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Abstract

We develop a model of scarce renewable resources to study the commons problem. Our

model formulation differs from the existing literature in that the use of the commons is

assumed to be stochastic in nature. One example is the microwave spectrum for mobile

and wireless communications. We investigate three mechanisms of resource allocation: free

usage, the exclusive franchise, and a regulated monopoly. We show that the welfare tradeoff

among them depends on the commons’ characteristics and usage patterns. In particular, we

find that property rights are not always the best solution. We then make three extensions

that apply to spectrum allocations.
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1 Introduction

The problem of allocating exhaustible public resources has been extensively studied in the lit-

erature, initiated by Gordon (1954) and Scott (1955). Its organizational form known as the

commons is generally considered a tragedy (Hardin, 1968), because it lacks a mechanism to

prevent selfish overuse. Instead, property rights are generally believed to offer an efficiency so-

lution. Renewable public resource, however, brings about a different set of perspectives in that
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the objective of an imaginative welfare-maximizing social planner is to maximize usage, and

more precisely to maximize the value of the usage, while at the same time preventing overuse.

Using a scheduling mechanism, McAfee and Miller (2012) first showed that a commons can be

more efficient than property-rights-based solutions, and there exists a tradeoff between the two

types of organizational forms. In their model the resources are excludable and indivisible. This

means that not only a fixed number of customers may be accommodated at any one time, but

the identity of these customers also has to be fixed during the time of resource use.

In this paper, we extend their conclusions to an alternative situation where a renewable

resource is subject to use in a stochastic manner. On the surface, this seemingly small modifica-

tion may appear trivial, but, in fact, introduces several important differences that have profound

implications for seeking efficient allocation mechanisms. First, in our model the resource is ex-

cludable but divisible in that its usage is multiplexed into its designed capacity. The resource is

excludable because its quality can degrade as the number of users increases. But it is divisible

because the actual number of users and, more importantly, the identity of its users can vary

from time to time.

In a commons scenario, this suggests that scheduling is neither critical nor practical. It is not

critical because, unlike the McAfee and Miller (2012) model which is concerned with loss from

coordination failure, here the downside of a service denial in the absence of scheduling does not

incur much cost. This is because each demand is treated equally by the resource capacity regard-

less of the current status of the demand, and it will have equal access probability in the future.

Scheduling is not practical, since usage is stochastically session-based such that the overhead

cost for establishing every single session would be too great. Without scheduling, the commons

essentially becomes a self-regulating system where equilibrium can be reached automatically

among users when the resource gets too crowded. Some people may prefer leaving while others

choose to stay, accepting the current service quality. The social welfare of this equilibrium varies

randomly from time to time however, and in particular is certainly not maximized. In other

words that the resource is allocated to those who value it most is clearly a zero probability event.

On the contrary, allocative efficiency is certainly assured under property-rights solutions, albeit

at an additional cost. It is precisely this tradeoff that lies at the heart of our analysis.

Our second difference from McAfee and Miller (2012) is that we assume that service quality is

expected to be better under property-rights solutions than under the commons form. Technically

our model allows for more people accessing the resource capacity, which is also called overbooking

in network engineering.1 In general, overbooking can be accommodated provided the probability

1McAfee & Miller (2012) is concerned about the loss from not using the resources. In our model. this problem
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of service denial, or the blocking probability in technical terms, is managed within an acceptable

level. For example, a short delay for free Internet access usually causes no concern at public

Wi-Fi hotspots.2 Since we endogenize pricing in our model, one would expect that paying

customers naturally have a lower level of tolerance for blocking than those who have free use of

the Internet.

Our model description probably applies most appropriately to the case of wireless spectrum.

Rapid growth in wireless communications has increased the pressure for more spectrums to

support more users, more uses and more capacity. To alleviate that pressure, major regulatory

changes were introduced in some countries regarding spectrum allocation. Today some radio

spectrums are indeed offered free of charge in many countries, for example Wi-Fi applications,

but other spectrums are still allocated by defined property rights, such as via spectrum auctions.3

We develop an analytical framework to provide a likely theoretical explanation as to why that

might be the case by looking at the network characteristics of spectrum bands.

We establish three base models to analyze welfare implications of these mechanisms in regu-

lating spectrum usage: a commons model, a model of an unregulated monopoly and a model of

regulation. As expected, the regulation model is socially better off than the monopoly model,

and the tradeoff between the commons and the regulation model hinges upon two major factors

among other things. First, if the fixed cost of implementing a pricing mechanism is large, free

use dominates the regulation model. Second, if the maximum acceptable blocking probability

is large, free use dominates the regulation model. In other words, property-rights solutions only

matter when people care a lot about the service quality or when the costs of implementing such

solutions are relatively low.

We also make three extensions to the base models. We analyze the tradeoff between free use

and the regulation model as a function of the cell-site coverage size, and find that the tradeoff

condition that favors free use under the macro-cell architecture must also hold under the micro-

cell condition. This means that free use generally favors spectrum bands of shorter reach,

such as Wi-Fi and Bluetooth. The second extension concerns mixed service where the free-use

traffic is mixed with the traffic of paying customers who enjoy priority with guaranteed quality

of service. This may be viewed as a primitive version of the cognitive radio or the software-

defined radio that is currently being actively developed. We find that the mixed-service model,

does not exist as we consider the case of overbooking. Telecommunication networks are usually designed for

peak-time usage, and overbooking is commonly used when congestion is expected.
2When bits are transmitted in sessions under the TCP/IP protocol, blocking manifests in the form of longer

delay.
3For a comprehensive review of spectrum auctions, see McAfee and McMillan (1996).
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where a certain amount of free use is accommodated, always dominates the case where only

paying customers have access. The third extension concerns channel bonding, which is another

important technology feature of the cognitive radio that is currently under development. We

investigate whether social welfare is enhanced when spectrum bands are combined together to

deliver service as opposed to being used separately under the current regulatory regime. We show

that this is always the case as channel bonding exhibits a kind of economy of scale property. This

is because the efficiency gain from statistical multiplexing is likely to increase as the spectrum

width increases.

These results point to some important implications for the spectrum policy debate. Our

results generally support a phased approach to opening up more spectrums, perhaps starting

with spectrum bands with shorter-range coverage, such as Wi-Fi and Bluetooth. Our results also

support tiered services where prioritized paying traffic and free-use traffic can be multiplexed.

This is essentially the most important feature currently being developed under cognitive radio

or software-defined radio technologies.

The spectrum policy literature is quickly expanding, especially tangential to the economics

profession. Noam (2012) provides a historical review of the evolution of economists’ views on

radio spectrum. Starting with Coase (1959), economists have favored property-rights solutions

with regard to spectrum allocation. In more recent years, a significant debate has emerged over

whether the government should make the spectrum open and free. Benkler (1998), Noam (1998)

and Benkler (2002) advocate for an open spectrum based on the prediction that technology

advancement will end the scarcity situation in terms of airwaves. Even in the event of scarcity,

the spectrum should remain open but it should be priced. Minervini (2013) analyzes spectrum

management deregulation reforms within the theoretical framework of transition economics, and

shows how Anglo-Saxon and European countries have been implementing gradual reforms while

Central America has opted for a fast transition to market mechanisms.

Hazlett (1998), Brennan (1998), and Cave and Webb (2004) argue that spectrum is still

scarce, and they believe that a regime of open but priced access would impose prohibitive trans-

action costs. Hazlett (2008) advocates for abolishing the control of the Federal Communications

Commission, thus permitting any wireless operations to exist within an owner’s frequency space.

Hazlett and Munoz (2009) investigate the relationship between spectrum policy and efficiency

in the output market in a cross-country study of 28 mobile telephone markets. We compliment

this strand of literature by pointing out the insight that not all frequency bands are created

equal, and that a socially optimal policy depends on the network characteristics of spectrum
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bands. A better policy would be to take a hybrid approach where a combination of paying and

free traffic is accommodated at the same time.

There has also been a separate small literature in recent years at the intersection of economics

and telecommunications engineering field, which is devoted to studying implications of new radio

technologies, such as cognitive radio or software-defined radio, on spectrum management policies.

See for example Bastidas and Stine (2013) and Yuguchi (2012). Our second and third extensions

to the base models essentially try to present a simplified primitive version of cognitive radio,

and thus also contribute to this strand of literature as well.

The rest of the paper is organized as follows. We start by introducing the three base mech-

anisms: the commons, monopoly and regulation, detailing the tradeoffs among them. Section

3 uses the wireless spectrum example to investigate the three extensions to the base models.

Concluding remarks and discussions of some policy implications are in Section 4.

2 Base Model

When people start to use the commons, their usage is stochastic in nature. This means that they

are not using the resource all the time, and that there is a certain degree of statistical multiplex-

ing gain. This type of stochastic usage can be analyzed with many kinds of sophisticated traffic

models. But our use of a simple Bernoulli distribution to characterize usage preserves the eco-

nomics implications of the tradeoff among the different resource allocation mechanisms without

getting into the traffic engineering complexities. Formally let a person’s usage yi, i = 1, 2 . . . , N ,

be an i.i.d. Bernoulli random variable taking on the value of 1 with probability q or 0 with

probability 1− q. 1 means the user is actively using the services and 0 otherwise.

Suppose a commons has a capacity of M with M < N . Then a blocking probability exists

when the commons supports n people for M < n ≤ N . People can tolerate some level of

blocking when the blocking probability is small, but they will simply give up when the blocking

is too large. One may refer to this blocking probability as a quality of service index. Generally in

telecommunications networks the blocking probability is very small. For example, in a telephone

system, the blocking probability is usually less than 1%. This means nq < M , since the blocking

probability is less than 0.5; i.e., the average aggregate usage must be less than the designed

capacity.

When there are n persons using the service, the summation of n Bernoulli random variables,

Y n =
∑n

i=1 yi , can be approximated by a normal distribution function according to the Central

Limit Theorem. Then the blocking probability α, that is the probability of Y n ≥M , is regulated
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by the following,

α = 1− 1√
2π

∫ M−µ
σ

−∞
e−

t2

2 dt (1)

where

µ = E(Y n) = E(

n∑
i=1

yi) =

n∑
i=1

E(yi) = nq,

σ =
√
V (Y n) =

√√√√V (

n∑
i=1

yi) =

√√√√ n∑
i=1

V (yi) =

√√√√ n∑
i=1

q(1− q) =
√
nq(1− q).

Letting G(.) = F (.)−1 denote the inverse function of the norm distribution function F (.), of

which its value at 1− α can be found in a standard normal distribution table, we can solve for

n as

n =
M

q
+

1

2q
[G(1− α)

√
4M(1− q) +G(1− α)2(1− q)2 +G2(1− α)(1− q)]. (2)

Note the second part of the right hand side of (2) is always positive. This equation determines

a one-to-one relationship between α and n. Apparently the larger the n, the smaller the upper

bound of the integration set, and thus the larger the α. However, people cannot tolerate too

large a blocking probability, as the commons resources would be of too poor quality to be of

meaningful use. Let us suppose αf is the maximum blocking probability that people can tolerate

under free use. For simplicity, let us further suppose that αf is valued such that the solution to

n is an integer number.4 Since people are selfish in usage, the commons would be congested to

the largest extent possible. Therefore n(αf ) defines the equilibrium number of people in use of

the services.

People’s utility of using the commons can be specified by introducing a profile vector, X =

[x1, x2, . . . , xN ], with its elements forming a decreasing series. That is, xi > xj whenever i < j,

∀i, j. The ith person’s utility from using the commons is simply specified as xi. The higher this

value, the more utility this person derives from the usage of the commons. Since n(αf ) ≤ N ,

how these n(αf ) people are selected from the entire population becomes an issue, depending on

the resource allocation mechanism under use. We investigate three scenarios in the rest of this

section:

• Commons - The allocation of the commons resources is random and everyone has an equal

probability of use regardless of his utility value.

4To be rigorous, a floor function needs to be applied to n to arrive at the actual number of people the commons

is able to be support.
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• Monopoly - A monopolist charges a profit maximizing price pm, and those people whose

usage utility xi exceeds pm become customers.

• Regulation - A regulated firm charges a price pr such that it makes zero profit. Those

people whose usage utility xi exceeding pr become customers.

Case 1: Commons

Under the commons mechanism, everyone has an equal opportunity to use the commons even

though their usage utilities are different. Mathematically, define a new set S = {s1, s2, . . . , sl},

where l = CN
n(αf )

, consisting of all subsets of X whose cardinality is n(αf ). Then each si is a

possible group of people using the commons, and they all have an equal probability 1/l of using

it. Define zi as the summation of all elements in si, i = 1, 2, . . . , l. The total social welfare

in this case is a random variable depending on which si is selected. However, its expectation,

which we denote as W f (αf ), should be well behaved as follows:

W f (αf ) =
1

l

l∑
i=1

zi =
1

l

l∑
i=1

n(αf )l

N
xi =

n(αf )

N

N∑
i=1

xi (3)

Case 2: Monopoly

Now consider the case where the usage is regulated by a pricing mechanism operated by a

monopolist. Suppose the introduction of this mechanism incurs an overall fixed cost, K, plus a

variable cost, v, for serving each customer. The objective function is then:

maxαm(pm − v)n−K

s.t.(i) αm and n satisfy (2),

(ii) αm ≤ αf

(iii) xi ≥ pm, ∀i < n

(4)

Let us denote the solution to (4) as αm and the resulting number of customers as n(αm).

Cancelling out the cash payment from customers to the monopolist, the total social welfare

Wm(αm) is deterministic in this case:

Wm(αm) =

n(αm)∑
i=1

xi − [vn(αm) +K] (5)

Case 3: Regulation

Under the regulation paradigm, the operator of the resource is allowed to make zero profit.

Therefore αr, defined as the maximum acceptable blocking probability under regulation, is
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derived from

maxαr α

s.t.(i) α and n satisfy (1),

(ii) αr ≤ αf

(iii) xi ≥ pr, ∀i < n

(iv) (pr − v)n−K = 0

(6)

Let us denote the solution to (6) as αr and the resulting number of customers as n(αr). The

total social welfare W r(αr) is also deterministic:

W r(αr) =

n(αr)∑
i=1

xi − prn(αr) (7)

Our next task is to compare W f (αf ), Wm(αm) and W r(αr) and to derive the conditions

under which one social welfare outcome is larger than another.5 To simplify our analysis, we

need to impose some kind of structure on X. Without loss of generality, let’s assume it is an

equally distanced series. That is xi = A− (i− 1)ε i = 2, · · · , N and xN > 0, where ε is a small

positive number. This means A is sufficiently large and ε is such that all potential users have a

positive usage utility. With this specification, the social welfare under free use in equation (3)

can be written more explicitly as:

W f (αf ) = n(αf )(A− N − 1

2
ε) (8)

i.e., the social welfare relies on an average person’s willingness to pay.

For the monopoly and regulation cases, under our settings, it can be derived that

Wm(αm) =
(3A− 3v + ε)(A− v + ε)

8ε
−K (9)

and

W r(αr) =
2(A− v)[A− v + ε+

√
(A− v + ε)2 − 4εK]

8ε
−K. (10)

Detailed derivations of equations (8), (9), and (10) can be found in the Appendix. Next we

compare the cases of regulation and monopoly and give the following result:

Proposition 1 With respect to the comparison between monopoly and regulation, n(αr) >

n(αm) and W r(αr) > Wm(αm) with αr > αm, i.e., regulation is generally more efficient than

monopoly.

5We assume αf > αr and αf > αm for discussion simplicity in the rest of the paper.
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This is after all not surprising that the social welfare outcome under an unregulated monopoly

is generally worse off than it is under regulation. Regulation also tends to include a larger

percentage of the population, but at the cost of providing a lesser degree of service quality.

Next note that M [A− N−1
2 ε] ≤ wf (αf ) ≤ N [A− N−1

2 ε] since M ≤ n(αf ) ≤ N . Depending

on the exact value of αf , it is obvious to derive the following result:

Proposition 2 When the fixed cost, K, is sufficiently small, regulation can be more socially

efficient than free use. When the fixed cost is sufficiently large, free use can be more socially

efficient than regulation. If it is neither sufficiently small nor sufficiently large, there exists a

threshold blocking probability αf∗ such that for αf < αf∗, regulation is more socially efficient

than free use, while for αf > αf∗, the opposite is true.

What Proposition 2 says is that the condition under which free use dominates regulation is

driven by two things. First, the fixed cost in implementing the pricing mechanism is important.

If the cost is small, regulation can be more efficiently implemented and, thus, can be the better

mechanism for allocating resources. If it is too large, then society is better off with the commons

form, albeit the quality of service suffers. Second, the maximal acceptable blocking probability

αf is also important in that a large αf tilts the comparison between free use and regulation

more towards the former, while a small αf tilts it towards the latter.

We can find real examples to validate Proposition 2. For example, cellular networks, which

mostly consist of voice traffic and are sensible to delay, are usually built out of licensed spectrum.

Wi-Fi networks, which support predominantly data traffic and are thus robust to delay, use free

spectrum.

3 Extensions

In this section, we use the spectrum example to explore several extensions to our base models

for practical applications, focusing on comparisons between the commons and the regulation.

3.1 Frequency Reuse

Spectrum bands have certain properties that dictate the cell size a base station can serve.

Typically given the same transmission power, the higher the spectrum band, the shorter the

distance a signal can travel and with less penetration power through trees and buildings. In

general, wireless technologies may be categorized into two types of cell architectures, macro-

cells whose cell radius can span several miles, such as any one of these 3G and 4G wireless
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technologies, and micro-cells that span only up to a few hundred feet, such as Wi-Fi. A micro-

cell architecture can cover the same area as a macro-cell can with the help of frequency reuse,

i.e., by assigning different spectrum bands to adjacent cells. We explore how cell size impacts

the economics of stochastic commons.

Suppose in our original setup there are N number of potential customers uniformly dis-

tributed over a geographic area that can be adequately served by one macro-cell with capacity

M . A fixed cost, K1, is incurred if any pricing mechanism is introduced. Alternatively, this

market can be served with θ number of micro-cells, θ > 1, distributed uniformly across the

terrain, with each cell having the same capacity, M , via frequency reuse by avoiding assigning

the same spectrum bands to adjacent cells. Similarly a fixed cost, K2, per each cell is incurred

for these micro-cells, and we assume K2 = K1, if a pricing mechanism is introduced. Assume

that the variable cost of serving each customer under any pricing mechanism, v, is the same for

both macro- and micro-cells.

The tradeoff between the free use model and the regulation model under the macro-cell

architecture is essentially already shown in section 2. The trade-off between the two spectrum

allocation mechanisms under the micro-cell architecture critically depends on the number of

customers supported by each micro-cell, which is equal to min{n(αf ), N/θ} or min{n(αr), N/θ},

depending on whether the commons model or regulation is adopted. If this maximum takes on

the first value, it corresponds to the case of capacity-limited in cellular design. If the maximum

takes on the second value, it corresponds to the case of range-limited in cellar design. We derive

the condition under which the social welfare associated with free use dominates regulation. The

goal here is to show that the condition that favors free use under the micro-cell architecture is

easier and more relaxed to meet than under the macro-cell architecture. Since n(αr) ≤ n(αf ),

we have the following cases:

Case 1: N/θ ≤ n(αr) ≤ n(αf ). In this case, all customers are served. The corresponding

social welfare for regulation is

W r =

N∑
i=1

xi − θK2 − vN = N(A− N − 1

2
ε)− θK2 − vN. (11)

The corresponding social welfare for free use is

W f =
N∑
i=1

xi = N(A− N − 1

2
ε). (12)

Clearly, in this case, we favor free use. There is no tradeoff between free use and regulation, as

in this case the population is so sparsely dispersed that it would be too costly to bring pricing

to every customer.
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Case 2: n(αr) ≤ N/θ ≤ n(αf ). In this case, not all customers are served under regulation,

while with free use for micro-cells all customers are served. Considering the variable serving cost

v and the fixed cost θK2, we again favor free use, as in the previous case.

Case 3: n(αr) ≤ n(αf ) ≤ N/θ. In this case, not all customers are served under both

regulation and free use. We have n(αf ) (resp. n(αr)) out of N/θ consumers chosen under free

use (resp. regulation). Under regulation, θn(αr) number of customers in total are served and

the customers with the highest usage utility are chosen. Then the corresponding social welfare

for regulation under the micro-cell is

W r
mi = Σ

θn(αr)
i=1 xi − θn(αr)v − θK2. (13)

The corresponding social welfare under free use for the micro-cell is

W f
mi =

θn(αf )∑
i=1

xi = θn(αf )(A− N − 1

2
ε). (14)

Denote the social welfare under the macro-cell for regulation as W r
ma =

∑n(αr)
i=1 xi−vn(αr)−K1

and the social welfare under the macro-cell for free use as W f
ma = n(αf )(A − N−1

2 ε). We then

have:

Proposition 3 If free use is favored under the macro-cell, it must be the case that free use is

also favored under the micro-cell, i.e., the condition for favoring free use is easier to meet under

the micro-cell architecture.

What Proposition 3 indicates is that the commons form is more suited for spectrum bands

specified for micro-cell architectures. Practical examples corroborate our findings. For example,

the free spectrum allocated so far, such as Wi-Fi and Bluetooth, are all micro-cell technologies.

3.2 Mixed Service

Suppose the network technology enables two kinds of service, one with a guaranteed maximum

level of blocking probability for paying customers, and one with no quality of service guarantee

but available to all users for free. A two-tier queuing model is usually used to model this

kind of traffic pattern. But without getting into the complexities of a traffic model, we can

alternatively think of an approximating scenario where the capacity, M , is carved into two

parts, M∗ exclusively reserved under regulation and M −M∗ free capacity, used respectively by

N∗ number of paying customers and N −N∗ number of free users. Obviously N∗ represents the

number of customers with the highest values in the utility profile X = [x1, x2, . . . , xN ], while
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all the rest in the utility profile randomly share the remaining capacity, M −M∗, for free. We

investigate the optimal capacity for M∗ from the perspective of maximizing social welfare, and

compare its result with the pure free use model and the pure regulation model. We derive

conditions under which one model generates high social welfare than the other.

For simplicity, we assume αr is exogenously given and αr ≤ αf . For M∗ for paid capacity,

the number of users under regulation, according to equation (2), is

N∗ =
M∗

q
+

1

2q
[G(1− αr)

√
4M∗(1− q) +G2(1− αr)(1− q)2 +G2(1− α)(1− q)], (15)

which means, given αr, N∗ is a function of M∗. From the above equation, we have

dN∗

dM∗
=

1

q
+

1− q
q

G(1− αr)√
4M∗(1− q) +G2(1− αr)(1− q)2

> 0. (16)

For the part of free capacity, we have n(αf ) people using the service, where

n(αf ) =
M −M∗

q
+

1

2q
[G(1−αf )

√
4(M −M∗)(1− q) +G2(1− αf )(1− q)2+G2(1−αf )(1−q)],

from which we have

dn(αf )

dM∗
= −1

q
− 1− q

q

G(1− αf )√
4(M −M∗)(1− q) +G2(1− αf )(1− q)2

< 0. (17)

Now the social welfare for the customers under regulation is

W r(M∗) =
N∗∑
i=1

xi − [vN∗ +K] = (A− (N∗ − 1)ε

2
)N∗ − vN∗ −K.

The corresponding welfare for those enjoying the free capacity is

W f =
n(αf )

N −N∗
N∑

i=N∗+1

xi = n(αf )(A− (N∗ +N − 1)ε

2
).

The total social welfare becomes

WMS = (A− (N∗ − 1)ε

2
)N∗ − vN∗ −K + n(αf )(A− (N∗ +N − 1)ε

2
). (18)

The first order condition of WMS with respect to M∗ yields

dWMS

dM∗
= (A−N∗ε+

ε

2
− v − n(αf )ε

2
)
dN∗

dM∗
+ (A− N∗ +N − 1

2
ε)
dn(αf )

dM∗
. (19)

When dWMS

dM∗ = 0, the social welfare is maximized. Denote the maximized WMS as WMS(M∗).

We first compare the social welfare between pure regulation and mixed service.

Proposition 4 Mixed service is always no worse than pure regulation in terms of maximizing

social welfare.
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The above proposition indicates that mixed service is somewhat better than pure regulation.6

Next, we give a comparison between mixed service and free use. First we show:

Lemma 1 When M∗ ≤M −M∗ with αr < αf , we have

dN∗

dM∗
> |dn(αf )

dM∗
|.

This lemma implies that an increase in the paid capacity will cause the number of paying

customers to increase more than the number of people using the free capacity when the paid

capacity is less than half of the total capacity. With the implication of this result, we have:

Proposition 5 When v is sufficiently small in the case of mixed service, more capacity should

be allocated to regulation than to free use.

The intuition behind the result is straightforward. Regulation can assure resources to be allo-

cated to consumers with high usage utility, which can in turn increase the realized social welfare.

However, this benefit is only valid when v is sufficiently small. When v becomes large, the ben-

efit from high usage utility users can be quickly exhausted. Proposition 5 then indicates that

it is generally welfare enhancing to have the free service as a piggyback feature on top of the

licensed paying service, which is exactly what the cognitive radio is trying to achieve.

The fixed cost, K, plays a similar role in determining whether regulation should be employed

or not. From free use to regulation, there is a jump in the social welfare by means of a fixed

cost. Partial regulation is more favored only when K is sufficiently small. In this case, as we

have stated earlier, if v is sufficiently small, more capacity should be allocated to regulation.

Otherwise, if v is not that small, we prefer less capacity for regulation. The extreme case occurs

when v is sufficiently large, in which case no regulation should be resorted to at all.

3.3 Channel Bonding

In most countries, spectrum maps are usually the result of cumulative license allocations over

many years. These are typically done in a fragmented manner and, thus, in hindsight may not

be optimized from the resource utilization perspective. One of the important features of the

cognitive radio under development is its capability to dynamically aggregate bits and pieces of

unused licensed spectrum bands for free data transmission. In this section we show that such

6However, the same argument in the proof of proposition 4 cannot be used to show that mixed service is always

better than pure free use, since there is a jump in the social welfare by means of a fixed cost K and a variable

cost v in the mixed service model.
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aggregation has an inherent advantage that is somewhat similar to the concept of economy of

scale, and thus could be welfare enhancing compared to a fragmented licensed use under rigid

regulations.

Suppose in our original setup there are δ unused licensed bands each with capacity M such

that they can be aggregated into δM , δ > 1, via channel bonding for unlicensed usage. Suppose

further that the original M capacity can support n number of customers. We examine the

expanding rate of customers that can be served when the capacity is aggregated to δM .

Proposition 6 When the capacity is aggregated from M to δM , the number of customers sup-

ported is expanded from n to βn with β > δ.

The implication of Proposition 6 is that if we combine these unused licensed spectrum bands

into one unit for aggregate unlicensed use, then the number of customers that can be supported

will increase more than linearly. The converse implication is that if we split a band into several

equal units, the number of customers supported in each unit is going to decrease more than

linearly. This is essentially the pitfall of licensing small pieces of spectrum bands in an ad

hoc manner, which unfortunately has been the common practice in spectrum allocation in the

past. On the other hand channel bonding has its inherent advantages in that economy of scale

in spectrum utilization can be expected. This is because the statistical multiplexing gain is

likely to increase as the spectrum width increases in a way similar to economy of scale. Channel

bonding is an important feature of the cognitive radio currently under active development. From

a policy point of view, our result indicates that it is merited not only because the technology

enables the mining of unused or underused resources, but also because of its economy of scale

property that was previously hampered by ad hoc and fragmented legacy allocations that were

done over many years in the past.

4 Concluding Remarks

We build a model to study resource allocation under stochastic usage for three mechanisms:

commons, unregulated monopoly, and regulation. Unlike the usual ”curse of the commons”

prediction in the literature, we find that property rights are not always the right solution to

maximize social welfare as first proposed by McAfee and Miller (2012). There is an inherent

tradeoff between these organizational forms driven by the resource characteristics. In the wire-

less spectrum example, we identify two factors as important. If the fixed cost of implementing a

pricing mechanism is large, free use dominates property right solutions. Second, if the maximal
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acceptable blocking probability is large, in other words, if people’s usage behavior is not partic-

ularly susceptible to occasional service degradation, the commons form appears to be a better

solution than the property-rights solutions.

We then investigate three extensions to our base models that are quite relevant to wireless

technology development. First we look at frequency reuse as it applies to micro-cell or macro-cell

architectures. Spectrum bands that are suitable for more intensive frequency reuse are generally

more suitable for the commons model. This generally applies to spectrum bands tailored for

micro-cell wireless architectures, such as Wi-Fi and Bluetooth. Channel bonding and mixing

traffic of different quality of service levels, which are the two important features enabled by the

cognitive radio or software-defined radio technologies, are generally welfare enhancing.

Our analysis points to the important policy implication that the right answer to the debate

over spectrum policy between the property-rights camp and the free spectrum camp may lie

somewhere in-between. Some spectrums are inherently more suitable for the commons organi-

zational form while others are better reserved for licensed use. The tradeoff between them is

driven by network and cost characteristics that are likely to change over time as the technology

advances. Therefore we believe the reform towards a more open spectrum policy may need to

take a phased approach. One needs to take into account these detailed network characteristics

to study spectrum policy issues.

In terms of future research directions, we mostly did not consider competition in this paper,

which clearly applies to cellular service. There are at least four major cellular carriers in the

US. Whether our result is robust to different market structures is still unclear. Another area

to explore is to look at how the role of asymmetric information plays in our regulation model.

Asymmetric information is traditionally an important issue in regulatory studies, albeit the cost

structures of wireless technologies are becoming quite well understood these days.
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Appendix

Derivations of (8), (9) and (10):

Equation (8): Notice that W f (αf ) = n(αf )
N

∑N
i=1 xi, where

∑N
i=1 xi = N A+A−(N−1)ε

2 = N(A −
N−1
2 ε) with xi = A− (i− 1)ε. Thus

W f (αf ) = n(αf )(A− N − 1

2
ε).

Equation (9): For the monopoly case, the first order condition of the maximization problem

yields A+ ε− 2εn(αm) = v, so n(αm) = A+ε−v
2ε . Then we have pm = A− (n(αm)− 1)ε = A+ε−v

2 .

Thus,

Wm(αm) =

n(αm)∑
i=1

xi − [vn(αm) +K]

=
A+A− A−v−ε

2ε ε

2
.
A+ ε− v

2ε
− v(A+ ε− v)

2ε
−K

=
(3A− 3v + ε)(A+ ε− v)

8ε
−K.

Equation (10): For the regulation case, n(αr) solves

K

n(αr)
+ v = A− (n(αr)− 1)ε,

which is equivalent to

εn(αr)2 − (A− v + ε)n(αr) +K = 0.

Solving the above quadratic equation we get

n(αr) =
A− v + ε+

√
(A− v + ε)2 − 4εK

2ε
.

Then we have

W r(αr) =

n(αr)∑
i=1

xi − [vn(αr) +K]

=
[A+A− (n(αr)− 1)ε]n(αr)

2
− vn(αr)−K

=
−εn(αr)2 + (A+ ε− v)n(αr) + (A− v)n(αr)

2
−K.

Note that from the above quadratic equation, we have

−εn(αr)2 + (A+ ε− v)n(αr) = K.
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Thus

W r(αr) =
(A− v)n(αr) +K

2
−K.

With n(αr) inserted, we have

W r(αr) =
2(A− v)[A− v + ε+

√
(A− v + ε)2 − 4εK]

8ε
−K.

Proof of Proposition 1:

First we prove n(αr) > n(αm). To see this, note that

n(αr)− n(αm) =

√
(A− v + ε)2 − 4εK

2ε
> 0.

By the one-to-one relationship between α and n, we immediately know that n(αr) > n(αm) as

claimed.

Next we prove W r(αr) > Wm(αm). Note that

W r(αr)−Wm(αm) =
2(A− v)[A− v + ε+

√
(A− v + ε)2 − 4εK]

8ε
− (3A− 3v + ε)(A+ ε− v)

8ε
.

To determine its sign, we only need to compare 2(A− v)[A− v+ ε+
√

(A− v + ε)2 − 4εK] and

(3A− 3v + ε)(A+ ε− v). Note that

2( A −v)[A− v + ε+
√

(A− v + ε)2 − 4εK]− (3A− 3v + ε)(A+ ε− v)

= 4εK + 2(A− v)2 + 2ε(A− v) + 2(A− v)
√

(A− v + ε)2 − 4εK − 3(A− v)2 + 4ε(A− v) + ε2

= 4εK + 2(A− v)
√

(A− v + ε)2 − 4εK − [(A− v)2 + 2ε(A− v) + ε2]

= 4εK + 2(A− v)
√

(A− v + ε)2 − 4εK − (A− v − ε)2

= 2(A− v)
√

(A− v + ε)2 − 4εK − ((A− v − ε)2 − 4εK)

=
√

(A− v + ε)2 − 4εK(
√

4(A− v)2 −
√

(A− v + ε)2 − 4εK).

Now since

4(A− v)2 − (A− v + ε)2 + 4εK

= 4εK − [(A− v − ε)2 − 4(A− v)2]

= 4εK + (3A− 3v + ε)(A− v − ε)

> 0

by noting that n(αf )− 1 = A−v−ε
2ε > 0. Thus we have W r(αr) > Wm(αm).
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Proof of Proposition 2:

Note that W r(αr) =
2(A−v)[A−v+ε+

√
(A−v+ε)2−4εK]

8ε − K is a decreasing function of K while

W f (αf ) = n(αf )(A− N−1
2 ε) depends only on n(αf ) with M ≤ n(αf ) ≤ N . Thus

• When
2(A−v)[A−v+ε+

√
(A−v+ε)2−4εK]

8ε −K < M [A− N−1
2 ε], free use is more socially efficient.

• When
2(A−v)[A−v+ε+

√
(A−v+ε)2−4εK]

8ε −K > N [A − N−1
2 ε], regulation is more socially effi-

cient.

• When M [A − N−1
2 ε] <

2(A−v)[A−v+ε+
√

(A−v+ε)2−4εK]

8ε − K < N [A − N−1
2 ε], there exists

an αf∗ such that when αf < αf∗, regulation is more efficient; otherwise free use is more

efficient.

Proof of Proposition 3:

Since free use is more favored under macro-cell, we have

W r
ma =

n(αr)∑
i=1

xi − vn(αr)−K1 < n(αf )(A− N − 1

2
ε) = W f

ma

Now we show W f
mi > W r

mi. To see this, note that
∑θn(αf )

i=1 xi < θ
∑θn(αf )

i=1 xi, and thus

θn(αf )∑
i=1

xi − θn(αr)v − θK2 < θ

n(αf )∑
i=1

xi − θn(αr)v − θK1

by noting that K2 = K1 and xi is decreasing.

Proof of Proposition 4:

Note that is the maximized value of WMS with respect to M∗ and the welfare for pure regulation

is

WPR =

N(M)∑
i=1

xi − [vN(M) +K] = (A− (N(M)− 1)ε

2
)N r − vN(M)−K,

which is a special case of WMS with N∗ = N(M) and n(αf ) = 0 and does not necessarily

maximize WMS . Thus mixed service (if available) is somewhat better than pure regulation.

Proof of Lemma 1:

Note that

dN∗

dM∗
−|dn(αf )

dM∗
| = 1− q

q
[

G(1− αr)√
4M∗(1− q) +G2(1− αr)(1− q)2

− G(1− αf )√
4(M −M∗)(1− q) +G2(1− αf )(1− q)2

].
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Now we show the above equation is positive whenever M∗ ≤ M −M∗. To see this, let B =

G(1−αr)(1−q)√
4M∗(1−q)+G2(1−αr)(1−q)2

, and C = G(1−αf )(1−q)√
4(M−M∗)(1−q)+G2(1−αf )(1−q)2

. Then

1

B
=

√
(1− q)2 +

4M∗(1− q)
G2(1− αr)

,

and

1

C
=

√
(1− q)2 +

4(M −M∗)(1− q)
G2(1− αf )

.

Now since αr < αf , we have G(1 − αr) > G(1 − αf ). Thus we M∗ ≤ M − M∗, we have

1/B < 1/C and thus B > C, which indicates that dN∗

dM∗ − |
dn(αf )
dM∗ | > 0.

Proof of Proposition 5:

By Lemma 1, when M∗ < M −M∗, dN∗

dM∗ > |
dn′

dM∗ |. Thus with this restriction, if

A−N∗ε+
ε

2
− v − n(αf )ε

2
> A− N∗ +N − 1

2
ε,

we have dWMS/dM∗ > 0 for M∗ ≤M −M∗. The above equation can be simplified to

Nε

2
>

(N∗ + n(αf ))ε

2
+ v,

which holds when v is small enough. In this case, increasing M∗ will increase social welfare

whenever M∗ ≤ N −M∗. Thus the optimal capacity allocated to regulation does not happen

whenever M∗ ≤ N/2, which indicates that more capacity should be allocated to regulation in

mixed service when v is sufficiently small.

Proof of Proposition 6:

Suppose the number of customers served by unused license spectrum is expanded to βn when

the capacity is aggregated to δM for free use. When the capacity is M , we have

αr = 1− 1√
2π

∫ M−nq√
nq(1−q)

−∞
e−

t2

2 dt.

Similarly when the capacity is δM , we have

αf = 1− 1√
2π

∫ δM−(βn)q√
(βn)q(1−q)

−∞
e−

t2

2 dt.

But since αr < αf , comparing the above two equations, we have

M − nq√
nq(1− q)

>
δM − (nβ)q√
(nβ)q(1− q)

.

Next we show β > δ by way of contradiction. Suppose not, 1 < β ≤ δ, then we have√
β >

δM − βnq
M − nq

≥ βM − βnq
M − nq

= β,

which cannot be true when β > 1. Thus β > δ.
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