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Some new fluorine substituted heterocyclic nitrogen systems 2–17 have been synthesized from ring closure reactions of substituted
p-amino salicylic acids (PAS). The Schiffs base of PAS was cyclized with chloroacetyl chloride and mercaptoacetic acid to
give azetidinone 2, thiazolidinone 3, and spiro-fluoroindolothiazoline-dione 10. However, PAS when reacted directly with 4-
fluorobenzoyl chloride and 5-oxazolinone yielded derivatives 4, 5, and 7. Aminomethylation of PAS using formaldehyde and
piperidine or piperazine formed N-alkyl and N,N󸀠-dialkyl derivatives (11 and 12 respectively) upon fluorinated benzoylation gave
compounds 13 and 14. Similarly, treatment of PASwith thiosemicarbazide 15 and subsequent cyclizationwith diethyl oxalate yielded
the fluorinated heterocycle 17.The structures of the fluorinated heterocyclic systems have been established on the basis of elemental
analysis, 1H NMR, 13C NMR, and MS spectral data. Some of the targets exhibited a high inhibition towardsMycobacterium strain
with favorable log P values.

1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by
Mycobacterium tuberculosis. After AIDS, tuberculosis is the
second leading cause of death from an infectious disease
worldwide [1–5]. The frequent coinfection of TB in HIV
patients further complicates the selection of an appropriate
treatment regimen. During, recent years, Mycobacterium
tuberculosis has developed increased resistance against drugs.
The multidrug-resistant (MDR-TB) and extensively drug-
resistant (XDR-TB) strains of tuberculosis are considered as
some of the most challenging threats to global health [6, 7].
Medicinal researchers are continuing all over the world in
order to have a safe and effective therapeutic strategy against
these resistant strains.

The treatment involves the administration of multiple
drugs because it is clear that monotherapy leads to the dev-
elopment of resistance. Aminosalicylic acid (PAS) which
was introduced as an antitubercular medicine in 1948 is

being used in combination with the second line therapeutic
regimen against multidrug-resistant and extensively drug-
resistant strains [8]. In a recent study a salicylic acid analog,
benzofuran salicylic acid (1-A09; Figure 1), has been found to
showMycobacterium protein tyrosine phosphatase B inhibit-
ing activity [9]. This analog of salicylic acid has provided
an innovative therapeutic starting point for the treatment
of TB, including MDR and XDR forms, that is not only
complementary, but also synergistic with current drugs.

Fluorine is a well-known bioisostere in various organoflu-
orine compounds as antimycobacterial agents [10].The intro-
duction of fluorine has already shown tomodulate the stereo-
electronic parameters of organic molecules [11, 12]. Substitu-
tion of fluorine into a potential drug molecule not only alters
the electronic environment, but also influences the p𝐾a-
value of neighboring Bronsted acid/base centers, polarity, and
the influence on lipophilicity as expressed by the distribu-
tion coefficient. The introduction of fluorine substituent in
bioactive molecules can often improve their pharmacological
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Figure 1: Benzofuran salicylic acid (1-A09).

properties as increased membrane permeability, enhanced
hydrophobic binding, and stability against metabolic trans-
formation. Furthermore, it has also been shown that selective
organofluorine interactions with protein residues can be used
to substantially enhance protein-ligand binding affinity and
selectivity [13]. In an extension of our previous study, in the
area of synthesis of bioactive compounds for the treatment
of infectious diseases [14–20], the present work aims at
the synthesis of some new fluorinated heterocyclic systems
incorporating PAS as anti-Mycobacterium agents.

2. Experimental

Melting points were determined in an electrothermal Bibby
Stuart ScientificMelting Point SMP (US).The IR spectra were
recorded using KBr discs on a Perkin Elmer Spectrum RXI
FT-IR systems number 53529. 1H/13C-NMR was determined
in DMSO-d

6
solution using Bruker NMRAdvance DPX 600-

FT and TMS as an internal standard (Chemical shifts in 𝛿,
ppm). Mass spectra were measured on a GCMS-Q 1000-Ex
spectrometer. Microanalyses (C, H, N, S, F, and Cl) were
performed by the Microanalyses Centre of Cairo University,
Egypt.

4-[(4-Fluorobenzylidene)amino]-2-hydroxybenzoic Acid (1).
PAS (1.53 g, 0.01mol) in MeOH (50mL) and p-fluorobenzal-
dehyde (1.23 g, 0.01mol) were stirred at room temperature
for 24 h (Scheme 1). The precipitate obtained was filtered and
crystallized frommethanol to give 1 as reddish brown crystals
m.p. 273–275∘C (decomp.). Yield: 85%. IR (] cm−1): 3383 (free
OHofCOOH), 3043 (Ar–CH, str.), 1688 (C=O,COOH), 1602
(C=N), 1427 (aliph. CH), 1238 (C–F); 1H NMR (600MHz,
DMSO) 𝛿 ppm: 7.11–8.01 (m, 7H, ArH), 8.30 (s, 1H, CH=N),
5.45 (s, 1H, OH), 11.02 (s, 1H, COOH). 13C NMR (600MHz,
DMSO) 𝛿 ppm: 109.8, 114.8, 115.4, 116.6, 130.8, 132.1, 133.2,
159.7, 163.5, 165.2 (Ar–C), 160.2 (HC=N), 171.6 (CO). MS:
m/z (relative intensity) 259.1 (M+, 12), 260 (M+ +1, 25). Anal.
Calcd. for C

14
H
10
FNO
3
(259.2): C, 64.86; H, 3.98; N, 5.40; F,

7.33. Found: C, 64.73; H, 3.89; N, 5.38; F, 7.22.

4-[3-Chloro-2-(4-fluorophenyl)-4-oxo-azetidin-1-yl]-2-hydro-
xybenzoic Acid (2). To a mixture of PAS (1.52 g, 0.01mol) in
dioxane (10mL) triethylamine (0.025mL), was added chloro-
acetyl chloride (1.35 g, 0.012mol) dropwise at 10∘C.The reac-
tion mixture was stirred for 6 h then poured into crushed
ice. The solid separated was dried and recrystallized from

dioxane, to give 2 as deep brown powder. m.p. 177–178∘C
(decomp.). Yield: 55%. IR (] cm−1): 3268 (free OH of
COOH), 3020 (Ar–CH, str.), 2948 (aliph. CH str.), 1777
(C=O of azetidinone), 1669 (C=O of COOH), 1541 (CH),
1243 (C–F), 731 (C–Cl). 1H NMR (600MHz, DMSO) 𝛿
ppm: 5.23 (d, 1H, H-2, J = 9.0Hz), 5.51 (d, 1H, H-3, J =
9.0Hz), 7.08–7.96 (m, 7H, ArH), 5.68 (s, 1H, OH), 10.62 (s,
1H, COOH). 13C NMR 𝛿 ppm: 62.7 (C-3), 68.2 (C-2), 106.3,
113.5, 114.4, 115.6, 128.5, 131.3, 139.4, 147.9, 161.2, 164.6 (ArC),
162.2 (CO), 170.8 (CO). MS: m/z (relative intensity) 235.0
(M+, 10). Anal. Calcd. for C

16
H
11
ClFNO

4
(335.7): C, 57.24;

H, 3.30; N, 4.16; Cl, 10.56; F, 5.66. Found: C, 57.12; H, 3.11; N,
4.23; Cl, 10.66; F, 5.51.

4-[2-(4-Fluorophenyl)-4-oxo-thiazolidin-3-yl]-2-hydroxyben-
zoic Acid (3). To a solution of PAS (1.53 g, 0.01mol) in dry
dioxane (10mL), a solution of mercaptoacetic acid (3.5mL,
0.05mol) in dry dioxane (10mL) was added followed by a
catalytic amount of anhydrous zinc chloride (0.1 g), and the
reaction mixture was refluxed for 8 h. The resulting mixture
was evaporated at reduced pressure. The residue was treated
with a solution of sodium bicarbonate to remove excess of
mercaptoacetic acid. The solid obtained was recrystallized
from ethanol to give 3 as reddish orange crystals, m.p. 198–
200∘C (decomp.). Yield: 60%. IR (] cm−1): 3440 (free OH,
str.), 3063 (Ar–CH, str.), 2880 (aliph. CH str.), 1700 (C=O of
thiazole), 1672 (C=O of COOH), 1601 (C–N), 1421 (CH

2
),

1253 (C–F), 1158 (C–S), 824 (p-substituted phenyl). 1H NMR
(600MHz, DMSO) 𝛿 ppm: 3.82 (d, J = 12.0Hz, 1H, C–H,
𝛽-H), 3.92 (d, J = 12.0Hz, 1H, C–H, 𝛼-H), 6.23 (s, 1H, H-2),
6.99–8.54 (m, 7H, ArH), 5.60 (s, 1H, OH), 11.12 (s, 1H,
COOH). 13C NMR (600MHz, DMSO) 𝛿 ppm: 33.9 (C-5),
72.3 (C-2), 106.2, 113.1, 114.3, 115.6, 130.4, 132.0, 135.1, 148.3,
161.7, 164.5 (ArC), 171.2 (CO), 172.1 (CO). MS: m/z (relative
intensity) 233.0 (M+, 18). Anal. Calcd. for C

16
H
12
FNO
4
S

(333.3): C, 57.65; H, 3.60; N, 4.20; F, 5.70; S, 9.60. Found: C,
57.55; H, 3.49; N, 4.26; F, 5.55; S, 9.49.

4-(4-Fluorobenzoylamino)-2-hydroxybenzoic Acid (4). To a
mixture of PAS (1.53 g, 0.01mol) in DMF (20mL), 4-fluoro-
benzoyl chloride (1.53 g, 0.01mol) was added dropwise. The
reaction mixture was warmed for 5min, cooled, and poured
onto ice. The solid thus obtained was filtered and recrystal-
lized from dioxane to give 4 as reddish orange powder. m.p.
210–211∘C. Yield: 70%. IR (] cm−1): 3440 (free OH, COOH),
3180 (NH), 3060 (Ar–CH, str.), 1670 (C=O of COOH), 1599
(C=O of CONH), 1506 (C–N), 1227 (C–F), 848 (p-substituted
phenyl). 1H NMR (600MHz, DMSO) 𝛿 ppm: 7.42–8.16 (m,
7H, ArH), 8.82 (s, 1H, NH), 5.72 (s, 1H, phenolics OH), 10.43
(s, 1H, COOH). 13C NMR (600MHz, DMSO) 𝛿 ppm: 107.2,
113.4, 114.5, 115.2, 130.2, 131.7, 135.4, 147.8, 161.3, 164.2 (ArC),
165.8 (CO), 172.1 (CO).MS:m/z (relative intensity) 275.0 (M+,
12). Anal. Calcd. for C

14
H
10
FNO
4
(275.2): C, 61.09;H, 3.63; N,

5.09; F, 6.90. Found: C, 60.98; H, 3.51; N, 4.99; F, 6.78.

4-(4-Fluorobenzoylamino)-2-(4-fluorobenzoyloxy)benzoic
Acid (5). To a mixture of PAS (1.53 g, 0.01mol) in DMF
(20mL), 4-fluorobenzoyl chloride (3.1 g, 0.2mol) was added
dropwise then boiled for 15min. The reaction mixture was
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Scheme 1: Synthesis of p-aminosalicylic acid derivatives 1–5, 7, 9, and 10.

cooled and poured onto ice.Theprecipitated solidwas filtered
and recrystallized from THF to give 5 as yellow crystals m.p.
228–230∘C. Yield: 60%. IR (] cm−1): 3405 (free OH, COOH),
3180 (NH), 3040 (Ar–CH, str.), 1762 (ester C=O) 1668 (C=O
of COOH), 1639 (C=O of CONH), 1596 (C=C), 1239 (C–F),
1085 (C–O–C) 849, 819 (p-substituted phenyl). 1H NMR
(600MHz, DMSO) 𝛿 ppm: 7.38–8.26 (m, 11H, ArH), 9.12 (s,
1H, NH), 10.78 (s, 1H, COOH). 13CNMR (600MHz, DMSO)
𝛿 ppm: 111.7, 114.9, 115.4, 118.2, 119.4, 125.3, 129.2, 129.7, 130.6,
131.8, 143.4, 154.3, 163.9, 167.4 (ArC), 164.2 (CO), 165.2 (CO),
168.8 (CO) MS: m/z (relative intensity) 397.1 (M+, 9). Anal.
Calcd. for C

21
H
13
F
2
NO
5
(397.3): C, 63.48; H, 3.30; N, 3.52; F,

9.57; found: C, 63.56; H, 3.11; N, 3.44; F, 9.37.

4-[4-(4-Fluorobenzylidene)-5-oxo-2-phenyl-4,5-dihydroimid-
azol-1-yl]-2-hydroxybenzoic Acid (7). An equimolar mixture

of PAS (1.53 g, 0.01mol) and 4-(4-fluorobenzylidene)-2-
phenyloxazol-5(4H)-one (6; 2.67 g, 0.01mol) in dry pyridine
(20mL)was refluxed for 5 h.The reactionmixture was cooled
and then neutralized with acetic acid. The produced solid
was filtered, washed with cold water, then recrystallized from
THF to give 7 as yellow crystals, m.p. 146–148∘C (decomp.).
Yield: 65%. IR (] cm−1): 3400–3300 (b, free OH, COOH),
3068 (Ar–CH, str.), 2880 (aliph. –CH str.) 1690 (C=O of
imidazole), 1645 (C=O, COOH), 1601 (C=C), 1507–1495
(CH), 1227 (C–F), 833 (p-substituted phenyl). 1HNMR
(600MHz, DMSO) 𝛿 ppm: 7.12–8.06 (m, 13H, ArH), 7.85 (s,
1H, H-C=), 5.48 (s, 1H, OH), 11.20 (s, 1H, COOH). 13C NMR
(600MHz, DMSO) 𝛿 ppm: 106.3, 113.4, 114.4, 115.6, 117.2,
128.3, 128.7, 130.2, 130.3, 130.6, 131.1, 131.6, 135.3, 139.3, 157.9,
162.2, 164 (ArC), 169.4 (CO), 171.8 (CO). MS: m/z (relative
intensity) 402.1 (M+, 16). Anal. Calcd. for C

23
H
15
FN
2
O
4
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(402.4): C, 68.65; H, 3.76; N, 6.96; F, 4.72. Found: C, 68.50;
H, 3.65; N, 6.76; F, 4.59.

4-(5-Fluoro-2-oxo-1,2-dihydroindol-3-ylideneamino)-2-hyd-
roxybenzoic Acid (9). A mixture of PAS (1.53 g, 0.01mol)
and 5-fluoroisatin 8 (1.50 g, 0.01mol) in methanol (20mL)
was heated on a water bath for 30min. The reaction mixture
was removed from water bath and allowed to acquire
room temperature. The solid thus obtained was filtered and
recrystallized from MeOH to give 9 as orange crystals, m.p.
230–231∘C (decomp.). Yield: 80%. IR (] cm−1): 3550–3198 (b,
OH, NH), 1714 (C=O of COOH), 1624 (CONH), 1256 (C–F),
899 (p-substituted phenyl). 1H NMR (600MHz, DMSO) 𝛿
ppm: 6.98–8.12 (m, 6H, ArH), 8.12 (s, 1H, NH), 5.62 (s, 1H,
OH), 10.74 (s, 1H, COOH). 13C NMR (600MHz, DMSO) 𝛿
ppm: 109.7, 110.3, 112.5, 114.6, 116.4, 116.8, 117.9, 133.4, 154.2,
158.4, 159.6, 163.3 (ArC), 164.2 (C=N), 161.9 (CO), 172.3 (CO).
MS: m/z (relative intensity) 300.1 (M+, 22). Anal. Calcd.
for C
15
H
9
FN
2
O
4
(300.2): C, 60.00; H, 3.02; N, 9.33; F, 6.33.

Found: C, 59.91; H, 2.95; N, 9.08; F, 6.18.

3󸀠-(3-Hydroxy-4-carboxyphenyl-1-yl)spiro[5-fluoro-3H-indole-
2,3󸀠-thiazolidine]-2-(1H)-4󸀠-(5󸀠H)-dione (10). A mixture of 9
(3 g, 0.01mol) and thioglycolic acid (1.4mL, 0.02mol) in dry
dioxane (100mL) was refluxed for 8 h. The reaction mixture
was cooled and poured onto ice.The solid thus produced was
filtered and recrystallized from ethanol to give 10 as yellow
crystals, m.p. 198–200∘C (decomp.). Yield: 65%. IR (] cm−1):
3450–3269 (b, OH, NH), 2890 (aliph. –CH str.) 1681, 1667,
1612 (2C=O, CONH), 1612 (N–C), 1485 (CH

2
), 1286 (C–F),

1189 (C–S), 814 (p-substituted phenyl). 1H NMR (600MHz,
DMSO) 𝛿 ppm: 3.84 (d, J = 12.4Hz, 1H, C–H, 𝛽-H), 3.95
(d, J = 12.4Hz, 1H, C–H, 𝛼-H), 6.98–8.12 (m, 6H, ArH),
8.12 (s, 1H, NH), 5.38 (s, 1H, OH), 10.74 (s, 1H, COOH). 13C
NMR (600MHz, DMSO) 𝛿 ppm: 30.1 (C-5), 86.7 (S–C–N),
106.2, 111.2, 113.8, 114.1, 114.6, 116.7, 129.4, 132.2, 136.6, 148.2,
159.2, 163.9 (ArC), 168.4 (CO), 171.2 (CO), 171.9 (CO). MS:
m/z (relative intensity) 376 (M+ + 2, 1.75). Anal. Calcd. for
C
17
H
11
FN
2
O
5
S (374.3): C, 54.54; H, 2.94; N, 7.48; S, 8.55; F,

5.08. Found: C, 54.33; H, 2.88; N, 7.39; S, 8.39; F, 5.00.

2-Hydroxy-4-[(piperidin-1-ylmethyl)amino]benzoic Acid (11).
To a solution of PAS (1.53 g, 0.01mol) in MeOH (20mL),
piperidine (0.85 g, 0.01mol) and formaldehyde (37%, 2mL)
were added. The reaction mixture was stirred at room tem-
perature for 5 h. To this mixture an excess amount of distilled
water was added and the mixture was left overnight. The
resulting solid was filtered and recrystallized from methanol
to give 11, as faint yellow crystals, m.p. 278–280∘C (decomp.).
Yield: 85%. IR (] cm−1): 3345 (free, OH, COOH), 3210 (NH)
2880 (aliph. C–H str.) 1671, (C=O, COOH), 1576 (C=C), 1487,
1433 (CH

2
). 1H NMR (600MHz, DMSO) 𝛿 ppm: 1.34–1.73

(m, 6H, piperidine H-3,4,5), 2.65–2.81 (m, 4H, piperidine
H-2,6), 4.12 (s, 2H, CH

2
), 6.23 (s, 1H, NH), 6.23–7.78 (m,

3H, ArH), 5.49 (s, 1H, OH), 10.91 (s, 1H, COOH). 13C NMR
(600MHz, DMSO) 𝛿 ppm: 24.6, 25.8, 54.3 (piperidine C),
72.5 (CH

2
), 98.4, 104.8, 106.4, 132.3, 153.9, 165.7 (Ar–C), 172.4

(CO).MS:m/z (relative intensity) 250.1 (M+, 14). Anal. Calcd.

for C
13
H
18
N
2
O
3
(250.3): C, 62.38; H, 7.25; N, 11.19. Found: C,

62.19; H, 7.14; N, 10.99.

1,4-Di[(4-methylamino-2-hydroxybenzoic acid)]piperazine
(12). To a solution of PAS (3.06 g, 0.02mol) in MeOH
(50mL), piperazine (0.86 g, 0.01mol) and formaldehyde
(37%, 4mL) were added. The reaction mixture was stirred
at room temperature for 12 h. To the resulting reaction
mixture crushed ice was added. The precipitated solid was
filtered and recrystallized from ethanol to give 12 as yellow
crystals, m.p. 300–302∘C (decomp.). Yield: 89%. IR (] cm−1):
3450–3180 (b, OH, NH), 3210 (NH), 3040 (Ar–CH str.), 2936
(C–H str.), 2795 (C–H str.), 1662 (C=O, COOH), 1411 (CH

2
),

1282 (C–N), 831 (p-substituted phenyl). 1H NMR (600MHz,
DMSO) 𝛿 ppm: 2.48 (s, 8H, piperazine H), 5.2 (s, 2H, CH

2
),

5.98 (s, 1H, NH), 6.36–7.88 (m, 6H, ArH), 5.35 (s, 1H, OH),
10.83 (s, 1H, COOH). 13C NMR (600MHz, DMSO) 𝛿 ppm:
52.4 (piperazine C), 75.1 (CH

2
), 99.2, 104.3, 106.3, 132.6, 154.4,

165.5 (ArC), 171.6 (CO). MS:m/z (relative intensity) 417 (M+
+1, 11). Anal. Calcd. for C

20
H
24
N
4
O
6
(416.4): C, 57.69; H,

5.81; N, 13.46. Found: C, 57.72; H, 5.78; N, 13.37.

4-[(4-Fluorobenzoyl)piperidin-1-ylmethylamino]-2-hydroxy
Benzoic Acid (13). To a solution of 11 (2.5 g 0.01mol) in dry
pyridine (20mL), p-fluorobenzoyl chloride (153, 0.01mol)
was added drop-wise. The reaction mixture was refluxed for
1 h cooled, and then poured onto ice. The solid produced was
filtered and recrystallized from THF to give 13 as faint yellow
crystals, m.p. 209–210∘C (decomp.). Yield: 78%. IR (] cm−1):
3352 (free OH, COOH), 3180 (NH), 3040 (Ar–CH str.) 2936
(asymmetric C–H str.), 1700, 1670, (2C=O), 1603 C=C, 1488,
1444 (CH

2
), 1232 (C–F), 852 (p-substituted phenyl). 1HNMR

(600MHz, DMSO) 𝛿 ppm: 1.52–1.63 (m, 6H, piperidine
H-3,4,5), 2.55–2.61 (m, 4H, piperidine H-2,6), 4.72 (s, 1H,
N–CH–N), 5.98 (s, 1H, NH), 7.48–9.02 (m, 7H, ArH), 5.56, (s,
1H, OH), 11.13 (s, 1H, COOH). 13C NMR (600MHz, DMSO)
𝛿 ppm: 24.5, 25.8, 51.6, (piperidine C), 77.3 (CH

2
), 106.3, 113.7,

114.1, 115.8, 129.4, 131.2, 132.1, 145.4, 164.7, 166.0 (ArC), 171.5
(CO), 195.5 (CO). MS:m/z (relative intensity) 372.1 (M+, 15).
Anal. Calcd. for C

20
H
21
FN
2
O
4
(372.4): C, 64.51; H, 5.68; N,

7.52, F, 5.10. Found: C, 64.41; H, 5.53; N, 7.52, F, 5.01.

1,4-Di{4-[(4-fluorobenzoyl)methylamino]-2-hydroxybenzoic
acid}]piperazine (14). To a solution of 12 (4.16 g, 0.01mol)
in dry pyridine (20mL), p-fluorobenzoyl chloride (3.1 g
0.02mol) was added drop-wise. The reaction mixture was
refluxed for 2 h, cooled and then poured onto ice. The solid
produced was filtered and recrystallized from dioxane to give
14 as yellow crystals, m.p. 228–230∘C. IR (] cm−1): 3480 (free,
OH, COOH), 3150, 3130 (2NH), 2851 (C–H str.), 1710–1673
(4C=O), 1599 (C=C), 1508, 1424 (CH

2
), 1220 (C–F), 847

(p-substituted phenyl). 1H NMR (600MHz, DMSO) 𝛿 ppm:
2.67 (s, 8H, piperazine H), 5.26 (s, 1H, N–CH–N), 6.76 (s,
1H, NH), 7.43–7.87 (m, 14H, ArH), 5.62 (s, 1H, OH), 11.02
(s, 1H, COOH). 13C NMR (600MHz, DMSO) 𝛿 ppm: 49.8
(piperazine C), 99.8 (HC=N), 106.2, 113.6, 114.2, 115.8, 129.3,
131.3, 131.9, 145.9, 164.7, 166.2 (ArC), 171.7 (CO), 196.2 (CO).
MS: m/z (relative intensity) 660.2 (M+, 12). Anal. Calcd. for
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C
34
H
30
F
2
N
4
O
8
(660.6): C, 61.81; H, 4.58; N, 8.48, F, 5.75.

Found: C, 61.71; H, 4.44; N, 8.39, F, 5.55.

1-(2-Hydroxybenzoic acid-4-yl)-4-(4󸀠-fluorophenyl)thiosemi-
carbazide (16). A mixture of PAS (1.53 g, 0.01mol) and 4-
(4󸀠-fluorophenyl)thiosemicarbazide 15 (1.8 g, 0.01mol) in
ethanol (50mL) was refluxed for 1 h. The resulting reaction
mixture was cooled to give a brownish yellow solid. The
solid was filtered and recrystallized from ethanol to give 16
as yellow crystals, m.p. 162–164∘C, (decomp.). Yield: 65%.
IR (] cm−1): 3450 (NH), 3040 (Ar–CH str.), 1674, (C=O,
COOH), 1601 (C=C), 1509 (N–N), 1226 (C–F), 1156 (C–S)
849 (p-substituted phenyl). 1H NMR (600MHz, DMSO) 𝛿
ppm: 4.22 (s, 1H, NNHCS), 5.13 (s, 1H, CSNH), 5.18 (s, 1H,
NHCS), 6.76 (s, 1H, NH), 6.62–7.89 (m, 7H, ArH), 5.58 (s,
1H, OH), 11.16 (s, 1H, COOH). 13C NMR (600MHz, DMSO)
𝛿 ppm: 97.7, 106.2, 108.8, 115.2, 131.0, 132.3, 134.1, 157.6,
164.7, 166.2 (ArC), 172.4 (CO), 181.9 (CS). MS: m/z (relative
intensity) 321.1 (M+, 13.6). Anal. Calcd. for C

14
H
12
FN
3
O
3
S

(321.3): C, 52.33; H, 3.73; N, 13.08, S, 9.96; F, 5.91. Found: C,
52.26; H, 3.59; N, 12.88; S, 9.69; F, 5.69.

4-[4-(4-Fluorophenyl)-5,6-dioxo-3-thioxo[1,2,4]triazian-1-yl]-
2-hydroxybenzoic Acid (17). Equimolar amounts of 16 and
diethyl oxalate in THF (100mL) were heated under reflux
for 4 h. The reaction mixture was cooled to give a white solid
which was filtered and recrystallized from ethanol-water to
give 17 as white crystals, m.p. 280–282∘C (decomp.). Yield:
66%. IR (] cm−1): 3450 (OH), 3210, 3180 (NH) 3060 (Ar–CH
str.), 1640, 1663 (C=O), 1317 (NCSN), 779 (C–F). 1H NMR
(600MHz, DMSO) 𝛿 ppm: 5.76 (s, 1H, NH), 6.56–8.53 (m,
7H, ArH), 5.53 (s, 1H, OH), 10.92 (s, 1H, COOH). 13C NMR
(600MHz, DMSO) 𝛿 ppm: 98.3, 106.1, 108.8, 115.8, 130.3,
132.4, 133.9, 143.0, 162.2, 165.4 (ArC), 155.8 (CO), 157.5 (CO),
171.8 (CO), 182.3 (CS). MS:m/z (relative intensity) 377 (M+ +
2, 3.9). Anal. Calcd. for C

16
H
10
FN
3
O
5
S (375.3): C, 51.20; H,

2.69; N, 11.20, S, 8.53; F, 5.06. Found: C, 51.13; H, 2.65; N,
11.33; S, 8.41; F, 4.89.

Antimycobacterial Activity. The antimycobacterial activity
was carried out in National Institute of Allergy and Infection
Disease Southern Research Institute, GWL Hansen’s Disease
Center, Colorado State University, Birmingham, AL, USA.
All the new compounds obtained were tested for in vitro
anti-tuberculosis activity againstM. tuberculosisH37Rv using
the BACTEC 12𝛽 medium using a broth microdilution
assay, the Microplate Alamar Blue Assay (MABA) [21, 22].
Rifampicin was used as the standard (Table 1). Of these
compounds, the ones which exhibited >90% inhibition in
the primary screen (MIC < 6.25𝜇g/mL) were considered at
lower concentrations againstM. tuberculosis H37Rv in order
to determine the actual MIC, using MABA in the level 2 of
the screening (Table 2). Rifampin (RMP) was used as the
reference compound (RMPMIC = 0.015–0.125mg/mL).

3. Results and Discussion

3.1. Chemistry. The condensation of p-aminosalicylic acid
(PAS) with p-fluorobenzaldehyde in methanol produced the

Table 1: Results of the primary antituberculosis screening of
compounds 1–17.

Compound MIC (𝜇g/mL)a GI (%)b

1 <6.25 95
2 <6.25 96
3 <6.25 98
4 <6.25 98
5 <6.25 98
7 <6.25 94
9 <6.25 94
10 <6.25 98
11 <6.25 92
12 <6.25 92
13 <6.25 98
14 <6.25 95
16 <6.25 96
17 <6.25 100
aMIC (minimum inhibitory concentration) of Rifampicin: 0.125–0.25 𝜇g/mL
versusM. tuberculosisH37Rv.
bGrowth inhibition of virulent H37Rv strains ofM. tuberculosis.

Table 2: Results of second level antituberculosis assay.

Compound MIC
(𝜇g/mL)a

IC50
(𝜇g/mL)a

SI
(IC50/MIC) log𝑃b

3 6.25 29 4.64 2.82
4 6.25 27 4.32 2.17
5 4.25 14 3.29 4.2
10 6.25 27 4.32 1.93
13 3.78 12 3.17 3.37
17 6.25 30 4.80 2.12
aActual minimum inhibitory concentration (MABA assay).
bCalculated log𝑃.

Schiff base 1. The IR spectra showed two absorption bands
at 3383 cm−1 and 1668 cm−1 for the OH and CO groups,
respectively along with a characteristic C=N absorption
at 1602 cm−1. Their 1H NMR spectra exhibited beside the
aromatic protons a singlet of one proton intensity at 𝛿 8.30
for the CH=N as well as two exchangeable singlets at 𝛿 11.02
and 𝛿 5.45 for the COOH and the phenolic OH, respectively.
The structure of the above compound was further confirmed
from its 13C NMR and MS data (experimental section).

Similarly, cycloaddition [23] of compound 1 with chlor-
oacetyl chloride in dry benzene afforded the azetidinone
2, while with thioglycolic acid in dry dioxane it afforded
the 4-[2-(4-fluorophenyl)-4-oxo-thiazolidin-3-yl]-2-hydrox-
ybenzoic acid 3. The IR spectra of 2 and 3 showed two
carbonyl absorptions at 1700–1777 cm−1 and 1669–1672 cm−1
for the azetidinone and COOH groups, respectively, as well
as OH bands in the regions 3268–3383 cm−1. The 1H NMR
spectra of 2 exhibited beside the aromatic protons at 𝛿 7.08–
7.96 two doublets at 𝛿 5.23 and 5.51 (J = 9.0Hz) for H-2 and
H-3 protons, respectively. On the other hand the thiazolidine
derivative 3 showed beside the seven aromatic protons at
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𝛿 6.99–8.54 two doublets at 𝛿 3.82 and 3.92 for the 𝛽 and
𝛼 proton, respectively, of C-5 methylene of the thiazolidine
ring. The C2 proton of the same ring appears at 𝛿 6.23 as
a singlet. The 13C NMR of 2 exhibited beside the aromatic
carbons two signals at 𝛿 62.7 and 68.2 for C-3 and C-2,
respectively, of the azetidinone moiety, while compound 3
showed two signals at 𝛿 33.9 and 72.3 for C-5 and C-2,
respectively. The structures were further confirmed fromMS
data.

However, fluorination of PAS viawarming with 4-fluoro-
benzoyl chloride in DMF yielded the 4-(4-fluorobenzoyl-
amino)-2-hydroxybenzoic acid 4 or 4-(4-fluorobenzoylami-
no)-2-(4-fluorobenzoyl-oxy)benzoic acid 5 depending on the
time the reaction has been allowed to go (Scheme 1). The
IR spectra of 4 and 5 showed two carbonyl absorption at
1700–1777 cm−1 and 1668–1673 cm−1 for the azetidinone and
COOH carbonyl groups, respectively, as well as OH bands in
the regions 3268–3383 cm−1. Compound 4 also exhibited an
absorption band at 3440 cm−1 which is attributed to a free
OH group. However, compound 5 exhibited a third carbonyl
at 1762 cm−1 for the ester group. The structures of the above
compounds were further confirmed by their 1H NMR, 13C
NMR and MS data.

The treatment of PAS with oxazolone 6 in refluxing dry
pyridine afforded the imidazolone 7. Its IR spectra showed
two carbonyl absorptions at 1690 cm−1 (C=O of imidazolone)
and 1665 cm−1 (C=O, COOH). The 1H NMR spectra of 2
exhibited beside the aromatic protons at 𝛿 7.12–8.06 two

exchangeable singlets at 𝛿 11.20 and 𝛿 5.48 for the COOH
and the phenolic OH groups, respectively. The structure of 7
was further supported by the 13C NMR spectral data which
showed the expected number of aliphatic and aromatic
carbons.

Similarly, condensation of 5-fluoroisatin 8 with PAS in
methanol yielded 5-fluoroisatin Schiff base 9 which upon
cycloaddition with thioglycolic acid in dry dioxane afforded
the spirothiazolidine derivative 10. Compound 10 can be also
obtained directly from refluxing of compound8 andPASwith
thioglycolic acid in dry dioxan in one step (Scheme 1). The
13CNMR spectra of Schiff base 9 showed beside the aromatic
carbons two carbonyl carbons at 𝛿 161.9 and 𝛿 172.3 as well as a
C=N signal at 𝛿 164.2. The spiroderivative 10 exhibited three
carbonyl signals at 𝛿 168.4, 𝛿 171.2, and 171.9 in addition to
a methylene carbon signal at 𝛿 30.1. However, the 1H NMR
spectrum of compound 10 showed very characteristic two
doublets of C-5 proton at 𝛿 3.84 and 3.95 showing geminal
coupling (J = 12.4Hz). The structures of compounds 9 and
10were further confirmed by their MS spectra which showed
the molecular ion peak M+ + 2 atm/z 376.

The aminomethylation of PAS using formaldehyde and
piperidine or piperazine in methanol produced the N-alkyl
11 and N,N󸀠-dialkyl 12 derivatives, respectively. Benzoylation
of compounds 11 and 12 on warming it with 4-fluorobenzoyl
chloride in DMF led to the formation of the benzoyl- or
dibenzoyl derivatives 13 or 14, respectively (Scheme 2). The
structures of the above compounds 11–14 were confirmed by
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their IR, 1HNMR, 13C NMR andMS data (see Experimental
section).

The treatment of PAS with 4-(4󸀠-fluorophenyl)thiosemi-
carbazide 15 in refluxing ethanol yielded 1,4-diarylthiosemi-
carbazide 16 which upon heterocyclization with diethyl
oxalate in THF afforded 4-[4-(4-fluorophenyl)-5,6-dioxo-
3-thioxo[1,2,4]triazian-1-yl]-2-hydroxybenzoic acid 17
(Scheme 3). The IR spectra of the triazines derivative 17
showed beside the two carbonyl absorptions at 1640 cm−1
and 1663 cm−1 a C=S band at 1317 cm−1. The structure of
the above compound was further confirmed from its 13C
NMR which showed the expected number of aliphatic and
aromatic carbons as well as a thiocarbonyl signal at 𝛿 182.3 in
addition to three carbonyl signals at 𝛿 155.8, 157.5, and 171.8
(carboxyl) (Scheme 3). Further confirmation of the structure
of 17 was done by its MS spectral data.

3.2. Antimycobacterial Activity. The results of the in vitro
evaluation of antituberculosis activity are reported in Tables
1 and 2. During the preliminary screening compounds 1-5, 7,
9–14, and 17 were tested (Table 1) for their antimycobacterial
activity; one of the compounds 17 has exhibited 100% inhibi-
tion at this concentration while other compounds exhibited
between 92 and 98% inhibition at the same concentration.
Compounds 3–5, 10, 13, and 17 have shown inhibition
between 98 and 100%. Therefore, these are selected for the
second level screening to determine the actual minimum
inhibitory concentration (MIC). Compounds 5 and 13 have
shown a slight improvement in the antitubercular activity in

the second level and were found to be the most promising
candidates of PAS analogs with MIC values 4.25𝜇M and
3.78 𝜇M, respectively (Table 2).

The IC
50
andMIC data are used to calculate the selectivity

index (SI) of each compound as an estimate of a therapeutic
window and a mechanism to identify candidates for efficacy
studies in vivo (Table 2). Compounds 3–5, 10, 13, and 17 have
shown selectivity index values 4.64, 4.32, 3.29, 4.32, 3.17, and
4.80 respectively. Furthermore, all compounds have shown
log P values in the accepted range (1.93–4.2) of druglikeness.
However compounds 4, 10, and 17 show medium log P value
(∼2.0) and make them suitable candidates for a possible oral
drug.

In our previous research work we prepared p-amino-
salicylic acid analogs keeping in mind the mutual prodrug
concept [24]. However, this paper includes the introduction
of fluorine in almost all the PAS analogs. The reason for
the induction of fluorine into these analogs is due to the
fact that fluorine is much more lipophilic than hydrogen,
so incorporating fluorine atoms in PAS analogs make them
more fat soluble. This means it partitions into membranes
much more readily, and hence these analogs have a higher
bioavailability and metabolic stability.

4. Conclusion

Fluorine substituted heterocyclic systems containing p-
amino salicylic acid were synthesized as antimycobacte-
rial agents. Some derivatives selected for the second level
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screening have shown favorable partition coefficient values
to support druglikeness of these compounds. However their
selectivity index is not very high. Further optimization of
these PAS analogs is recommended in order to have a
compound with the optimum structure features and the
required biological activity.
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