurrent composition and conditionals.
Equations. The rule for pure let terms uses the function right. Intuitively, for any term
N, right(N) returns the rightmost subterm of N after it has been rewritten to a normal
form. Routine details are omitted. Conditionals and let expression on pure terms intro-
duce equations to the environment. Equations are also generated by the rules for heap
objects (η:C{ · · ·}) and new.
Caller annotations. The caller annotation is carried inductively through all rules but
two. In the rule for the concurrent composition, only the right term is constrained; the
value of the left term is ignored. The purpose of the caller annotation is revealed by the
rule for values which appear as terms — these are the return values. The rule ensures
that the caller principal is permitted to have a reference to the value.
Checking effects and the mp(·) predicate. The rule for new illustrates the methodology.
(The rule for heap objects enforces similar proof obligations.) In this rule, the hypothe-
sis for typing fields is standard. The lookup of the effect obligation via effect(C) yields
a conjunction of the effects for this class and all its superclasses. The proof obligations
ensure that the created object conforms to the class predicate, and that the reference
and its public fields are permitted to be at the principal at which the object is located.
The facts used to discharge this proof obligation are derived from the environment via
∆ which accumulates the benefits derivable from the objects declared in the environ-
ment and the equations accumulated in the environment via lets and conditionals. The
parameters to the constructor have to be available at the current location a.

In field update and lookup, the class annotation on the typing judgment is ensured
to be the class of the object if the field is private.

In the rule for “generic” methods, we substitute concrete formulas for the logical
variables being carried in the method definition. Since methods are executed at the
location of the callee, we check to ensure that the location of the callee object possesses
the right to hold references to the objects being passed in as actual parameters.
Conjoining specifications The rule for concurrent composition reflects the ideas from
conjoining specifications of concurrent systems [3] — each component can assume the
information exposed by the other component.

Results. An initial program is one that contains no dynamic constructs.
An opponent class is one whose effect is trivial, i.e., tt. An opponent program is

one that can be typed only allowing the constructor rule for opponent classes. In typing

Succour to the Confused Deputy 13

opponents, we allow the assumption ∀η . 2⊥mp(η). Thus opponents are typed using a
restricted class table, but under a permissive policy. This permissive policy is essentially
the same as standard object-oriented typing.

An opponent can instantiate opponent classes. By Principal Naturality, the oppo-
nent can unconstrainedly pass arguments or return results in method invocations. Thus,
the opponent typability requirement in the following safety result means only that the
opponent program is typable in the sense of classic object-oriented programming.

Recall that a frame is a term of the form a[M]b
c .

Definition 1. A term M is safe for ∆ if whenever M→∗ N, N ≡ E[a[N′]b
c], N′ contains

no frames and p ∈ fn(N) then ∆ ,env⊥(N) �2amp(p). 2

Proposition 2. Suppose that ∆ ⊥̀ M and ∆ ,env⊥(M),(∀η .2⊥mp(η)) ⊥̀ N for an initial
opponent program N. Then N ||-M is safe for ∆ . 2

The safety result ensures that well-typed trustworthy programs are safe when combined
with arbitrary (typed but untrustworthy) opponents.

5 The Confused Deputy

In this section, we examine how to typecheck code that addresses the Confused Deputy
problem using object references as capabilities.

Hardy [25] discusses a system with a compiler invoked by a user. The compiler
writes two files, in addition to any generated code. The first is a statistics file. The name
of the statistics file is hardcoded into the compiler, and the compiler is explicitly granted
permission to write to that file. The second is a debugging file, chosen by the user. In
order to write to the user’s choice of debugging file, the compiler must be granted a
broad permission. Hardy describes an occasion when a user selected a sensitive file—
subsequently overwritten by the compiler—and dubs the compiler a Confused Deputy.

Hardy’s solution requires the user to obtain a capability to write to the debugging
file, and to send that capability to the compiler. The compiler can use the user’s capa-
bility to write to the debugging file.
Modeling. We model Hardy’s solution using the code in Figure 1. Following the object
references as capabilities paradigm, the capabilities to write to files are represented by
a FileOutputStream class (as in Java).

The User class invokes a compiler, passing the FileOutputStream contents of
the fDebug field. The User class allows its fDebug field to be updated via a method
setDebug—we examine the typing consequences below.

The Compiler class must be initialized with a final FileOutputStream field fStats
at construction. When it compiles, it uses its own fStats field and the fDebug method
parameter supplied by the caller to write to the statistics and debugging files.
Controlling capabilities. The capability solution improves upon the Confused Deputy
situation, with respect to the principle of least privilege, because the compiler lacks
the broad permission to write to many files in the object/capability solution. Hardy
observes that achieving a comparable system with a traditional access control policy
for the compiler is challenging, e.g., because the compiler may be invoked by different
users with access to different files.

14 Radha Jagadeesan, Corin Pitcher, and James Riely

class User {
private final Compiler compiler;
private FileOutputStream fDebug;
void action () {

...
this.compiler.compile (this.fDebug, ...); // Invoke with current fDebug.

}
void setDebug (FileOutputStream fDebug) {

this.fDebug = fDebug;
}

}[∀o : FileOutputStream.2this.locmp(o)⇒2this.compiler.locmp(o)]

class Compiler {
private final FileOutputStream fStats;
public void compile (FileOutputStream fDebug, String source) {

...
this.fStats.write (...); // Write statistics to fStats.
fDebug.write (...); // Write debugging output to fDebug.

}
}

Fig. 1. User and Compiler Code

However, the capability solution is not entirely satisfactory. As discussed in the
introduction, an untrustworthy compiler might forward capabilities that it receives to
objects at different locations (principals).
Type assignment. We now consider how to typecheck the code of Figure 1 in a way
that allows the Compiler to receive the fDebug object reference but not forward it to
another location. We omit discussion of the source code given to the compiler, and any
executable output, for reasons of space.

The typing of the compiler’s use of FileOutputStream references is straightfor-
ward. The compiler receives permission to possess the field fStats implicitly. More
generally, our type system implicitly allows every object to access its own fields. On
the other hand, code that constructs a Compiler instance is responsible for ensur-
ing that the chosen location of the compiler is able to possess fStats. That is, if
a newly created Compiler instance is referenced via c, then the proof obligation is
2c.locmp(c.fStats). Similarly, our type system implicitly grants the compiler per-
mission to possess the method parameter fDebug, and the obligation lies with the caller
to ensure that the location of the callee may possess fDebug.

Typechecking the body of the compile method does not introduce proof obligations
involving fStats or fDebug, because those values are passed as this, and the type
system automatically validates (∀o.2o.locmp(o)). That is, a location may possess a
reference to any object stored at that location.

The user has a more interesting policy, because it has to permit forwarding of
fDebug to the compiler. The form of the policy hinges upon the mutability of the

Succour to the Confused Deputy 15

fDebug field. For example, if fDebug was a final field, it could be referred to in the
class invariant, e.g., with form:

2this.compiler.loc2this.locmp(this.fDebug)

which entails:

(2this.locmp(this.fDebug))∧ (2this.compiler.locmp(this.fDebug))

To demonstrate a more flexible alternative, we chose to make fDebug non-final (muta-
ble) in the code of Figure 1. Since we can no longer refer to the field in a class invariant,
we instead state that all FileOutputStream references that may be possessed at the
location of User may also be possessed at the location of the corresponding compiler.
This class invariant is written:

∀o : FileOutputStream.2this.locmp(o)⇒2this.compiler.locmp(o)

With this class invariant, typechecking justifies forwarding of this.fDebug to this.compiler
using implication together with the facts that: (1) this.loc may possess this.fDebug
(the location of an object implicitly possesses its fields); and (2) this.fDebug is de-
clared to be an instance of FileOutputStream.

Finally, code that constructs an instance of User has an obligation to show that the
associated Compiler instance is usable with any FileOutputStream object reference
that the User receives.

6 Conclusion

The control of the possession and transmission of secrets is a recurrent theme in secu-
rity literature and practice. The policies on possession in this paper describe an upper
bound on the principals who can possess a secret. We describe a static analysis to en-
sure programs in a distributed object-oriented language comply with such policies. Our
static analysis takes the form of a refinement type system, based on indexed necessity
modalities from intuitionist S4, for an object calculus with locations. The safety result
ensures that in the configurations that arise from the execution of well-typed programs,
objects are only accessible to principals who are permitted to do so by the system policy,
even in the presence of attackers who try to subvert the policies by inserting malicious
objects and code into the system. Our results suggest that type systems are a practical
tool to debug secrecy errors in the design of user-defined APIs in distributed systems.

Acknowledgements We thank the referees of a previous version of this paper for
useful comments. This research was supported by NSF CCF-0915704.

References

1. Abadi, M.: Access control in a core calculus of dependency. ENTCS. 172, 5–31 (2007)
2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Infor-

mation and Computation 148, 36–47 (1999)

16 Radha Jagadeesan, Corin Pitcher, and James Riely

3. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans. Program. Lang. Syst. 17(3),
507–535 (1995)

4. Abadi, M.: Secrecy by typing in security protocols. Journal of the ACM 46, 611–638 (1998)
5. Anderson, M., Pose, R.D., Wallace, C.S.: A password-capability system. Comput. J. 29(1),

1–8 (1986)
6. Barth, A.: RFC 6265: HTTP State Management Mechanism (2011)
7. Barth, A.: RFC 6454: The Web Origin Concept (2011)
8. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery. CCS’08.

pp. 75–88 (2008)
9. Bierman, G.M., de Paiva, V.C.V.: On an intuitionistic modal logic. Studia Logica 65 (2001)

10. Cardelli, L.: A language with distributed scope. POPL. pp. 286–297 (1995)
11. Castellani, I.: Process algebras with localities. Handbook of Process Algebra, chap. 15, pp.

945–1045 (2001)
12. Cirillo, A., Jagadeesan, R., Pitcher, C., Riely, J.: TAPIDO: Trust and authorization via prove-

nance and integrity in distributed objects. ESOP. pp. 208–223 (2008)
13. DeYoung, H., , Pfenning, F.: Reasoning about the consequences of authorization policies in

a linear epistemic logic. Tech. Rep. 1213, CMU (2009)
14. Drossopoulou, S.: Ten years of ownership types or the benefits of putting objects into boxes

(2008), invited talk at BCS. Talk available at http://www.doc.ic.ac.uk/~scd/BCS.pdf
15. E: Open source distributed capabilities, http://www.erights.org
16. Feil, R., Nyffenegger, L.: Evolution of cross site request forgery attacks. Journal in Computer

Virology 4(1), 61–71 (Nov 2007)
17. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization in distributed

systems. CSF (2007)
18. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. ACM

Trans. Program. Lang. Syst. 29(5) (2007)
19. Freeman, T., Pfenning, F.: Refinement types for ML. pp. 268–277. PLDI ’91, ACM, New

York, NY, USA (1991)
20. Garg, D., Bauer, L., Bowers, K.D., Pfenning, F., Reiter, M.K.: A linear logic of authorization

and knowledge. ESORICS. LNCS, vol. 4189, pp. 297–312 (2006)
21. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. CSFW. pp. 283–

296 (2006)
22. Gong, L., Mueller, M., Prafullch, H.: Going beyond the sandbox: An overview of the new se-

curity architecture in the Java Development Kit 1.2. USENIX Symposium on Internet Tech-
nologies and Systems. pp. 103–112 (1997)

23. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: Reduction and typing. Proceed-
ings HLCL’98 (1998)

24. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. Journal of Computer
Security 11(4), 451–520 (2003)

25. Hardy, N.: The confused deputy: (or why capabilities might have been invented). SIGOPS
Oper. Syst. Rev. 22, 36–38 (October 1988)

26. Hardy, N.: KeyKOS architecture. SIGOPS Oper. Syst. Rev. 19, 8–25 (October 1985)
27. Hennessy, M., Riely, J.: Resource access control in systems of mobile agents. Information

and Computation 173, 2002 (1998)
28. Jagadeesan, R., Pitcher, C., Riely, J.: Non interference for intuitionist necessity. Tech. Rep.

12-003, School of Computing, DePaul University (2012)
29. Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted web appli-

cations. IEEE Symposium on Security and Privacy. pp. 125–140 (2010)
30. Mao, Z., Li, N., Molloy, I.: Defeating cross-site request forgery attacks with browser-

enforced authenticity protection. Financial Cryptography. LNCS, vol. 5628, pp. 238–255
(2009)

Succour to the Confused Deputy 17

31. Nicola, R.D., Ferrari, G., Pugliese, R.: Klaim: a kernel language for agents interaction and
mobility. IEEE Transactions on Software Engineering 24, 315–330 (1997)

32. Pfenning, F., Wong, H.C.: On a modal λ -calculus for S4. Proceedings of MFOS. New Or-
leans, Louisiana (Mar 1995), ENTCS, Volume 1, Elsevier

33. Ryck, P.D., Desmet, L., Heyman, T., Piessens, F., Joosen, W.: Csfire: Transparent client-side
mitigation of malicious cross-domain requests. ESSoS. LNCS, vol. 5965, pp. 18–34 (2010)

34. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: a fast capability system. SIGOPS Oper. Syst.
Rev. 33, 170–185 (Dec 1999)

35. Zalewski, M.: Browser Security Handbook, part 2. Google Inc. (2008), http://code.google.
com/p/browsersec/wiki/Part2

18 Radha Jagadeesan, Corin Pitcher, and James Riely

Browser-Side Code Browser Web Server

Request Request and Cookie

Response and CookieResponse

Fig. 2. Interaction Between Browser-Side Code, Web Browser, and Web Server

A Browser Security Policy and Cross-Site Request Forgery

In this section, we continue to investigate “‘Deputy” problems, by considering how
typing could have been used to derive elements of browser security policy and a typ-
ical solution to Cross-Site Request Forgery (CSRF). Our approach is to, first, build a
crude object-oriented model that captures interaction between browser-side code, web
browsers, and web servers. In particular, we model the browser addition of cookies to
outgoing requests. Next, we consider policies that control a password-protected secret
stored on a web server. The effect of these policies is to prevent unauthorized reads of
the secret by cross-site requests, and unauthorized state changes on the web server, e.g.,
a password change from a CSRF attack.

A.1 Overview

The basic interaction that we consider is diagrammed in Figure 2. The distinct lo-
cations/principals are categorized as pieces of browser-side code (representing both
JavaScript code and the behavior of a user interacting with a web page), a web browser,
and a web server. There can be multiple web servers, each associated with a domain
name. Similarly, for browser-side code. The distinction between browser-side code and
the browser reflects the usual browser security model [35].

In Figure 2, browser-side code initiates an HTTP request via the browser. The
browser-side code is responsible for choosing the URL, HTTP method, HTTP body
of the request, etc. The browser maintains cookies that it receives from web servers.
When a browser forwards a request from browser-side code to a web server, it also
sends any cookies that it possesses for that web server.

A web server response to the browser’s request includes, amongst other items, cook-
ies and content in the HTTP body of the response. Depending on how the request is
made, a browser might, e.g., return the results to browser-side code, add the response
to the DOM, or create a fresh page. We focus on results returned to browser-side code.
Security mechanisms. For our purposes, there are two relevant security mechanisms.
The first is the association of an origin with each page to implement the same-origin pol-
icy [35,7]. Web pages and their browser-side code can make requests for resources with
various mechanisms, e.g., img elements, script elements, programmatic insertion of
such elements into a page via the Document Object Model (DOM) from JavaScript,
programmatic form submission from JavaScript, and use of the XMLHttpRequest ob-
ject. Browsers place limitations on requests, and the visibility of responses, partly based
on the page’s origin [35].

The second mechanism is the use of cookies by web servers to indicate that a user
(or some browser-side code) has authenticated successfully. Cookies are added even to

Succour to the Confused Deputy 19

cross-site requests, where a request is cross-site if the web page (or browser side code)
is associated with a web server different from the target of the request. This permits
cross-site requests to web servers where the user is authenticated.
Security concerns. The unconstrained addition of cookies to requests makes it chal-
lenging for web servers to determine the origin of a web page, or equivalently to detect
cross-site requests, without further infrastructure [8]. It is in this sense that the browser
is a Confused Deputy—the browser upgrades the authority of a request from a web page
without understanding the contents of the request. There are two security concerns with
being unable to identify cross-site requests:

1. A secret held on a web server may be returned to browser-side code with a different
origin. Hence, there is potential for untrustworthy code to receive the secret.

2. The integrity of information on the web server may be harmed if state changes are
based upon requests that are mistakenly thought to be from trustworthy code, but are
instead cross-site requests from untrustworthy code.

(1) is primarily addressed by the browser security policy. (2) is a key ingredient for
Cross-Site Request Forgery (CSRF) attacks—a number of mitigation strategies have
been proposed, see, e.g., [8,30,33].

We now begin to develop an object-oriented model, with the intention of controlling
the possession of secrets, such as passwords and cookies.

A.2 The Web Server Model

We first present a web server model with a very simple policy for releasing secret in-
formation and updating sensitive web server state. In Section A.3, we show that a more
sophisticated policy is necessary to support a web browser that runs browser-side code
in different protection domains.

The code for the web server model, and its supporting classes, is defined in Figure 3.
The Password, Cookie, and Secret classes function as secrets, and have no methods
or fields. They are simply unforgeable references.
HTTP requests and responses. In this model, client requests to a web server are dis-
tributed method calls, and the HTTP request is a parameter to the method. To focus on
the novel components of policies for possession of object references, we make simpli-
fying assumptions, e.g., transport is secure and reliable, there are no proxies, etc.

The concrete subclasses of the classes Request and Response model different re-
quests and responses. We do not attempt to explicitly represent, e.g., the path compo-
nent of a URL, HTTP method (and the semantics with respect to state), HTTP headers,
HTTP response codes, content types, or parsing of message bodies, etc.

The RequestLogin class represents a request for a password login, RequestRead
a request for a secret held on the server, and RequestPasswd a request to update the
password used for logging in. For simplicity, we assume that each web server has just
one user. The ResponseLogin class represents an HTTP response for a successful pass-
word login. The cookie field inherited from Response is expected to contain a refer-
ence to a Cookie that is used to authenticate subsequent requests. The ResponseRead
and ResponsePasswd classes represent the results of successful requests to read the

20 Radha Jagadeesan, Corin Pitcher, and James Riely

server’s secret and to update the password respectively. We model failure of requests
using the null reference, and terminate execution if null is dereferenced.

We omit constructors that initialize all final fields with arguments given to construc-
tor of the same type. Immutable public fields are used for the Request and Response
classes and their subclasses since they represent data rather than code, and because
some fields are referenced in class invariants. Notably, we assume that classes are type-
checked in the context of a global policy stating that instances of each subclass of
Request and Response can be seen if their fields can be seen, e.g. for the ResponseRead
class: ∀o : ResponseRead.(2⊥(mp(o.cookie)∧mp(o.secret)⇒ mp(o))).
Web server state. To support password updates, the state of the web server must be mu-
table. However, we disallow references to mutable fields in logical assertions because
they may be invalidated by assignment. For this reason, the state of the web server is
held in an instance of another class WebServerState, with immutable fields that may
be used in logical assertions. The WebServer has a mutable field state containing a
reference to an instance of WebServerState. To update the state, WebServer creates
a fresh instance of WebServerState, with the obligation to establish the new class in-
variants for the fresh instance, and assigns the new instance to the mutable state field
(line 38 of Figure 3). This yields a (non-atomic) swap of the state used by WebServer.
In order to use the assertions on the data in WebServerState, the object reference in
the mutable state field must be copied to a final local variable (line 24 of Figure 3).
The assertions from WebServerState are available for typechecking purposes whilst
the final local variable is in scope.

The first invariant of the WebServerState class states that the cookie can be held
if the password can be held:

2⊥(mp(this.password)⇒ mp(this.cookie))

and the second invariant states that the secret can be held if the cookie can be held:

2⊥(mp(this.cookie)⇒ mp(this.secret))

We now examine the use of these invariants in the web server. When the process
method is invoked with a Cookie (possibly null) and a Request, the request type is
examined using instanceof (lines 25, 30, and 34) and then downcast to the more
precise type (lines 26 and 35). Each request type is considered individually below.
Typing the login request. In the case of a login request, it is assumed from the method
invocation that 2callermp(request), i.e., the caller may possess the request. Note that
this holds for both the method parameter request and the local variable request
shadowing the method parameter, because downcasting introduces an equality between
the two. For this reason, we do not distinguish between the method parameter and the
local variable. Next, since password is a public and final field of RequestLogin, we
have:

2⊥(mp(request)⇒ mp(request.password))

In conjunction with 2callermp(request), we deduce that 2callermp(request.password).
The equality test on line 27 of Figure 3 establishes that (request.password =

state.password), and it follows that 2callermp(state.password).

Succour to the Confused Deputy 21

1 class Password {} class Cookie {} class Secret {}
2

3 abstract class Request {}
4 class RequestLogin extends Request { public final Password password; }
5 class RequestRead extends Request {}
6 class RequestPasswd extends Request {}
7

8 abstract class Response { public final Cookie cookie; }
9 class ResponseLogin extends Response {}

10 class ResponseRead extends Response { public final Secret secret; }
11 class ResponsePasswd extends Response { public final Password passwordNew; }
12

13 class WebServerState {
14 public final Password password;
15 public final Cookie cookie;
16 public final Secret secret;
17 }[2⊥(mp(this.password)⇒ mp(this.cookie))
18 ∧ 2⊥(mp(this.cookie)⇒ mp(this.secret))
19 ∧ 2⊥(mp(this)⇒ (mp(this.password) ∧ mp(this.cookie) ∧ mp(this.secret)))]
20

21 class WebServer {
22 private WebServerState state;
23 Response process (Cookie cookie, Request request) {
24 WebServerState state = this.state;
25 if (request instanceof RequestLogin) {
26 RequestLogin request = (RequestLogin) request;
27 if (request.password == state.password) {
28 return new ResponseLogin (state.cookie); // Password accepted.
29 }
30 } else if (request instanceof RequestRead) {
31 if (cookie == state.cookie) {
32 return new ResponseRead (null, state.secret); // Cookie accepted
33 }
34 } else if (request instanceof RequestPasswd) {
35 RequestPasswd request = (RequestPasswd) request;
36 if (cookie == state.cookie) {
37 // Cookie accepted, update state with new password.
38 this.state = new WebServerState (request.passwordNew, state.cookie, state.secret);
39 return new ResponsePasswd (null);
40 }
41 }
42 return null; // The request failed.
43 }
44 }

Fig. 3. Web Server Code

22 Radha Jagadeesan, Corin Pitcher, and James Riely

The first component of the WebServerState class invariant yields:

2⊥(mp(state.password)⇒ mp(state.cookie))

Hence 2callermp(state.cookie). Now, the omitted class invariant for the ResponseLogin
class is:

2⊥(mp(this.cookie)⇒ mp(this))

This justifies returning the result of the constructor invocation new ResponseLogin
(state.cookie) on line 28, because 2callermp(state.cookie), and completes the
discussion of typechecking for the RequestLogin case.
Typing the read secret request. The handling of RequestRead, starting at line 30 of
Figure 3, is similar to that of RequestLogin, except that the justification for returning
the secret originates from 2callermp(cookie). rather than 2callermp(request.password).
A null value is returned instead of a cookie to indicate that the client should not change
the cookie that it has stored for this web server (the actual cookie could be returned
without affecting the system’s behavior significantly).
But typechecking the password update request fails! The RequestPasswd han-
dler starts at line 34. The request is authenticated by checking the cookie as with
RequestPasswd. However, this test does not convey useful static information about
the new password in the request.

In particular, the creation of the new instance of WebServerState on line 38 fails
to typecheck, because the first conjunct of the class invariant cannot be proved for the
arguments to the constructor:

2⊥(mp(request.passwordNew)⇒ mp(state.cookie))

If we ignore this typing failure, the integrity of the web server state can be violated. A
subsequent request to read the secret stored at the web server can also be unjustified,
because the reasoning above relies on the class invariant for the web server state.

This scenario is precisely that of a CSRF attack, where malicious cross-site code
uses an authenticated browser session to update a user’s password on a web server
without having to steal the original password. The web server can then be accessed
using the new password.

Our simple model identifies the integrity failure from a CSRF attack as a typecheck-
ing error. In the next section we show how a typical CSRF solution typechecks.

A.3 The Web Browser Model

We now consider the interactions of the browser (the Deputy) with browser-side code
and a web server. In particular, we examine the policy justification demanded by our
type system for the browser to forward requests and responses between browser-side
code and a web server, including code and invariant changes used to avoid a CSRF
attack.

First, objects representing the web browser and browser-side code must be placed
at separate locations. Additionally, different pieces of browser-side code with differ-
ent origins must be placed at separate locations. In this setting, the web browser and

Succour to the Confused Deputy 23

browser-side code can have different policies for possession of secrets, reflecting the
use of separate protection domains in an implementation.
Forwarding requests. We model a Browser class using code of the form (the logical
formula preceding the method declaration is a precondition described below):

class Browser {
[2ws.locmp(request)]
Response process (WebServer ws, Request request) {

Cookie cookie = ... // Retrieve cookie for ws.
Response response = ws.process (cookie, request);
...

}
}

The process method is invoked by browser-side code to request a resource from a web
server. This process method is a simple abstraction of the different methods avail-
able to scripts to cause HTTP requests. The browser code above adds a cookie when
forwarding a request to the web server.

In typechecking the body of this method, the first step is to ensure that the target
web server ws may possess both the cookie and the request.

Forwarding of the cookie reference to the web server must be justified by the data
structure from which the cookie is retrieved. A linked list of pairs of Cookie and
WebServer references suffices, where each pair states that the cookie can be sent to the
web server, i.e., the class invariant for the pair class is 2this.ws.locmp(this.cookie).
Cookies returned in responses from a web server can be paired with the web server
reference, whilst satisfying the same invariant, simply because the server must have
possessed the cookie in order to return it.

To justify sending the request object reference to ws, the process method requires
the precondition 2ws.locmp(request) to be satisfied by the caller. In context, the pre-
condition means that browser-side code cannot ask a browser to send requests with
secrets to web servers that should not possess those secrets.

Such a precondition relating arguments for a method can be reduced to a class in-
variant by first introducing a wrapper class:

class PreBrowser {
public final WebServer ws;
public final Request request;

}[2this.ws.locmp(this.request)]

In this reduction, the process method is altered to accept a single parameter of
type PreBrowser instead of the two original ws and request parameters. The class
invariant may then be assumed in the body of the process method.

The browser should store response.cookie from any response received from
ws with the invariant discussed above for retrieved cookies.

Returning response to the web page that invoked the browser process is more in-
teresting. Previously, WebServer provided responses because the caller (such as Browser)
was known to possess a password or a cookie, and was thus entitled to the response. In
order to pass the response to others, i.e., back to the requesting page, we adopt a new

24 Radha Jagadeesan, Corin Pitcher, and James Riely

policy for WebServer’s process method that is in essence:

2⊥(mp(cookie) ∧ mp(request)⇒ mp(result))

That is, any principal may possess the result if they may possess the cookie and
request arguments. This policy is interesting because, in general, the right to pos-
sess the arguments to a method does not convey the right to possess the results of the
method.

The policy is a postcondition for the process method that refers to the (implicitly
bound) result. This postcondition can also be reduced to a class invariant on a wrapper
class, by introducing a PostWebServer class that returns the arguments to process
paired with the original result:

class PreWebServer {
public final Cookie cookie;
public final Request request;

}
class PostWebServer {

public final PreWebServer pre;
public final Response result;

}[2⊥(mp(this.pre)⇒ mp(this.result))]

As with the Request and Response subclasses, we omit the policies that these
classes may be possessed if all of their fields may be possessed. In order to gain the post-
condition in the caller’s code after the return from the WebServer process method,
the actual parameter to process must be compared with the pre field.

With this policy for a result, the browser need only determine whether the web
page that invoked the process method may possess cookie, because the web page
sent the request and may therefore possess it. Policies for possession of cookies are
naturally based on associating an origin with a cookie and comparing it with the origin
of a web page (this reflects the usual policy for allowing JavaScript to access cookies).
Then the Browser process method can compare the origin of a cookie and a request-
ing web page. If they match, the result may be returned to the web page. Otherwise,
returning a non-trivial result cannot be justified (this is also in line with the usual
browser behavior that prevents responses from being made available to pages with dif-
ferent origins).
Forwarding responses. Returning the web server response to the browser-side code
via the browser’s process method is more interesting. In Section A.2, the web server
justified returning responses with secrets by deducing that the caller was known to pos-
sess a password or a cookie, and was thus entitled to the response. This is possible,
because the web server has information about the content and policy for each request
type. However, a browser does not examine, or understand the invariants of, the con-
tents of requests and responses that it forwards. Consequently, the browser is not able to
deduce that a response can be returned to the caller with the policy seen so far, and code
that attempts to do so will not typecheck. We proceed by extending the web server’s
interface with invariants that allow the browser to forward the response.

A natural first attempt is to say that, if a principal may possess the request to the
browser, then they may also possess the response (here it is important that the Request

Succour to the Confused Deputy 25

subclasses, representing the body of an HTTP request, do not include the cookie, which
is sent in HTTP headers). This would permit the browser to return the response im-
mediately. However, this policy is too permissive: the web server’s handling of re-
quests to read the secret cannot establish the relationship between RequestRead and
ResponseRead references, because the latter possesses a secret and the former does
not. The problem eventually leads to a failure to typecheck the web server with this
permissive policy.

In Section A.2, the handler instead established that the immediate caller may pos-
sess ResponseRead based upon the caller’s possession of the cookie argument instead
of the request argument. As a second attempt, we might say that a principal may possess
the response if they may possess the cookie. This policy too is problematic for the web
server when the request is secret but the cookie is not, e.g., when a password login takes
place before a non-null cookie is established.

The solution is to combine the two approaches, so a principal may possess the re-
sult if they may possess both the cookie and request arguments. We state this as a
postcondition for the web server’s process method. The postcondition is written after
the method, and refers to both the arguments and the (implicitly bound) result of the
method.

class WebServer {
private WebServerState state;
Response process (Cookie cookie, Request request) {

...
}[2⊥(mp(cookie) ∧ mp(request)⇒ mp(result))]

}

The first two request handling cases of the web server of Section A.2 typecheck with
this postcondition, because the implication can be established. In the RequestPasswd
case, the hypothesis for possession of the request is used. In the RequestRead case, the
hypothesis for possession of the cookie is used. The case for handling password updates
requires additional infrastructure described with CSRF solutions below.

Finally, the browser need only determine whether the browser-side code that in-
voked the browser’s process method may possess the cookie, because the browser-side
code sent the request originally and may therefore possess it. Policies for possession of
cookies are naturally based on associating an origin with a cookie and comparing it with
the origin of browser-side code (this reflects the usual policy for allowing JavaScript to
access cookies). Thus the browser process method can compare the origin of a cookie
and a requesting web page. If they match, the result may be returned to the web page.
Otherwise, the browser cannot justify returning the result to the browser-side code with
a different origin. This sketch yields browser code that typechecks.

The origin test in typechecked browser code provides justification for the standard
browser security policy that makes HTTP responses generally unavailable to pages with
different origins. We leave an exploration of models for notable exceptions such as
JSONP and cross-origin sharing for future work.
Cross-Site Request Forgery and web server integrity. The failure of typechecking
for password update handling seen in Section A.2 is due to the lack of static information
about the new password. For example, the web server cannot assume that a principal that

26 Radha Jagadeesan, Corin Pitcher, and James Riely

may possess the new password may possess the cookie argument added by the browser.
If this assumption is made, it is possible to typecheck the web server in its entirety.
However, this assumption cannot be established by a browser that permits cross-site
requests freely, and thus it would not be possible to typecheck such a browser.

A typical solution to CSRF is to require that certain requests contain an additional
secret, known only to trusted browser-side code. This secret serves to authenticate the
browser-side code that initiates the request, rather than the browser that is forwarding
the request. We model this solution by revising the definition of RequestPasswd class
to include, e.g., the original password, in addition to the new password:

class RequestPasswd extends Request {
public final Password password;
public final Password passwordNew;

}[2⊥(mp(this.passwordNew)⇒ mp(this.password))]

The class invariant states that a principal may possess the original password if they may
possess the new passsword, i.e., fewer principals know the new password. Then the
RequestPasswd handling code from the process method of the WebServer class is
also revised to verify the old password:

else if (request instanceof RequestPasswd) {
RequestPasswd request = (RequestPasswd) request;
if (cookie == state.cookie && request.password == state.password) { ... }

Now, from the WebServerState class invariant for local variable state, we find:

2⊥(mp(state.password)⇒ mp(state.cookie))

Also, from the new RequestPasswd class invariant for the local variable request:

2⊥(mp(request.passwordNew)⇒ mp(request.password))

And the equality test between the old passwords in the web server state and the request
yields (request.password= state.password), hence:

2⊥(mp(request.passwordNew)⇒ mp(state.cookie))

This provides the necessary justification for the creation of a new instance of WebServerState
by satisfying the class invariant, where request.passwordNew replaces state.password,
and the cookie and secret fields are copied from the original value of state to the
new instance. Writing the new instance of WebServerState to the mutable field state
does not require any further justification for the purposes of typechecking. Therefore,
the revised web server typechecks with the changes made to requests—and those changes
are based on typical anti-CSRF measures, together with a careful choice of invariants.

B Standalone Web Client

Cookies are intended for web browsers [6], and web services intended for non-browser
web clients may use other authentication schemes, e.g., HTTP Digest or TLS-based

Succour to the Confused Deputy 27

client-side certificate authentication. However, we first consider a standalone web client
that uses cookies as a stepping stone to our discussion of browser behavior below. A
standalone web client represents a single location, and so policies need not state how
references received by the client can be shared with any location other than the web
server. The client and web server locations are distinct in general.

Initially, we assert that the client has a password field, and can obtain a passwordNew
satisfying the policy 2⊥(mp(this.passwordNew)⇒ mp(this.password)). The passwordNew
field could be a fresh password that is created with the policy above. Additionally, the
client code must assert the web server is able to possess passwordNew (and hence
password by the first policy). If the web server is referenced through a field ws of the
client, this policy is 2this.ws.locmp(this.passwordNew).

To login, the client executes:

Request req = new RequestLogin (null, this.password);
Response resp = this.ws.process (req);

The transmission of req to this.ws is justified by using the policies above to first
deduce that 2this.ws.locmp(req.password), and then conclude 2this.ws.locmp(req).

Justification for sending other requests is similar. The subtlety lies in the justification
for sending a Cookie reference received in one response back to the web server in a
subsequent response. The simplest argument is that 2this.ws.locmp(resp), since resp
was returned from a method call to this.ws. In addition, cookie is a public, final
field of ResponseLogin, so 2this.ws.locmp(resp.cookie), as required. However, this
approach does not allow resp.cookie to be distributed to any principal other than
this.ws.loc and this.loc. We present an alternative policy in Section A.3.

The following code represents a sample web client.

class Client {
private final WebServer ws;
private final Password password;
private final Password passwordNew;

void run () {
// Must be able to send request with password.
Request request1 =

new RequestLogin (null, this.password);
ResponseLogin response1 =

(ResponseLogin) this.ws.process (request1);

// Must be able to send a request with the cookie.
Request request2 =

new RequestRead (response1.cookie);
ResponseRead response2 =

(ResponseRead) this.ws.process (request2);

// Must be able to send a request with the
// original and new password.

28 Radha Jagadeesan, Corin Pitcher, and James Riely

Request request3 = new RequestPasswd
(response1.cookie, this.password, this.passwordNew);

ResponsePasswd response3 =
(ResponsePasswd) this.ws.process (request3);

}
}[

2⊥(mp(this.passwordNew)⇒ mp(this.password))
∧ 2this.ws.locmp(this.passwordNew)

]

Succour to the Confused Deputy 29

C Auxiliary definitions

C.1 Operational semantics

Fix a global class table ~DDD . The fields and method lookup functions are standard.

Field Lookup (fields(C) =~µ ~T~f)

fields(Object) = /0

~DDD 3 class c<~α>/D{~µ ~T~f; · · ·}
fields(D{[~φ/~α]}) =~µD ~TD~f D

fields(c<~φ>) =~µD ~TD~f D,(~µ ~T~f){[~φ/~α]}

Method Lookup (body(C.`) = <~β : ~Q>S(~T ~x){M})

~DDD 3 class c<~α :~P>/D{ · · ·<~β : ~Q>S `(~T ~x){M} · · ·}
body(c<~φ>.`) = (<~β : ~Q>S(~T ~x){M}){[~φ/~α]}
~DDD 3 class c<~α :~P>/D{ · · · ~M } ` not defined in ~M

body(D{[~φ/~α]}.`) = <~β : ~Q>S(~T ~x){M}

body(c<~φ>.`) = <~β : ~Q>S(~T ~x){M}

C.2 Typing

Subtyping (`T ′ <: T)

`T <: T

`T ′ <: T ′′ `T ′′ <: T

`T ′ <: T

`C <: Object< /0>

~DDD 3 class c<~α>/D

` c<~φ><: D{[~φ/~α]}
~DDD 3 class c<~α> ~φ � ~ψ |~α|= |~φ |= |~ψ|
` c<~φ><: c<~ψ>

Well-Formed Overriding (` <~β : ~Q>S(~T) overrides D.`)

body(D.`) not defined
` <~β : ~Q>S(~T) overrides D.`

body(D.`) = <~β : ~Q>S(~T)
` S′ <: S

` <~β : ~Q>S′(~T) overrides D.`

Well-Formed Types (∆ `T)

∆ ` Unit ∆ ` Prin ∆ `Object< /0>
∆ ` ~T

∆ ` Pred(~T)
~DDD 3 class c<~α :~P> a ∈ dom(∆) ∆ à ~φ : ~P
∆ ` c<~φ>

30 Radha Jagadeesan, Corin Pitcher, and James Riely

Well-Formed Environments (∆ ` �)

∆ 3 a : Prin
∆ 3 x :T implies T = Pred or (∃T) T = T and ∆ ` T
∆ 3 p :T implies (∃C) T =C and ∆ `C
∆ 3 b :T implies T = Prin
∆ 3 α :T implies (∃P) T = P and ∆ ` P
∆ 3V =M implies (∃a,c,T) ∆ à V : T and ∆ `aa M : T Pure c
each element in dom(∆) appears exactly once
∆ ` �

Defining right. A term M has no gratuitous frames if whenever a[M′]a′
c occurs as a

subterm of M, then this subterm is M itself, or it occurs in an immediate context of the
form let x= [–];N. That is, all frames of M are either (the one) top-level or in subterms
of the form let x = a[M′]a′

c ;N. A term is simple if it has no gratuitous frames and it
contains no subterms containing ||- or ν .

For any term M, there exists a unique simple N such that M ≡ (ν~p:~C)M′ ||- N.
Define the function right(M) to return this N.

