
Abstract

In this paper, we discuss the problem of optimizing a multi-level
logic combinational Boolean network. Our techniques apply a
sequence of local perturbations and modifications of the network
which are guided by the automatic test pattern generation ATPG
based reasoning. In particular, we propose several new ways in
which one or more redundant gates or wires can be added to a net-
work. We show how to identify gates which are good candidates for
local functionality change. Furthermore, we discuss the problem of
adding and removing two wires, none of which alone is redundant,
but when jointly added/removed they do not affect functionality of the
network. We also address the problem of efficient redundancy compu-
tation which allows to eliminate many unnecessary redundancy tests.
We have performed experiments on MCNC benchmarks and com-
pared the results to those of misII[4] and RAMBO[6]. Experimental
results are very encouraging.

1   Introduction

In this paper, we discuss the problem of multi-level logic optimiza-
tion for a combinational network. Previous multi-level optimization
approaches can be categorized into two classes. The first class locally
collapses and optimizes a circuit using techniques like factorization,
decomposition, kernel extraction, cube extraction, etc. (e.g.:
misII[4]). The second class introduces a perturbation, usually in a
form adding wires, to a network which results in potential removal of
some redundant gates or wires (e.g.: [2],[12], and RAMBO [8]). Our
proposed approach falls into the second class.

Among the second class, RAMBO [6], [8] proposed an efficient
automatic test pattern generation(ATPG) based approach to optimize
a network. The idea was that the perturbation-simplification process
of network optimization can be viewed as redundancy addition and
removal, which can be efficiently computed using ATPG techniques
[10] [13]. In RAMBO, a heuristic of adding one redundant wire at a
time and removing redundant wires caused by such a perturbation
was proposed. In [5] we applied the ideas of ATPG guided wire addi-
tions and removals to alleviate FPGA routing.

In this paper we carry further the idea of perturbing-simplifying a
circuit applying ATPG techniques. In particular, we propose several
new ways in which one or more redundant gates or wires can be
added to the circuit. We also show how to identify gates which are
good candidates for local functionality change. In addition, we dis-
cuss the problem of adding and removing two wires, none of which
alone is redundant, but when jointly added/removed they do not
affect the functionality of a network. We also address the problem of
efficient redundancy computation which allows us to eliminate many
unnecessary wire redundancy tests.

2   Redundancy identification procedure

In a combinational circuit, a wire is redundant if and only if the
corresponding stuck-at fault is untestable. We review an approach
[13] of identifying redundant wires using the concept mandatory
assignments.

Theabsolute dominators (dominators) [10] of a wireW is a set of
gatesG such that all paths from the wireW to any primary output
have to pass through all the gates inG. An input to a gate has acon-

trolling value if it determines the output of the gate regardless of the
other inputs. The inverse of the controlling value is called anon-con-
trolling value. A gate is in thetransitive fanin (fanout) of a wire, if
there is a path from the gate to the wire (from the wire to the gate).

Consider the absolute dominators of a wireW. Theside inputs of
the absolute dominators are their inputs not in the transitive fanout of
the wireW. A test pattern for a stuck-at fault on wireW must set all
the side inputs of the absolute dominators ofW to their non-control-
ling values.

Mandatory assignments are the unique values which must be
present at certain nodes for a test to exist. For a given stuck-at faultf,
the set of mandatory assignments, denoted as SMA(f), can be com-
puted using the 9 value implication approach [10] [13]. If the manda-
tory assignments implied by a stuck-at fault on a wire can not be
consistently justified, the stuck-at fault isuntestable and therefore the
wire is redundant.

3   Redundancy addition and removal

In this section, we discuss how to make a wire redundant by add-
ing to the network anotherredundant wire or gate.

3.1  Wire substitution procedure

Suppose the objective is to remove a wirewr form a network. We
attempt to add a redundant wire(gate)wa such that the originally irre-
dundant wirewr becomes redundant. Sincewr is irredundant, the
SMA(wr stuck-at fault) is consistent. If the SMA(wr stuck-at fault) is
inconsistent under the change (addingwa), the stuck-at fault becomes
untestable and we can concludewr is redundant. In the following, we
show the wire substitution procedure: adding a redundant wire(gate)
to make an irredundant wire redundant.

First the SMA of the target wirewr stuck-at fault is calculated.
Then, a set of candidate connections is identified. Each candidate
connection when added to the circuit causes inconsistency of the
SMA(wr stuck-at fault) and thus makes the stuck-at fault untestable.
However, adding such a candidate connection may change the cir-
cuit’s behavior. Therefore, a redundancy check is needed to verify
whether a candidate connection is redundant or not. If a candidate
connection is redundant, it can be added to remove the target wirewr.

Consider the circuit in Fig. 1 [8]. Letg1->g4 be the target wire to
be removed. SMA(g1->g4 s-a-1) = {c=1, g1=0, g5=0, g2=0, f=1}.
Note thatg5 is outside transitive fanout of g1->g4 and has a manda-
tory assignment 0. Sinceg9 is an absolute dominator ofg1->g4, if we
connectg5 to g9 (the dotted wire in Fig. 1), g5 must have a mandatory
assignment of 1 forg1->g4 s-a-1 fault. This is inconsistent with the
original g5=0, and therefore, the presence ofg5->g9 makesg1->g4
redundant. We then chooseg5->g9 as a candidate connection. Finally,
we check ifg5->g9 is redundant by examining the SMA(g5->g9 s-a-
1). The SMA(g5->g9 s-a-1) is inconsistent. Therefore, we can add the
wire g5->g9 and remove the wireg1->g4.

The above example shows that a good candidate connection can be
a wire between a gate with a mandatory assignment (g5 =0) and a
dominator (g9). We generalize this observation as follows.

3.2  Only two among all transformations are necessary

We define a wirewf as afault propagating wire if there is a path
from the target wire wr under stuck-at fault test to the wirewf. The

Perturb and Simplify: Multi-level Boolean Network Optimizer

Shih-Chieh Chang and Malgorzata Marek-Sadowska

Electrical and Computer Engineering Department,

University of California Santa Barbara, CA 93106

Permission  to copy  without  fee  all  or  part  of  this  material is  granted,
provided that the copies are not made  or distributed for direct commercial
advantage,  the ACM  copyright  notice and the title of the publication and
its date appear, and notice is given  that  copying  is  by  permission  of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0002 $3.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357375756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


patterns of all possible logic transformations that we consider in this
section are: (1) the source gategs is in SMA(wr stuck-at fault) but not
in the transitive fanout ofwr, (2) the destination gategd is a domina-
tor of the target wirewr (for simplicity, only consider whengd is a 2-
input AND/OR gate), and (3) the 2-input gategd is replaced by a cer-
tain 3-input gate, whose inputs areg1, g2, andgs (the dotted box in
Fig. 5). Since our goal is to remove the target wirewr, we term a
logic transformationadequate if, after the transformation, SMA(wr
stuck-at fault) becomes inconsistent. For example, consider the Type
1 transformation in Fig. 7. Letg1 be the fault propagating wire andgs
be a wire with mandatory assignment 0 outside the transitive fanout
of wr. Becausegd is a dominator ofwr, the added gategn is also a
dominator ofwr. Since gs is a side input to the dominator gn, gs must
be assigned a non-controlling value 1, which causes a conflict with
the original mandatory assignment of 0. Therefore, this Type 1 trans-
formation is an adequate logic transformation.

We can view all possible logic transformations as replacinggd by a
3-input gate fed bygs, g1 andg2 (in Fig. 5). We enumerated all possi-
ble 256 3-input functions, only sixteen of them are adequate logic
transformations, which have the desired property of making SMA(wr
stuck-at fault) become inconsistent. In Fig. 6,7. we list two of these
sixteen 3-input functions, which we term Type 0 and Type 1 transfor-
mations. In the subsequent discussion, we show that the other four-
teen adequate transformations are unnecessary when Type 0 and
Type 1 transformations are performed. For simplicity, in Fig. 8, we
list another possible adequate transformation, which we term Type 2
transformation, and prove that it is not necessary to consider it inde-
pendently. We omit the similar discussion whengd is an OR gate, or
whengs has a mandatory assignment 1, and the cases of the remain-
ing thirteen adequate logic transformations.

The transformations in Fig. 6-8 guarantee only that an addition of
the new wire (dotted wire there) will cause inconsistency in the
SMA(wr stuck-at fault) and therefore make the target wirewr redun-
dant. Still, it is essential to verify if the added wire itself is redundant.
The following theorem guarantees that if the added wire/gate in the
Type 1 transformation are irredundant, then the added wire/gate in
the Type 2 transformation, when applied to the samegs and gd, are
also irredundant. Therefore, the Type 2 transformation is unnecessary
when the Type 1 transformation is performed.

Theorem 1. Consider the transformation of Type 1 and Type 2 in
Fig. 6,7 applied to the samegs and gd. If a new wire added to the net-
work as suggested by the Type 1 transformation is irredundant, then
so is the wire added by the Type 2 transformation.

3.3  Further exclusion of unnecessary redundancy checks

To make a target wirewr redundant, the discussion in the last sec-
tion tells us that we only need to consider the Type 0 and Type 1
transformations. In the following, we show that, depending on the
mandatory assignment of the dominator gategd, the added wire/gate
of either Type 0 or Type 1 transformations is always irredundant.
Therefore we can prune the space of redundancy checks on these a
priori known irredundant transformations.

Let wr be a wire under stuck-at 0(1) test. Afaulty circuit is the cir-
cuit in whichwr is replaced by a constant 0(1). As we noted earlier, a
wire is irredundant if the corresponding stuck-at fault is testable.
Therefore, if we can find an input vector which can differentiate
between the faulty and the good networks, the corresponding stuck-at
fault is testable and the wire is irredundant. If no such a test vector
exists, then the wire under stuck-at fault test is redundant. We define
bg(gi) to be a binary value at the output of gate gi in thegood net-
work, andbf(gi) be the value atgi in the faulty network, both under
the same excitation vector applied to the primary inputs. For exam-
ple, consideringg1->g4 s-a-1 in Fig. 1, when a vector (a,b,c,d,e,f) =

(0,0,1,0,0,1) is applied, we havebg(g4)=0, bf(g4)=1, bg(g8)=0, bf
(g8)=1, bg(g9)=0, and bf (g9)=1.

Theorem 2. Let wr be an irredundant wire in the network. Con-
sider the transformations of Type 0 and Type 1 applied to the network
to makewr stuck-at fault untestable. Letgd be a dominator ofwr. For
wr stuck-at fault, if there exists a test vectorvt which causes that
bg(gd)=1 and bf (gd)=0, then, the candidate connection suggested by
the Type 0 transformation is irredundant. When test vectorvt causes
bg(gd)=0 and bf (gd)=1, then the candidate connection suggested by
the Type 1 transformation is irredundant.

Corollary 1: Suppose that all test vectors forwr stuck-at fault
cause bg(gd)=0 and bf (gd)=1, then only the Type 0 transformation
should be tried. Ifbg(gd)=1 and bf (gd)=0, then, only the Type 1
transformation should be tried. If some test vectors causebg(gd)=0
and bf (gd)=1 and others causebg(gd)=1 and bf (gd)=0, then both
Type 0 and Type 1 should not be attempted.

For example, after performing a s-a-0 test on the wireg2->g6 in
Fig. 1, we have SMA={g1=0, c=0, ...,}. Sinceg9 is a dominator and
bg(g9)=1 andbf (g9)=0. Therefore, from the corollary 1, we conclude
that the Type 0 transformation ofg1->g9, c->g9 are irredundant and
need not be tested. Same situation can be derived for the Type 0
transformation ofg1->g7, c->g7.

The intuition behind theorem 2 is as follows. The test vectorsVt
for wr stuck-at fault are the input vectors that can distinguish between
the good circuit and the faulty circuit. If a wirewa could indeed
replace the wirewr, then addingwa should at least be able to compen-
sate the discrepancies produced byVt between the good and the
faulty networks. The above theorem says that if a transformation can
not correct discrepancies for one test vector, then it must be irredun-
dant.

4   Multiple-wire addition and gate function substitution

In this section, we extend the idea of addingone wire(gate) to add-
ing multiple wires (gates). In addition, for the purpose of removing a
wire, we also allow gates to change their functionality.

4.1  Multiple-wire addition

In a Boolean network, there exist wires which when deleted may
trigger a sequence of other reductions. For example, wheng6->g7
dotted in Fig. 2 is removed, the 3-input gateg6 can be also removed.
This in turn leaves the gateg7 with a single input, therefore a direct
connectiong3 ->g8 is possible andg7 can be deleted. If deleting a
wire can result in the removal of more than 2 wires or gates from the
network, we refer to such a wire as a large_redunction wire. When
optimizing a circuit, we give higher priority to removing
large_redunction wires. In case that adding one redundant wire(gate)
can not remove a large_redunction wire, we may add more than one
wires (gates) to delete the wire in question. For example, in Fig. 2,
we add a 2-input gategm and a wiregm->g9 to remove the
large_redunction wireg6->g7. However, arbitrarily adding many
wires as in [5] to remove a large_redunction wire is computationally
expensive. We have developed an efficient approach that limits the
search space and that still has much more power in comparison to the
one-wire addition.

Our basic philosophy of adding multiple wires is to cause an origi-
nally irredundant candidate connection to become redundant. Sup-
pose we wish to remove a large_reduction wire, and all the one-wire
candidate connections are irredundant. Then, we consider a possibil-
ity of adding multiple wires. The procedure is as follows. We com-
pute and store the SMA(wr stuck-at fault). Then, we pick a candidate
connection (gs1, gd, type) and compute the SMA(candidate wire
stuck-at fault). After that, we look for another gate, call it gs2, such
that it is in both the SMA(wr stuck-at fault) and the SMA(gs1->gd



candidate wire stuck-at fault) but has different mandatory assign-
ments. In the example of Fig. 2, the gated (a primary input) appears
with the assignment0 in the SMA(g6->g7 s-a-1) and with assignment
1 in the SMA(g5->g9 s-a-1) so the gated is our gs2. Finally, after
finding the gategs2, we add a gategm, and a wiregm->gd where gd is
the dominator of the candidate connection, using the following rule.
The gategm is an OR(AND) gate, if the gategd is an AND(OR) gate.
In our example,gm is an OR gate andgs1 = g5 andgs2 =d. The inputs
to gm aregs1 andgs2. If gs1 =1(0) in SMA(wr stuck-at fault) andgm is
an OR(AND) gate, we invert the input ofgs1 to gm. The same rule is
applied togs2. In our example, bothd=0 andg5=0 in the SMA(g6-
>g7 s-a-1) so we do not invert the input phase ford andg5 to gm.

Theorem 3. If in the above procedure, a gategs2 can be found then
the network modification is valid, i.e.wr can be deleted and the func-
tionality of the network does not change.

4.2  Changing the gate’s functionality

In this section, we discuss how to change a gate’s function to
remove a particular wire. For example, we can change the gateg5
(highlighted in Fig. 3) from an AND to an XNOR without changing
the circuit functionality. After changingg5 to an XNOR gate, the
wire g6->g7 becomes redundant. Two issues need to be addressed,
namely, how to check if a given gate can change its functionality, and
which gate should be changed to make a target wire redundant.

Consider an AND gategx(gi1, gi2) with two inputsgi1 and gi2. If
the output of gx is a don’t care when (gi1, gi2)=(0, 0), the function of
gx(gi1, gi2) can change from AND to XNOR. We first show a proce-
dure to verify whether (v1, v2,...,vn) is a don’t care minterm for a gate
gx(gi1, gi2,..., gin). The procedure is based on checking consistency of
a certain SMA.

The procedure to verify whether a minterm (v1, v2,...,vn) is a don’t
care to gx(gi1, gi2,..., gin) first setsgi1=v1, gi2=v2,...., gin=vn and
includes this assignment in a SMA. Then, we treat the output ofgx as
stuck-at the value produced by that minterm and compute the appro-
priate SMA. In the following theorem, we show that if the SMA(f) is
inconsistent, the minterm is a don’t care.

Theorem 4. Consider the SMA induced by setting the gate’s
inputs to a minterm in question and treating the gate’s output as
stuck-at the value produced by the minterm. If this SMA cannot be
consistently justified, then the minterm(gi1, gi2,..., gin) is a don’t care
of thegx(gi1, gi2,..., gin) embedded in the network.

Theorem 4 suggests how to verify quickly if a gate can switch its
functionality without affecting the network’s behavior.

The SMA computed to justify particular conditions in the network
depend on gates’ functionality. We may change some gates’ function-
ality to achieve SMA’s inconsistency, and therefore achieve redun-
dancy. In Fig. 3, the SMA(g6 ->g7 s-a-1)={g1=0, g2=0, g5=0, ...}.
Changingg5 from an AND to an XNOR causes thatg5=1. But on the
other handg5 =0 as a side input of a dominator. Therefore, we con-
clude that ifg5 is changed to an XNOR gate, then SMA(g6 ->g7 s-a-
1) is inconsistent andg6 ->g7 is redundant.

5   Simultaneous addition and removal of two wires (gates)

We say that two wires (wa,wb) are simultaneously redundant if
each wire is irredundant but simultaneously adding/removing wa and
adding/removing wb does not change the circuit’s functionality.

Intuitively, the existence of two simultaneously redundant wires is
not obvious. It can be explained as follows. LetVt(wr stuck-at fault)
denote all the input vectors that can test thewr stuck-at fault. That is
any vector inVt(wr stuck-at fault) can distinguish the original (good)
circuit from the faulty one. Consider another wirewa. If both sets,
Vt(wr stuck-at fault) andVt(wa stuck-at fault) are the same, and the

faults propagate through the same XOR(XNOR) gate, they cancel out
at the output of XOR(XNOR) gate.

The scenario in which the two simultaneously redundant wires
transform is used, is best explained using example in Fig. 4. Apply-
ing the transformation of two simultaneously redundant wires, we
can replace the wireg6 ->g7 by another wireg5 ->g7. As a result the
2-input gateg6 can be removed. The following shows a stuck-at fault
test that can verify if two wires are simultaneously redundant.

Theorem 5. Letgr be a fanin of XOR(XNOR) gategx and letga be
another gate. If (ga, gr) =(0,1) and (ga, gr) =(1,0) are don’t cares in
the network, we can replacegr ->gx by ga->gx.

Note that when a dominatorgd is an XOR(XNOR) gate, the net-
work transformations in Fig. 6-8 are no longer valid and can not be
used to remove a particular wire. It is because some test vectors cause
gd to havebg/bf = 1/0, and others causegd to havebg/bf =0/1. Accord-
ing to the Corollary 1, none of the transformations should be applied.
Therefore, the redundancy addition and removal technique can not be
applied when a dominator is an XOR(XNOR) gate.

6   The algorithm

We have implemented the transformations described in the previ-
ous sections. The overall algorithm is shown in Fig 9. The subroutine
Add_one_gate_to_remove_other_wires(), which besides adding a
wire also adds gates, is an extended algorithm of RAMBO [6]. For
each gategd in the circuit, we try to apply the transformations in Fig.
6,7 to remove wires that are dominated bygd. The second subroutine,
Remove_large_reduction_wires(), identifies the large_reduction
wires and attempts to remove them using more expensive techniques
like adding multiple gates and changing gate’s functionality. Finally,
the last subroutine,Perturb_circuit_more(), perturbs the circuit to
jump out of a locally minimal solution before the next iteration. In
Perturb_circuit_more(), for each wirewi in the circuit, we attempt to
replace it with another wire or gate.

7   Experimental results

In this section, we present experimental results for combinational
benchmark circuits. We implemented the algorithm in Fig. 9 and we
choose k_iteration to be 2. In our experiments, the optimization
objective is to reduce the number of two-input gates. We compare
our results with misII [4] and RAMBO[6]. Note that when our opera-
tion involvesadding a wire to an AND (OR) gate, we actuallyadded
an extra AND(OR) gate to the circuit.

TABLE 1 shows the results for some of the MCNC combinational
benchmark circuits. misII results were obtained as follows. We use
script.boolean provided by misII (for consistency, we don’t use
script.rugged because some examples can not be run due to space/
time limitation). Then, we map (using themap command in misII)
the circuit into a circuit with general 2-input gates as shown in sec-
ond column of TABLE 1. The initial circuits for Perturb/Simplify
and RAMBO are obtained by running script.algebra and then map-
ping into 2-input gates. We run both RAMBO and our algorithm to
optimize the circuit. Since the output of RAMBO may contain gates
with more than 2 inputs, we also decompose the result of RAMBO
into 2-input gates. In the third, and fourth columns, we show the
results of running RAMBO, and our algorithm, respectively. All the
results are described in terms of the number of 2-input gates and the
number of literals. As shown in the table, the results we obtained are,
on the average for the listed examples, 19% better than misII and
16% better than RAMBO in terms of number of 2-input gates.
Besides of the superior results of our algorithm, our memory require-
ment is very low. For example, C7552 needs only 6 Mbytes. All our
results have been verified using the circuit verification command in
misII. The experiment was performed on DEC 5000. Note that the



RAMBO’s results are 4% better than results shown if RAMBO’s
input circuits are script.boolean optimized first.
8   Conclusions

In this paper, we have proposed several new ways to add one or
more redundant gates or wires to remove other gates or wires from a
network. We show how to identify gates which are good candidates
for local functionality change to achieve network’s reduction. Our
experimental results have demonstrated usefulness of our approach.
Acknowledgement

This work was supported in part by the National Science Foundation under
Grant MIP 9117328 and in part by AT&T Bell Laboratories and Digital
Equipment Corporation through the California MICRO Program. The authors
also would like to thank Professor Kwang-Ting Cheng for many helpful dis-
cussions.

TABLE 1 Experimental results

9   References

[1] K.A. Bartlett et al, “Multilevel Logic Minimizing Using Implicit Don’t
cares,” IEEE Trans. on CAD-7(6), pp. 723-740(June 1988).

[2] C. L. Berman and L. H. Trevillyan. “Global Flow Optimization in Auto-
matic Logic Design,” IEEE Trans. CAD 10, pp. 557-564(May 1991).

[3] D. Bostick et al, “The Boulder Optimal Logic Design System,”Proc.
ICCAD, pp. 62-65, 1987.

Circuit
misII
gates/literals

RAMBO
gate/literals

Pert/Sim
gates/literals

CPU of Pert/
Sim (sec)

5xp1 117(231) 111(221) 66(131) 34.5

9sym-hdl 96(192) 100(200) 39(78) 19.7

C3540 1073(2145) 988(1976) 938(1876) 5692.8

C5315 1452(2871) 1458(2883) 1321(2631) 2236.7

C6288 2619(5237) 2334(4666) 1883(3766) 2124.8

C7552 1757(3513) 1761(3521) 1426(2851) 3668.6

alu2 383(765) 366(731) 281(562) 1127.4

alu4 687(1373) 700(1399) 555(1110) 4171.5

apex6 632(1260) 647(1291) 543(1086) 568.9

b9_n2 102(200) 96(188) 79(156) 17.4

cm85a 40(80) 40(80) 27(54) 5.1

comp 137(273) 119(273) 84(168) 51.9

des 3048(6095) 3073(6145) 2859(5718) 31507.6

duke2 366(727) 314(626) 246(491) 648.5

f51m 120(239) 116(231) 78(155) 4.7

misex3 434(868) 468(936) 317(634) 978.8

my_adder 160(320) 160(320) 116(232) 29.1

pcler8 80(151) 80(151) 64(128) 29.7

rd53-hdl 36(72) 35(70) 20(40) 2.0

rot 575(1135) 569(1131) 452(902) 256

sao2-hdl 195(390) 199(398) 104(208) 119.6

term1 203(403) 203(404) 113(225) 56.2

ttt2 184(365) 174(247) 118(236) 57.8

x3 629(1253) 617(1231) 552(1104) 472.0

z4ml 37(74) 30(60) 21(42) 1.7

total 15162

(30232)

14758

(29379)

12302

(24584)

53883.0

[4] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang,
“MIS: Multi-level Interactive Logic Optimization System,” IEEE Trans.
on CAD, CAD-6(6), pp. 1062-1081(Nov. 1989).

[5] Shih-Chieh Chang and Malgorzata Marek-Sadowska, “Layout Driven
Logic Synthesis for FPGA,” Proc. Design Automation Conference. pp

[6] K.T. Cheng and L.A. Entrena, “Multi-Level Logic Optimization by
Redundancy Addition and Removal,” in Proc. European Conference On
Design Automation, pp. 373-377, Feb. 1993.

[7] M.Damiani, J.C.Y.Yang and G.De Micheli, “Optimization of Combina-
tional Logic Circuits Based on Compatible Gates”, Proc. DAC’93,
pp.631-636, June 1993.

[8] L.A. Entrena and K. T. Cheng, “Sequential Logic Optimization By Redun-
dancy Addition and Removal”, Proc. International Conference on Com-
puter Aided Design, Nov. 1993.

[9] E. Detjens, G. Gannot, R. Rudell, A. L. Sangiovanni-Vincentelli and A.
Wang, “Technology Mapping in MIS,”Proc. ICCAD, pp. 116-119,
1987.

[10] T.Kirkand and M.R. Mercer, “A Topological Search Algorithm For
ATPG,” Proc. 24th Design Automation Conf., pp. 502-508, June 1987.

[11] C.E.Leiserson, F.M.Rose, and J.B.Saxe, “Optimizing synchronous circuit
by retiming”, in Proc. Third Caltech Conf. on VLSI, 1983.

[12] S. Muroga et al, “The Transduction Method-Design of Logic Networks
Based on Permissible Functions,” IEEEE Transaction. on Computer
C38(10). pp. 1404-1423 (Oct. 1989).

[13] M.Schulz and E.Auth, “Advanced Automatic Test Pattern Generation and
Redundancy Identification Techniques,” Proc. Fault Tolerant Comput-
ing Symposium, pp. 30-34 June 1988.

g9

c
b
d

e
c

d
a
b
f

g1

g2

g3

g4

g5

g6 g7 g8 o2

o1

Fig. 2

f

d gm

g9

c
b
d

e
c

d
a
b
f

g1

g2

g3

g4

g5

g6 g7 g8 o2

Fig. 3

f

g5

g9

c
b
d

c
b
d
a
e
f

g1

g2

g3

g6
g8 o2

Fig. 4

g5

g4

o1

g7

Type 0
gs

Type 1

gd

Type 2
gs=0

gd

g1g2

g1
g2

new gate

Let gs has mandatory assignment 0, gd is a dominator (AND gate) and

gn

original cir cuit

gdg1g2

gs=0

g1 is a fault propagating wire.

gd

g1
g2

new gate
gn

gs=0

Fig. 5 Fig. 6

Fig. 7 Fig. 8

g9

c
b
d

e
c
d
a
b
f

g1

g2

g3

g4

g5

g6 g7 g8 o2

o1

Fig. 1

1

0

00

0 0/1
0/1

1

bg/bf=0/1

perturb_simplify(k_iteration, network)
int k_iteration;
network_t *network;
{

Add_one_gate_to_remove_other_wires();
Remove_large_reduction_wires();

For (i =0; i< k_iteration; i++) {

Perturb_circuit_more(); }
}

Fig. 9


	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index




