U.U.D.M. Project Report 2011:19
UNIVERSITET

Movement of a prawn

a Hidden Markov Model approach

Johannes Alneberg

Examensarbete i matematik, 15 hp
Handledare och examinator: Richard Mann
Juni 2011

Abstract

This thesis presents the basic theory for hidden Markov models and standard in-
ference algorithms for these. The performance for these algorithms are examined with
the help of a small test problem and the algorithms are found to operate properly.

An application of hidden Markov models for modelling the movements of a prawn
is implemented. This model is shown to be significantly better to use for the problem
than a more simple model, where all movements are independent. The model also
proves useful for finding the time points for where the prawn changed direction. As a
brief example of how this model can be used, logistic regression is used to find that the
distance to neighbouring prawns have an effect on the probability of changing direction.

Acknowledgements

Writing this thesis has been a real pleasure and I would like to thank all the people who
have made it possible.

First of all, I would like to thank my supervisor Richard Mann for his excellent guidance
and support.

I would also like to thank David Sumpter and the Collective Behaviour Group at the
Department of Mathematics, Uppsala University, for giving me the opportunity to write
about this subject.

Finally, T would like to thank all the staff at the Department of Mathematics, Uppsala
University for the countless number of interesting lectures I have received and appreciated
during the past three years.

Contents

1 Theory

1.1 Stochastic Processes and Markov Chains
1.2 Hidden Markov Models
1.3 Inference Algorithms for HMMs
1.4 The Logarithmic Domain

Testing the Algorithms

2.1 Forward-Backward Algorithm
2.2 Viterbi Algorithm
2.3 Learning the Model Parameters

HMDMs applied to Prawn Movement

3.1 Pre-processing the Data L.
3.2 Two Proposed Models
3.3 The Learnt Parameterso
3.4 Model Comparison
3.5 Finding Changes of Direction
3.6 A Logistic Regression Approach to Prawn Direction Changes

Conclusions

Implementation in Matlab

A.1 The Forward Algorithm
A.2 The Backward Algorithm
A.3 The Forward-Backward Algorithm
A.4 The Viterbi Algorithm
A.5 The Learning Algorithm

1 Theory

The main objective for this chapter is to introduce a mathematical concept called hidden
Markov models and further to present some algorithms often used in applications concerning
this concept. A problem concerning round off errors due to computer precision, arising when
implementing the hidden Markov model, and a proposed solution to this problem, will be
addressed in the last section. The theory for hidden Markov models are most effectively
pursued by introducing stochastic processes in general and especially Markov chains.

1.1 Stochastic Processes and Markov Chains

A stochastic process is a collection of random variables (X (¢) : ¢ € T') indexed on aset T C R.
The index ¢, is usually called the time of the process and the set S C R, defined as the set
of all possible values for X (t), is the state space of the process. Further, we say that the
process X (t) is at state s at time ¢y if X (¢y) = s. [Stirzaker, 2005]

The main concern in this thesis will be limited to stochastic processes where both the
indexing set and the state space are countable sets. Processes where the indexing set is
countable, for example T' = Z or T' = Z™, are called time-discrete processes and the common
notation for X(n), n € T is then X,,. Also, the notation X, will have multitude meaning,
alternating between both the process as a whole and the value of the process at time n.
When the meaning otherwise would be ambiguous, it will be stated clearly what is meant.

In many cases, for example when dealing with sequential data, it proves practical to
study a particular class of processes that fulfil the Markov property. [Bishop, 2006]

Informally, a stochastic process is said to have this property if, given full knowledge of
the present state, the future is independent of the past. For the purpose of this thesis it is
sufficient with a formal definition of the Markov property for the special case of time-discrete
Markov chains.

If X, is a stochastic process with n € {0,1,...} and discrete state space S, then X, is
said to be a Markov chain if

P(Xn:]{?|X0:ZL’0,,Xn_1 :j):P(Xn:len—lz)
is true for all n > 1 and all xg, 21, ..., 7,k in S. Further, if for all n
P<Xn =k | Xn-1 :]> = Pjp

the chain is said to be homogeneous. [Stirzaker, 2005]

The homogeneity of the Markov Chain significantly simplifies calculations since it intro-
duces a possibility to store all essential information about the process within a small square
matrix P. The elements of this matrix are simply P;, and it is thus called the matrix of tran-
sition probabilities. By construction this matrix is stochastic, the entries are non-negative
and all row sums are equal to 1.

1.2 Hidden Markov Models

When searching for a proper model to use for a specific problem, it is often a balancing
act between precision in describing the problem and the effort needed to use the model.

4

Figure 1: An illustration of a Markov Chain with two states for four time points.
Each state is presented as a circle for each time point. The arrows represent
possible transitions between states.

The main problem with Markov chains is that for some problems, they are too restrictive
to efficiently describe the possible dependencies of the problem examined. A first approach
to solve this problem is to expand the Markov property, letting the outcome of the process
depend on more than just the present state. For obvious reasons this increase the complexity
of calculations and it does so to such a degree it is often no longer practical to work with.
[Bishop, 2006]

Instead, the concept of a hidden Markov model (HMM) is introduced and this proves to
be a good way to balance between precision and effective calculations [Bishop, 2006]. The
basic idea behind HMMs is to imagine two stochastic processes, instead of one, where one
of them is a Markov chain and the other is not.

A bivariate stochastic process {X,,, Oy, }n>0, with discrete time is a hidden Markov model
if X, is a Markov chain and conditional on the process X,,, the process O, is simply a se-
quence of independent random variables. Further, the conditional distribution of the random
variable O, is only dependent of the random variable X,,. [Cappé et al., 2005].

Hidden Markov Chain

t=1 t=2 t=3 t=4

] I I I
U Y Y v

Observations

Figure 2: A Hidden Markov Model with two states and where the distribution of
O; is determined by the state of the chain at t = 1.

The process X, is the so called hidden Markov chain and the process O, is usually called
the observational sequence. The HMM can be seen as a Markov chain whose values are
unobservable but where each value generates a specific observation with some probability.
If further the HMM is assumed to be time homogeneous in every sense, the whole model,
A, can be described by two matrices together with an additional vector, A = {P,Q,w}. The
matrix P is the transitional matrix for the Markov chain X,, and the matrix @), called the
observational matrix, contains all conditional probabilities for observing each outcome, that
is

{Q}i; =P(Or =7 | Xi = 1)

To start a hidden Markov chain, the initial distribution 7 is used, a discrete probability
vector giving the probability for each state to be the starting point. The following notation
will be used throughout the text

T
@t = {Ot = O, Ot+1 = Ot41y--- ,OT = OT}

That is, O] is a short notation for the event of a certain observation sequence from time
t to T. In a similar way X! will be a short notation for the event of a certain sequence of
states visited by X,, from time ¢ to time 7. Also x; will be the specific state that X, visited
at time ¢. The different possible states for X, is denoted S = {Si,..., Sy}

In practise, the Markov property for the hidden Markov chain, together with the specific
dependence structure for the observational sequence is what gives the HMM computational
advantages. This will be clear when studying some basic inference algorithms for HMMs.
[Bishop, 2006]

1.3 Inference Algorithms for HMMs

Algorithms used for inference in HMMs does mainly approach three different problems. The
first of these problems is called the evaluation problem and it is the task of calculating
P(@tT |)\), the probability of a certain observation sequence given a specified model \. The
second problem is the question of finding out what state sequence that was used to generate
the observational sequence. The third and final problem is how to change the model A =
{P,Q, 7} in order to maximise P(O] | \) and thus in some way finding the most suitable
model for the observed sequence. [Rabiner, 1989]

The first two problems will here be solved with standard inference algorithms for HMMs
while the third problem will be solved with Bayesian analysis.

The first problem could be solved with a simple naive algorithm. This would include
summing over all possible state sequences after calculating the probability for the observation
sequence directly for each state sequence. This would however have major drawbacks in
practise since the number of possible state sequences grows exponentially with respect to
the number of data points. Therefore, a naive algorithm, calculating the probability for one
sequence at a time, would have exponential time complexity, O(T'NT). It is thus useless but
for trivial cases. [Rabiner, 1989]

Instead, the first problem will be dealt with using dynamic programming in the Forward-
Backward algorithm. This algorithm consist of two different steps, the forward step and the

backward step. To solve the first problem though, it is only necessary to perform the forward
step, but since the backward step is later used in the solution for the second problem, it will
also be presented here. The forward step is a procedure to calculate the forward probability
ay(1), defined as follows.

at() ((O)iaXt S | >\>

That is, the probability of the observed sequence up to time ¢ and the chain being in state ¢
at time ¢, given the model parameters. This probability can easily be calculated inductively
with the following expressions given in [Rabiner, 1989).

Oét+1 [Z CYt ‘j] : @jotﬂ
With the following initial condition.

Oél(i) =Ty Qiol

Finally the probability required is established in the termination step.

@T|)\ ZOZT

In order to calculate probabilities for single time points instead of the whole sequence, the
backward step is also needed. It is a procedure to calculate the backward probability, 5;(7)
defined as follows.

Bi(1) = P(Of,, | X¢ = S;, \)

This definition is obviously similar to the forward probability, here with the time running
backwards, but it is also conditioned on the state at time ¢. It is therefore not difficult to think
of the forward and the backward probabilities as complementing pairs, with time running
forwards and backwards respectively towards the same time point t. The computation of
the backward probabilities is also similar to the forward step with the inductive procedure

N
i) = Z P;iQj0,,: Be+1(J)
=1

Initialised with f;(i) = 1 for all 1 <14 < N. To establish a way to calculate the probability
for single states at different time points Bayes’ theorem will be used. Assuming P(B) # 0,
Bayes’ theorem is stated

P(B|A)P(4)
P(B)

P(A]B) = (1)

The following use of this and the dependency structure for hidden Markov models give
PO} | X, =S)P(X, = 5i) _

P(Xi=5;]01,2) =

P(07)
PO} | X, = S)P(OL, | X, =S)P(X,=S;)
- p(0f) -
P(0}, X; = S;) P (1 | Xe = S)
- P(07)

These probabilities are all familiar and it is now possible to compute the probability for
single states at different time points given the observation sequence.

P(X, = 5| 0.) = D))
Sy () Bi(d)

The problem of finding the most probable state sequence can be approached in many ways
since different criteria for the optimisation give different methods. For example, a condition
on a optimal sequence can be that its states are individually optimal. This approach is solved
using the formula above, computing at each time point the probability for the different states.
So the optimal state at each time point ¢, is the argument that maximise this expression.
However this is not the criteria that is most commonly used, since it can give a non-valid
state sequence as the optimal one. Instead the optimal sequence will here be thought of as
the one that maximise the joint probability P(X{ | Of, X).

The Viterbi algorithm [Viterbi, 1967] is an inductive procedure to solve the second prob-
lem with this more complex criterion for optimisation. First of all the Viterbi algorithm
calculates the highest probability for a single path up to time ¢ ending in state S;, denoted
as 0;(7). This can be found inductively since the most probable path ending in state S; at
time ¢ + 1 can be found by only investigating the transition probabilities from all the possi-
ble previous states combined with how likely those previous states are. In order to find the
actual sequence, the algorithm also has to keep track of the argument state S; maximising
this probability for each time point, denoted as v(i). More formally, for each time point
2 <t < T and each state S; with 1 <j < N

1 (j) = (max[0(3) - By)) - Qo
Y1 (7) =arg max [5,(i) - Py

The inductive procedure is initialised with
61(j) = mQjo,
Y1(j) =0
Finally termination and backtracking is performed, giving the most probable state sequence

{X7}

Xp = arg max or(i)

Xt :¢t+1(t+1)

The third problem is the most complex of the three and can also be solved in many
different ways. An algorithm that fits the model parameters according to available data is
often referred to as a learning algorithm, from the discipline machine learning, automatic
statistical model fitting. As opposed to deduction, where conclusions are made out of certain
facts, learning algorithms deal with uncertain information. Under some simple axioms that
are easily accepted, uncertainty can be quantified consistently with the rules of probability.
Under the same axioms, it can also be proved that Bayesian analysis is the only way to
consistently perform model fitting. Since quantification of uncertainty and probability is
equivalent, there is no need for separate notations. [Baldi and Brunak, 2001]

Fundamental to Bayesian analysis is of course Bayes’ theorem, stated in equation 1. The
quantity to the left in this equation is called the posterior distribution and expressed with
model parameters § and observation data QT equation 1 takes the form

P(Of |0)p(9)
P(O7)

P(O]0T) =

where p(0) is the prior distribution representing any knowledge of the parameters prior
to the data. The other factor in the numerator, P(Q | 6), is the likelihood function for
the parameters. Thus the parameters maximising the posterior distribution when the prior
distribution is uniform, is equivalent to the maximum likelihood estimates. The quantity in
the denominator can be seen as a normalising factor, so that the sum over the parameter
space is equal to one.

Although the most commonly used learning algorithm for HMMs, the Baum Welch al-
gorithm [Durbin, 1998], would suit the purpose of this thesis, a more brute force algorithm
based on Bayesian analysis is sufficient. To calculate the posterior distribution for the pa-
rameters in a HMM, only the forward algorithm need to be used to find the likelihood.

P(OT10) = ar(i)

If the parameter space is large or uncountable, some discretisation is needed, giving a
fixed number of possible values for each parameter. This gives the possibility to calculate the
likelihood for every possible combination of the parameters to find the posterior distribution
completely for the chosen discretisation. Thus, in order to estimate any parameter, either
the expected value or the maximum likelihood estimation can be found. Further, with
the posterior distribution, variance, standard deviation and other quantities can easily be
calculated with the standard procedure for discrete distributions.

1.4 The Logarithmic Domain

When using a computer for calculations, the way numbers are represented are of great
importance. For example, the IEEE double-precision format used by MATLAB® has a
smallest positive number that can be represented. To be exact, it is 1 - 271922[Chapra, 2006]. All
smaller numbers will be treated as identically equal to zero in any calculation. This is of course
something that should be avoided if possible. Experience shows that the forward probabilities
for example gets smaller and smaller for each iteration. They do so in such a way that for large

data sets, the smallest positive number possible to represent will be reached and surpassed. This
can generate erroneous results. In order to avoid this problem, when large data sets are used, all
probabilities will be calculated in the logarithmic domain. That is, all probabilities are scaled into
the negative real axis with the natural logarithm. The scaling is one to one, since the logarithm
is monotonically increasing. Further, the logarithm laws make it possible to express the recursive
formulas directly in log-probabilities.

The log-forward probabilities (a4 (i) can be calculated according to the following formula. In
order to increase the readability, let m denote the maximum value of the log-forward probabilities
for the most recent time point. That is

m¢—1 = max lay_1(i)
1<i<N
giving
N

loe(i) = me—1 + 1og(Qjo0,) + log Z exp(laz—1(j) — me-1)
j=1
In order to avoid the exponential function evaluating to zero, the exponents are normalised with
the maximum value among them.
The log-backward probabilities [f;(7) can, in a very similar way, be calculated in a transformed
recursive formula.

Myl = 12‘&5\7 Bi11(3)
giving
N
1B:(i) = myq1 + log Zexp(lﬁtﬂ(i) —myy1) - Pij - Qjo,.,
=1

Also the final step in the Forward-Backward algorithm can be transformed into the logarithmic
domain. First let the respective maximum values be denoted.

ma; = max loy (i)
1<i<N

mb; = 11%1%}5\/ 1B¢(7)

The formula then become
log (P(zy = S; | O,) = loy (i) + 1By(d)—may — mby — ...

N

—log Zexp [la(3) — may] - exp [1B(j) — mby]
j=1

The Viterbi algorithm is also easily transformed, giving
16141(7) = max [16:1(i) + log (Pg;)] + log (Qjo,.,)
Yr1(j) =arg DX, [16¢(4) + log (Py;)]

With unchanged backtracking

X = arg nax. dr (i)

Xi = e (Xipa)

10

2 Testing the Algorithms

In this section, the performance of the algorithms described above is examined. The algorithms
was implemented in MATLAB®) code, but since the ideas of the algorithms are presented in the
previous sections, no details of the exact implementation is presented here. The code for the
versions of the algorithms used in this section is however available in the appendix. To test the
performance of the algorithms, Monte Carlo tests were used on a small problem concerning a biased
and an unbiased coin. This constructed problem arise when the results of a series of coin tosses
are available but there is some suspicion that at least some tosses are made with a biased coin.
The assumption is furthermore that the changes between the different coins constitutes a Markov
chain. This clearly constitutes a hidden Markov model with two by two transition and observation
matrices. For the purpose of this text it is possible to restrict the model further, giving:

(12, 17)
I-p p

That is, there is no preference for any coin over the other. If one coin is assumed to be fair, the
observation matrix is also dependent on one parameter, determining the bias of the other coin.

Q- (0.5 05)
qg l—gq
Without loss of generality, assume that the observation corresponding to the first column in Q is
tails. With this assumption, ¢ is the probability for observing tails in a single toss for the possibly
biased coin. Of course if ¢ = 0.5, both of the coins are fair. In this case, the hidden Markov model
is just a complicated version of attaining a sequence of independent and identically distributed coin
tosses.

The benefits of using a small constructed problem to test the algorithms are numerous. With the
correct answer available, it is possible to evaluate the performance of the algorithms by inspection.
The simplicity of the problem is also appealing since it makes the analysis of the algorithms easier
and the conclusions clearer. A simple script was used to generate two paired sequences, the first
giving the result of the coin tosses and the other giving which coin was used for each toss. With
the observation sequence given as input to the algorithms, the performance can be evaluated by
comparing the result with the correct answer.

2.1 Forward-Backward Algorithm

The first algorithm that was covered was the Forward-Backward algorithm. To perform a test,
equation 2 can be used to find the single most probable state at each position in a sequence. A
reasonable requirement is that the algorithm should perform better than an average random guess.
In Figure 3 the percent of correct guessed states is shown for different values for the parameter ¢
in the observation matrix and p in the transition matrix. The range for ¢ is only between 0.1 and
0.5, motivated by the symmetry in the problem; it does not matter for the algorithm whether the
biased coin is biased towards heads or tails. Before analysing the performance, it can be useful
to point out once again that p represents the probability of not changing states and 1 — p is the
probability of changing states.

Also, Figure 3 shows two different plots, giving two different views of the same data. In the left
diagram the data is grouped according to the corresponding value for p, while different colours are
used to distinguish different values for q. The other diagram is done in the opposite way, grouping
different ¢ values along the x-axis and different p values with colours.

11

X g=0.1

X p=1/7

=0.2
80+ q_ 80 p=2/74
* 9=0.3 * p=3/7

O

q=0.4

CUVARRY 4 Yy

501 q 1 501 {(% L

<

p=1/7 p=2/7 p=3/7 p=4/7 p=5/7 p=6/7 g=0.1 q=0.2 g=0.3 q=0.4 q=0.5

Figure 3: The performance of the Forward-Backward algorithm for different obser-
vation and transition matrices. The parameter p is the probability of not changing
states and the parameter q is the probability for heads for the possibly biased coin.
The scale to the left is the percentage of correct quessed states.

The first and most obvious conclusion that can be drawn from Figure 3 is that the accuracy of
the algorithm is higher with a severely biased coin compared to a less biased coin. This is seen in
the right diagram as the number of correct guessed states decrease as the value for g gets higher.
This can be understood from the problem itself, since the less different the two coins are, the
harder it is to draw conclusions about which coin that was used. Ultimately with ¢ = 1/2, the two
coins are identical and no information about which coin was used can be found in the observation
sequence. On the other hand, if one of the two coins for example is greatly favouring heads, then
when heads is observed, it is reasonable to suspect that the biased coin was used. Thus, in this
case the algorithm has more information about what state actually generated the observation.

When the transitional matrix is varied instead, a small value for p, the probability for not
changing states, apparently gives the best precision while the best accuracy is attained for both
low and high values for p. This can somewhat be explained by the dependency structure. For an
observation, the dependency of surrounding observations is larger for higher and lower values for
p since p = 0.5 correspond to choosing coins independently. Thus, more information can be found
from the neighbouring observations in those cases. If no information about which coin that was
used is given by the observations, i.e. ¢ = 0.5, this additional information is no good and cannot
increase the accuracy of the model. For the other cases however, the presence of dependency can
amplify the information given by the observations.

Further, the difference between a low and a high value for p is the expected number of transitions.
A larger number of transitions, i.e. a low value for p, seems to increase the sample variation. This
can be explained since random effects can have a larger impact on the result if there are less
transitions. Overall, there is no reason to not believe that the algorithm is working properly.

2.2 Viterbi Algorithm

The same type of tests as for the Forward-Backward algorithm were performed to test the Viterbi
algorithm. The results are shown in Figure 4. For the same reason as in the Forward-Backward
algorithm, it is sufficient to use values for ¢ between 0.1 and 0.5.

12

x g=0.1

g=0.2 x p=17
80+ _ 80 p=2/7
* 9=03 % p=3/7

0 g=0.4 p=4/7

v g=0.5 v p=5/7

701 T 700 & p=6/7]
m i A

50 \% I\ 50F AN i

40+ . 40+ .

p=1/7 p=2/7 p=3/7 p=4/7 p=5/7 p=6/7 g=0.1 g=0.2 q=0.3 g=0.4 q=0.5

Figure 4: The performance of the Viterbi algorithm for different observation and
transition matrices. The parameter p is the probability of not changing states and
the parameter q is the probability for heads for the possibly biased coin. The scale
to the left is the percentage of correct guessed states.

From studying Figure 4, it is evident that the Viterbi algorithm shows essentially the same
behaviour as the Forward-Backward algorithm. The only differences seen is that the number of
correct guessed states are a few less than with the Forward-Backward algorithm and that the
increase of accuracy with lower value for p is not present. The reduction in the number of correct
guessed states is natural since the Viterbi algorithm finds the most probable state sequence, which
is often not equivalent with the sequence made out of the most probable states for each time point.
The latter sequence is given by the Forward-Backward algorithm, maximising the expected number
of correct guessed states. The Viterbi algorithm thus seems to work properly.

2.3 Learning the Model Parameters

When discussing the performance of the learning algorithm, only aspects concerning the ability to
estimate the parameters will be included. Other aspects of an algorithm that can be associated with
performance, such as execution time, will thus not be discussed here. Intuitively, the performance
of the learning algorithm should be dependent of the amount of data given, since a small data set
contain less information about the model parameters than a large set of data. Ultimately, some
kind of convergence towards the correct values is necessary for the algorithm to be useful at all.

A Monte Carlo test was performed with the objective of studying how the performance was
dependent of the amount of data. For each data set, consisting of 5000 data points, the algorithm
was initially given the first 100 points then the first 800 points and so on up to finally using all 5000
data points. A total of 60 data sets was used, each evaluated in 8 overlapping pieces. Studying the
results for these, the effect of additional data can be examined.

Figure 5 shows the result of the Monte Carlo test in terms of the expected value for the parameter
p. As earlier mentioned, p is the probability for the hidden Markov chain to change state. The
correct value, p = 0.7 that was used to generate the data points is shown as a dotted line. Since
the distance between the lower quartile and the upper quartile decrease with longer data sets, a

13

Figure 5: Expected value of p

[

1 - = T
I ! -
ool . 0.9F } | [-
T - - _ | ! | - - - -
0.8 1 ! | T 08 ‘ 1 | ! | |
| | | | | | |
N
A+ 58585 A IHE D S8 Es-
o | : ey | 1 i [
L 06 ‘ I ! ! | ! I L 06 | I ! ! I ! I
. | | £
g E| : L L i s + 5 : L I n L L
g 0.5¢ w . E g 05 | N E:
Bl 10 £ ol I
@ U. | | + S . |
g s L Ju e +
0.3 + 0.3r
+ : +
02 0.2 ! .
|
0.1 0.1 ! +
|
+

o

100 800 1500 2200 2900 3600 4300 5000
Number of data points

Figure 7: Expected value of q

Figure 6: ML-estimation of p

o

100 800 1500 2200 2900 3600 4300 5000
Number of data points

Figure 8: ML-estimation of q

o
(52
o
o

o

'S

a
T

o

IS

a
T

o
IS
o
IS

0.35 0.35¢

o o
S o3 S o03f -

g T 3 ! *
T 0.25 I T - _ T 0.25 | - *
2z ! | - e hd 2 ! — — — — +
£ oo - BB S e e e S O U e s S
9 ! | | ! a s 7

4
0.15 L t -+ + -+ 015t : i i 4T L o 1
.

o
[
o
[
.
+

o
o
ol
o
o
o

o

o

100 800 1500 2200 2900 3600 4300 5000 100 800 1500 2200 2900 3600 4300 5000
Number of data points

Number of data points
Bozxplots displaying the results from the learning algorithm for different sizes of
data sets. The correct values are displayed as dotted lines.

tendency for convergence to some set of values is indicated. The direction of this convergence is
also very important, and since the correct value is included in the boxes for all samples, except the
very first, the algorithm is likely to find good a estimate of the parameter for a large data set.

Figure 6 shows the corresponding results of the maximum likelihood estimation of p. The results
for this estimation method also indicates the sought after convergence in a similar way as for the
expected value. Comparing the results of the two estimators however, indicates a slightly larger
deviation for the maximum likelihood estimator. This suggests that the expected value is a more
efficient estimator than the maximum likelihood estimator. [Alm and Britton, 2008]

Figure 7 and 8 shows the corresponding results associated with ¢q. Recall that in the test prob-
lem, ¢ is the parameter governing the emission probabilities for the biased coin. More specifically, ¢
was defined to be the probability of tails for the possibly biased coin. In the same way as for p, the
convergence towards the true value showed as a dotted line is evident for both the expected value
and the maximum likelihood estimator. However, for this parameter there is no estimator that
is obviously more efficient than the other. Both the expected value and the maximum likelihood
estimator seems to be good estimators for q.

14

It is also possible to compare results between these two parameters but then one must first
note that the figures are scaled in different ways. The figures associated with p display all possible
values for a probability, that is, between zero and one, while Figure 7 and 8 only display values
between zero and one half. When scaling is taken into account, the deviation for estimating ¢ is
significantly smaller than for p. This indicates that it is easier to make a good estimation of ¢ than
p. This is a way of saying that it takes less data to estimate ¢ within a certain range of certainty
than for p. To explain this, one approach is to examine the properties of the model.

Because of the symmetry in this specific problem, where each coin is equally likely and one of
the coins is known to be fair, there exists a simple way to estimate ¢. Since half of all tosses is
expected to come from the fair coin, a quarter of all tosses can be expected to be tails received
from the fair coin. The rest of the observations showing tails in the observation is thus expected
to come from the biased coin. Also, approximately half of all tosses can be assumed to come from
the biased coin. Thus ¢ can be estimated directly as the approximate relative frequency of tails for
the biased coin.

_ #T - N/4

7 N/2

where #7T is the number of tails in the observation sequence and N is the number of observations
in total. Even if this is not the way of estimating ¢ actual used, it shows that ¢ can be estimated
without any knowledge of p, while estimating p is a more complex task.

Another way to reason about that ¢ is more efficiently estimated than p, is to think in terms
of posterior probability. Often, the set of probable values for p is larger than the corresponding set
for q. If for example one observation sequence contains 35 tails and 65 heads, this result would lead
to the conclusion that g < 0.5, since the result is very unlikely for other values for q. However, it
is not as easy to determine how many transitions that has occurred and thus be able to estimate
p directly.

Evidence for transitions is only present as changes in relative frequency between different parts
of the sequence. Thus for a small number of data points, it is hard for the algorithm to tell any
difference between actual transitions between the coins and effects caused by randomness within
the use of a single coin.

Figure 9-12 shows an example of the posterior probability for different lengths of the same
observation sequence. Higher values is shown as red or yellow while the lowest values are displayed
as dark blue. The conclusions that could be drawn from the Monte Carlo test is also present here.
First of all, the convergence towards the true value is evident as the area where higher values are
present decreases and in Figure 12, only a small area around p = 0.7 and ¢ = 0.2 is left. Also, the
highlighted area is a bit more outstretched vertically than horizontally, especially in Figure 9 and
11. This is not strange since the conclusion above is that p is more difficult to estimate compared
to q. The differences between the expected value and the maximum likelihood estimator can also
be seen, especially in Figure 9 where the highest posterior probability and thus the maximum
likelihood estimation is severely off target. When the amount of data is increased however, both
estimators converge to the correct values.

15

Figure 9: 100 data points Figure 10: 800 data points

(=]
o

=]
[
o
[

$0.2 $ 0.2
g s
03 203
£ £
204 o4
E= E=4
o 5}
5 05 s 05
[= j=
%06 S 0.6
2 £
207 So07
Qo Qo
o [
a 0.8 o 0.8

o
©
o
©

[
[

[N
o

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Probability for tails for the possibly biased coin Probability for tails for the possibly biased coin

Figure 11: 1500 data points Figure 12: 5000 data points

o

0.1
8 go02
s s
2] "
£ £
=3 j=2)
g §o4
E= E=4
o 5}
2 205
[= j=
kS B 06
2 z
£ go7
=} =}
3] [
o a 0.8

o
©

[N

0 0.2 0.4 0.6 0.8
Probability for tails for the possibly biased coin Probability for tails for the possibly biased coin

[N
o

0.2 0.4 0.6 0.8

[N

Examples of the posterior distribution for the parameters after evaluating the spec-
ified number of data points. The scale to the left in each figure corresponds to
p, the probability of not changing states. The scale on the bottom of each figure
corresponds to q, the probability of attaining tails for the possibly biased coin. The
correct value was p = 0.7, g = 0.2

3 HMDMs applied to Prawn Movement

In this section, real experimental data will be studied and the theory of hidden Markov models
will be applied to these. The experimental data that was used for this thesis origins from a system
of co-moving freshwater prawns that was studied by researchers from the University of Sydney
interested in collective animal behaviour. The experimental procedure was to store each prawn’s
position 15 times per second for as long as 6 minutes and the process was repeated for different
prawns and different set ups. In this thesis, 58 experiments with a set up of three prawns was used,
giving a total of 174 data sets with about 5500 data points for each prawn.

In the experiment, the prawns were located inside an aquarium with a cylindrical shape where
also a cylinder in the middle was taken away. With this shape it is possible to treat the prawns
movements as if they were in only one dimension, not taking into account the distance from the
centre. Thus the only quantity actually used as data was the change in angular position, measured
in radians.

16

As a part of a larger research context, the main objective for the application of HMMs in this
case was to automatically find out when a prawn changed direction. At first sight, this could seem
to be a trivial task, since positive movements would indicate that the prawn was heading forward
and vice versa. The problem arose when discovering that even though the prawn was really heading
forward, some values for the movement could be zero and some points could even take on negative
values. The hope is that an automatic procedure to find out when a prawn changed direction
would be a step in the process of finding out something about the decision processes governing the
movement of a prawn.

3.1 Pre-processing the Data

The observed data for the prawns consisted of measured movements between two subsequent frames
created by constructing the difference of observed values for the angular position. A problem
encountered during the process was that some samples seemed to be contaminated with some
erroneous measurements. Figure 13 shows an example of a data set where a vast majority of the
observations are between —0.2 and 0.2 but some single values are much larger in absolute value.
Since these values are isolated it is reasonable to believe that they are erroneous.

After concluding that these values were not valid, there were different ways that could have been
used to solve this problem. One way could have been to delete these values completely, making the
data sequence shorter. Another way could have been to set all these values to 0, keeping the same
lengths for the data sequences. In order to respect the model that was used and how the way of
solving the problem would affect the result, the method that was used was to set all values greater
than 7/10 ~ 0.31 in absolute value to zero. To chose a factor of 7 as a limit is motivated from the
use of radians as the unit.

It was also reasonable to believe that other points was erroneous, for example, singular points
separated with some significant distance from its neighbours. Since the natural laws prohibit the
prawns from too rapid movements and the time points were sufficiently close to each other, there
should have existed some limitation on how big the differences could have been between different
movements. Also, singular negative points in a section where all other values are positive can be
very influential when deciding the direction of the prawn. This problem was solved by setting
any point distanced more than 7/60 ~ 0.05 from both its two preceding and its two succeeding
neighbours to zero. Also here, the factor of 7 is motivated by the use of radians as the unit.

3.2 Two Proposed Models

The model for the circular movement of a prawn that was primarily used in this thesis, is a
HMM with two states, each associated with ‘heading clockwise’ and ‘heading counter clockwise’
respectively. In this way, a transition between any of the two states corresponds to a change of
direction for the prawn. The distributions used to govern the observations from these states are
very similar to each other, but differ in the sense that the mean values has opposite signs. To be
precise, the distribution for 'heading counter clockwise’ is the same as the distribution for ’heading
clockwise’, only reflected in the line x = 0. This choice can be justified by the assumption that
there is no essential difference between the two directions, the prawn moves in the same manner,
whether it is heading clockwise or counter clockwise.

It is not obvious which distribution that should have been used to model the amount of move-
ment per time unit. In nature, this amount should be able to take any value in some interval
including zero, which suggest that its distribution should have been continuous. However, the

17

1.2

1 * .
*
0.8’ * * * %% -
* Kk
0.6]
*
*
0.4r b
*

Amount of movement

0 1000 2000 3000 4000 5000 6000
Time

Figure 13: An example of a data set with noise present. Separate markers are used
for points outside the interval (—{5, 15) to clarify that these are considered to be

noise .

measuring devices used in the experiment have limitations in precision and cannot distinguish be-
tween more than a countable set of values. Though, with sufficiently good precision, this would
not have been an absolute reason to set aside the continuous assumption. More importantly, the
data showed a significant amount of values exactly equal to zero. This is not consistent with the
assumption of a continuous distribution, since any single value has probability zero for a continuous
distribution. To overcome this, a mixture of a one-point distribution and a normal distribution was
used to model the movements for each state. With probability pg, the first distribution was chosen,
and the movement was set equal to zero, and with probability 1 — py the normal distribution was
chosen, and the movement was generated according to this.

A mixture of continuous and discrete distributions would however have been rather difficult to
use in the inference algorithms since this would imply combining true probabilities and densities in
the likelihood calculations. The normal distribution was thus discredited to simplify computations
and make the distribution for each state entirely discrete.

Of course, other hidden Markov models could have been used to model the movements of a
prawn, but the model presented here is arguably the most simple but non-trivial HMM that is
suitable for the problem. However, for the sake of comparison, an even more simple HMM was also
used. This second model is basically the same as the first presented but with the difference that
all entries in the transition matrix were set equal to 0.5. So two different distributions, associated
with ’heading clockwise’ and "heading counter clockwise’ were still used to model the movements of
the prawn but in this model there was no correlation between these over time. This model can also
be described as, for each time point, first randomly choosing a direction and then find the amount
of movement randomly from the discretised Gaussian distribution.

18

3.3 The Learnt Parameters

For computational reasons, only seven data sets with movements was used as data for the learning
algorithm for the HMM. These sets were randomly picked out among all data sets. The HMM
presented above is dependent of four parameters, three of which was learnt with the learning
algorithm presented and one that was estimated directly. The probability of attaining zero for
both of the observational distributions, pg, was estimated directly as the relative frequency of zeros
in all observations. Further, two other parameters concerning the distributions directly, the mean
value, 1, and the standard deviation, o, for the discretised normal distribution was learnt with the
learning algorithm. The last parameter to be learnt was the parameter governing the transitions of
the hidden Markov chain, p, not to be confused with the parameter py. Quite the opposite of earlier
use of this parameter name, this parameter was defined as the probability of changing direction at
a specific time point, this gives the transitional matrix

(5 10)
p 1l-p

The result of the basic inference and the learning algorithm was
p=0113rad p=09141-100* 6=6.04-10"2rad py = 0.227

Figure 15 gives a sketch of this model, to be compared with Figure 14, where all observed data is
shown in a histogram. The model seems to fit the data rather well but the mean values for the
discretised normal distributions seem to be a bit too large. This could be caused by randomness
due to the small sample of data that was used as training data. Though, it could also be a sign that
the observations are collected from some heavy tailed distribution. The points judged as noise is,
as described above, set to zero, so the erroneous data is therefore not what caused the displacement
of the distribution. Also, judging by the histogram in Figure 14, no evidence for heavy tailed
distributions can be seen so the most probable cause of the high value on p is the random selection
of input data.

0.2

0.18

0.16

0.14r

0.12r

Relative frequency
o
=

0.08f
0.06¢
0.04f
0.02f
0 ‘ J¥ ‘
-04 -03 -02 -01 0 01 02 03 03 -02 -01 0 01 02 03
Amount of movement Amount of movement
Figure 14: Histogram over all ob- Figure 15: [llustration of the dis-
served movements with noise set tribution for observations from
to zero. the HMM.

19

The parameters for the second model, except the fixed parameter p = 0.5, were also found with
the learning algorithm, given seven data sets. These data sets was again picked at random from
the complete observational data, so these was allowed to differ from the ones picked for the first
model. The parameters that were found was

0=6.80-10"2rad 6=280-10"2rad py=0.227

The mean value is here significantly smaller than in the first model. This could be explained by the
fact that it is harder to separate the two different directions for this model but the effect caused
by the random choice of data could also be the cause. The value attained for this second model is
also closer to the impression given by Figure 14, increasing the suspicion that the parameters for
the first model is somewhat off target. The standard deviation, & is also smaller compared to the
first model. This is also likely to have been caused by the random selection of data sets. The same
value for pg is used by both models since this value was based upon all observational data.

3.4 Model Comparison

The main difference between the two models presented is the extra parameter in the transition
matrix for the first presented HMM. Complexity can always be added to a model to make it fit
the observed data better. However, the model with this additional complexity is seldom the best
model when it comes to predicting new data. This is since more complex models, by definition, can
account for more complex observations. By a rule called Occam’s razor, a simple model should be
preferred to a more complex one if they both fit the data. [MacKay, 2003]

This preference for simplicity is actually included automatically with Bayesian model compar-
ison. Comparing two models is done with the quotient

P(M; |OF) _ P(My)P(O] | M)

P(Mz |Of) P(M;)P(O] | M)

and since models with unjustified complexity will assign a smaller probability for the data, Occam’s
razor is here applied automatically. The purpose of this model comparison is thus to try to justify
the extra complexity for the first presented HMM compared to the more simple HMM where all
transition probabilities was set to 0.5.

The probabilities in the quotient above is not given directly from any of the algorithms covered.
They can however be derived from the posterior distribution for the model parameters. As noted
before, the posterior distribution is calculated as follows

P(OT |6, M) P(9, M)
P(07)

P(9,M | O7) =

Rearranging this gives

P(0,M | 01) P(OF) =P(O1 | 6, M) P(9, M)
Where the first factor on the right side is given by the forward-algorithm and P (0, M) is assumed
to be uniform over all allowed parameter values and for both models compared. Thus, this product
can be calculated for all parameter values and models, at the same time giving the values for the

left product. By summing over all possible parameter values, the probability for the model, given
the observed data is indirectly attained.

> _P(0.M|O]) P(O) =P(0]) P(M | OF)

20

Further, since P(@{) is the same for all models, it can be cancelled out and therefore the required
quotient is attained

P(O])P(M:|Of) P(M|O])

P(Of)P(M, | Of) P(M,|OF)

If this quantity is between 0 and 1, the second model, M>, is the one more likely and if it is
larger than 1, the first model, M; is more likely. For the two models presented in this thesis, the
logarithms of these probabilities were calculated, giving

log (P(O7) P(M; | Of)) ~ —265750
log (P(O7) P(M, | Of)) ~ —294204

Where M represent the first presented hidden Markov model and My represent the model where
all transition probabilities were equal. So calculating the logarithm of the quotient gives

log P(O7) P(M | OF)
P(O]) P(M: | OF)
P(Ml | @?) ~ 28456

P(M; | OF)

) ~ log (P(My | OF)) —log (P(Ma | OF)) = 28456

This clearly indicates that the hidden Markov model is much more suitable than the simple model
where all movements were independent. The extra complexity in the previous model is thus justified
empirically.

3.5 Finding Changes of Direction

As discussed above, with the use of this model, the changes of direction for a single prawn is
equivalent to the transitions between different states in the HMM. Therefore, the use of the Viterbi
algorithm is an automatic way of finding out where the prawn actually changed its direction. If
this data would be available and reliable, further research could be made about why these changes
of directions occur. Suitably, as a part of earlier research, this specific experiment was manually
examined and the actual time points for change of direction were marked for each prawn. This
gave the opportunity to test how well the Viterbi algorithm suffices to find the actual changes of
direction.

The first thing examined by these tests was the difference in number of transitions for the
automatic procedure and the manual procedure. The second thing that was examined is the
distance between the corresponding transitions coming from different procedures.

The number of transitions were counted for each data set to be able to easily compare the
procedures. For the manual sequences, the mean value for the number of transitions was 2.39
and for the Viterbi sequences, the mean value for the number of transitions was 4.67. Since
the transitions given by the Viterbi algorithm were found to be more numerous, the number of
transitions manually marked were subtracted from these to construct a mainly positive difference.
This difference is showed in Figure 16.

The first conclusion to be drawn is that a substantial amount of data sets showed equal number
of transitions for the two methods, showing as the bar at zero. This is a good sign, showing that
the model is somewhat accurate in describing the movement of a prawn. However, some data sets
did not have the same number of transitions for the two procedures. Especially, some data sets

21

0.45

0.4

0.35

o
w

0.25

o
)

Realtive frequency

©
=
3

=
=

0.05

0 .
-5 0 5 10 15 20
Differnce between the number of transitions for each method

Figure 16: The number of transitions given from the Viterbi sequence subtracted
with the number of manually marked direction changes for each data set.

showed more transitions for the Viterbi sequence than the manually marked transitions indicated.
The largest difference for the number of transitions was 19 and this specific data set is showed in
Figure 17.

In this figure, it is however evident that the Viterbi sequence correspond very well to the
observed data. All transitions between two different states in the automatically found sequence has
corresponding evidence in the data. It should be subject for further studies why the data shows
evidence for some change of direction on time points where no manual mark is present. One reason
could be lack of precision in the manually marked data due to mistakes and another possibility
could be faulty measurements. The latter cause is not unlikely since the data has in obvious ways
shown prone to noise before.

In Figure 18, the set with the most transitions of all the data sets with the same number of
transition for both procedures is shown. With a close inspection it is evident that the sequences
in this case are extremely consistent with each other. This is a good indication on how well this
model can, in the best case scenario, automatically pick out the points where changes of direction
occurred.

Before measuring the distance between corresponding transitions, some explanation about what
is meant by corresponding transitions is needed. It is clear that if the number of transitions
are not equal for the two procedures, there cannot be any one-to-one correspondence. Thus, all
measurements used here are from data sets where the difference in number of transitions is zero.
Further, the method used is to measure the distance to the transition in the Viterbi sequence
closest to the chosen manually marked transition. An overview over all these distances is displayed
in Figure 19.

This figure shows that a vast majority of the measured distances are within 15 frames, equivalent
to 1 second, 122 of 137 to be precise. Also 71 out of 137 compared transitions turned out to be
placed at the exact same time point. This is an extremely good result when considering that
deciding where the change of direction actually occurred is somewhat vague, even if done manually.

Figure 20 shows the two data sets where the largest distances was found. In both of these, the
section between the badly matched transitions show observations close to zero. These are situations

22

—— Movements —— Movements
- - - Viterbi Sequence - - - Viterbi Sequence
x Manually Marked Transitions x Manually Marked Transitions|
State 11 | :*ﬂ ‘n‘ ‘F*‘ :**:‘*1. 0 :”H’”””‘u 1 Statelfffﬁ‘ LT M \T‘H Lo H‘:
i 1 AR N A
o | " | P! | i ! [oy Py
[| I | ! 1 | ‘. [T i ! ey “‘ R pon! (LI
S I T T T ST A B A O T N RIS (A RE I 1
Manual X X X X X 1 Manual
0.1f 1 01
ol O 0 . -
o g -0.1
“o2 ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Time Time
Figure 17: The observations and Figure 18: The data set among
the transition sequences where those with equal number of tran-
the largest difference in number sitions for both methods that
of transitions was found. The showed the largest number of
Viterbi sequence contained 19 transitions in total. Both se-
additional transitions compared quences contained 27 direction
to the manually marked sequence changes.

where it theoretically should be difficult for the Viterbi algorithm to find the correct time points.
Since observations close or equal to zero is approximately equally probable for both directions, it
is difficult to decide where the prawn is headed. Observations close to zero can be seen as a limit
case and it should be hard for any model to find the correct time points for transitions there.

3.6 A Logistic Regression Approach to Prawn Direction Changes

With the data available, some simple tests and inference could be made to find out something about
why the prawns changed direction. The hypothesis that was tested here is basically that a prawn’s
propensity to change direction is dependent in some way of the distance to the other prawns in the
aquarium. The method that was used to test this is logistic regression.

Regression is a method to examine the relationship between a single dependent variable, called
the response variable, and several regressor variables. One of the goals is to estimate the parameters
governing the relationship. If the response variable depend on the regressor variables linearly, the
model used is linear regression. The computational advantages of this procedure is significant, since
the least squared estimates of the parameters are found by some matrix multiplications, making
the linearity assumption desirable. [Montgomery, 2008]

If the response variable is binary, logistic regression is suitable, making use of the linearity
assumption through a transformation. Since the expected value for a binary random variable
Y € {0, 1}, given the regressor variables X, is equal to the probability p(X) = P(Y =1 | X), logistic
regression use the probability parameter p as the dependent variable. Further, p is transformed
using the link function logit, making sure that the value for p(X) is always in the interval [0, 1]

23

0.7

0.61 4

Relative frequency

1 2-5 6-15 16-50 51-100 101-300 301-
Distance (in number of frames)

Figure 19: Distance from the Viterbi transitions to the closest manually marked
direction change. These distances was measured for each transition in the data
sets with equal number of transitions for both sequences.

[Hosmer and Lemeshow, 2000]. This specifies the model used in the experiment as

p(X)
1+ p(X)

Where X; is the distance to the closest neighbour and X5 is the distance to the second closest
neighbour at the time point studied. In the experiment where the data was taken from, only three
prawns were in the aquarium at the same time, so no more regressor variable is reasonable. The
parameters that should be estimated are By, 51 and Bo. The first parameter, 5y is the intercept,
giving the value of the response variable if theoretically all prawns were at the same spot. The
second and third parameters 81 and (B2 are the quantities governing the effect X; and X5 has on
the output. The amount of effect for one regressor variable is proportional to the absolute value
of the corresponding parameter. Further, the sign of the parameters determine in which way the
regressor variables effect the output.

A standard general linear model algorithm was used to estimate the model parameters and the
result for the prawn data was

B = —5.9932 B = —0.010 B5 = —0.0005

log() = Bo + b1 X1 + f2Xo

The p-value for S5 was evaluated to 0.165, thus there was no evidence for 55 to be non-zero. However
the p-values for both 5y and more importantly 51 was almost equal to zero, giving that both of these
parameters were evidently non-zero. Further 8] is negative, indicating that the nearest neighbour
makes it more probable for the prawn to change direction, the closer it get. The first parameter
is not of great interest but the negative value is indicating that the chance of changing direction
is quite small even if the closest neighbour is really close. This is since Sy = 0 would have given
p(0) = 1/2. So, to conclude, as the distance to the closest neighbouring prawn gets smaller, the
probability of changing direction at a specific time point gets bigger.

There is a large number of tests and developments that could have been done in connection
with this procedure of logistic regression. The objective for this section was however only to give
a brief example of possible research connected to the application of HMMs to prawn movements.

24

—— Movements —— Movements
- - - Viterbi Sequence - - - Viterbi Sequence
x Manually Marked Transitions x Manually Marked Transitions|
State 1y~ — - -~~~ ~--" """ - - -~ - - State 1~~~ -~~~ | e
| ! !
| ! :
1 1 !
| |
State 2 1 State 2 e ‘
Manual - X 1 Manualf X X

0.1

0

-0.1 1 -0.1

. 02
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Time Time

Figure 20: The two data sets where the largest distances between two corresponding
transitions was found.

4 Conclusions

In this thesis the concept of hidden Markov models has been presented as an extension to Markov
chains with a capacity of expressing more complex dependency structures. Each state in the hidden
Markov chain is simply associated with a distribution of observations. Hidden Markov models are
also characterised by the relatively few parameters included so they are simple and easy to grasp.

The algorithms concerning inference for hidden Markov models was efficiently implemented
using simple recursive formulas. The Forward-Backward algorithm and the Viterbi algorithm was
used to calculate and find information about the state sequence, given the observation sequence.
These algorithms was found to perform better when there was a large difference between the states
in the model while the performance of the learning algorithm, used to fit the model parameters to
the observed data, was found to be dependent on the size of the input data. For larger and larger
data sets, the result of the learning algorithm converged towards the correct answer.

One of the possible applications of hidden Markov models is the movements of a prawn and a
specific example of these models was found to be very useful in this biological application. A basic
hidden Markov model with one state associated with "heading clockwise’ and one state associated
with ’heading counter clockwise’ was fitted with the use of experimental data. The subject of
interest was here the time points for direction changes so the Viterbi algorithm was used to find the
most likely transitions between states. These transitions could be compared directly with manually
found time points of direction changes. The transitions found by the Viterbi algorithm was often
more numerous than the manually marked transitions. One example showed however that the
sequence found by the Viterbi algorithm were more consistent with the observed movements than
the manually marked transitions. Among the data sets with equal number of transitions, a vast
majority of the corresponding transitions were not separated by more than a second.

Finally, with logistic regression, the probability of direction changes was found to increase as
the distance to the closest neighbour decreased. This is a good example of how this data can be
used for research about the decision process governing the prawns collective behaviour.

25

References

[Alm and Britton, 2008] Alm, S. and Britton, T. (2008). Stokastik. Liber, Stockholm.

[Baldi and Brunak, 2001] Baldi, P. and Brunak, S. (2001). Bioinformatics: the machine
learning approach. MIT Press.

[Bishop, 2006] Bishop, C. (2006). Pattern recognition and machine learning, volume 4.
Springer New York.

[Cappé et al., 2005] Cappé, O., Moulines, E., and Rydén, T. (2005). Inference in hidden
Markov models. Springer Verlag.

[Chapra, 2006] Chapra, S. (2006). Applied numerical methods with MATLAB for engineers
and scientists. McGraw-Hill Science/Engineering/Math.

[Durbin, 1998] Durbin, R. (1998). Biological sequence analysis: Probabilistic models of pro-
teins and nucleic acids. Cambridge university press.

[Hosmer and Lemeshow, 2000] Hosmer, D. and Lemeshow, S. (2000). Applied logistic regres-
sion, volume 354. Wiley-Interscience.

[MacKay, 2003] MacKay, D. (2003). Information theory, inference, and learning algorithms.
Cambridge Univ Pr.

[Montgomery, 2008] Montgomery, D. (2008). Design and analysis of experiments. John
Wiley & Sons Inc.

[Rabiner, 1989] Rabiner, L. (1989). A tutorial on hidden Markov models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2):257-286.

[Stirzaker, 2005] Stirzaker, D. (2005). Stochastic processes and models. Oxford University
Press, USA.

[Viterbi, 1967] Viterbi, A. (1967). Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. Information Theory, IEEE Transactions on,
13(2):260-269.

26

A

Implementation in Matlab

A.1 The Forward Algorithm

function [forw] = forwardProb(Obs, P , Q, pi)

end

9#ORWARDPROB(Obs, P, @, pi) computes the forward probabilities for
% the observation—sequence Obs (vector), based on the model

% corresponding to the transitional matriz P, observation matriz Q,
% and initial distribution pi.

Z%Initializing
[7,n] = size(P);
T = length (Obs) ;
forw = zeros(T,n);

% Computing the forward probabilities.
forw (1,:) = pi.x(Q(:,0bs(1))) ’;
for t=2.T
for j=1:n
forw(t,j) = (forw(t—1,:)%(P(:,j))) * Q(j,Obs(t));
end
end

A.2 The Backward Algorithm

function [backw] = backwardProb(Obs, P , Q)

end

IBACKWARDPROB(Obs, P, @, pi) computes all the backward
probabilities

% for the observation—sequence Obs (vector), based on the model

% corresponding to the transitional matriz P, observation matriz Q,

% and initial distribution pi.

% Initializing
[n,”] = size(P);
T = length (Obs) ;
backw = ones(T,n);

%Compute the backward probabilities

for t=(T-1):(—-1):1
rightVector=Q(:,Obs(t+1)).xbackw(t+1,:) ’;
backw (t,:) = PxrightVector;

end

27

A.3 The Forward-Backward Algorithm

function [gamma] = forward_backward (Obs, P, Q, pi)

end

JFORWARD BACKWARD(Obs, P, @, pi) computes the probability wvectors
% P(x_t = S_i|Obs) for the hidden markov chain for each state S_i

and
% for time points t from 1 up to T, where T is the last time point
% in Obs, the observational sequence. This is done by using
% the forward— and the backward— probabilities.
% The model is described by the transitional matriz P, observation
% matriz Q, and initial distribution pi.
% Computing the forward—backward probabilities in external

functions.
forw = forwardProb (Obs, P, Q, pi);
backw = backwardProb(Obs, P, Q);

%Computing the different probability wvectors
gamma = forw .xbackw;

for t=1:length(Obs)

. gamma(t ,:) = gamma(t ,:) /(forw(t,:) *((backw(t,:))’));

A.4 The Viterbi Algorithm

function [prob, seq | = viterbi(Obs, P, Q, Pi)

%VITERBI(Obs, P, Q, Pi)

% Computes the probability for and find the jointly most probable
% sequence of states for the hidden markov chain, given the
% observation sequence Obs. The model corresponding to the
% transitional matriz P, the observation matriz Q and the
% initial distribution Pi.
% Initialising constants
= length (Obs) ;

—

" ,N] = size(P);

% Construction of the wvectors delta(i,t) and psi(i,t) where the
first

% argument correspond to the a state in the state space and the
second

% argument correspond to a time point.

delta = zeros(N,T);

psi = zeros(N,T);

28

end

% Initialising
delta (:,1)=Q(:,0bs(1)).xPi’;

% Computing the delta— and psi— sequences.
for t=2.T
for j=1:N
(X, I] = max(delta (:,t—1).%xP(:,j));
delta(j,t) = X«Q(j,0bs(t));

psi(j,t) = I;

end
end
[X,I] = max(delta (:,T));
prob = X;
seq = zeros (1, T);
seq(T) = 1;
for t=(T-1):(—-1):1

seq(t) = psi(seq(t+1),t+1);
end

A.5 The Learning Algorithm

function [lppn, pMLL, gMLL, pExp, qExp, pVar, qVar] = training(obs, N)

%TRAINING An algorithm wusing Bayesian statistics to examine
%the distribution of the parameters determining this specific
%hidden Markov model. Obs is the observation sequence and N is
%the number of points on each side of the grid used for
%evaluation. The posterior distribution is given in

%the log—probability domain.

% Number of parameters:
numb_par = 2;

% Construct the parameter space
pMin = 1/N;

pMax = 1-1/N;

par=linspace (pMin,pMax,N) ;

M=N"numb_par;

lppn = zeros(N); %Logarithmic Posterior Probability Non—normalized
T=length (obs) ;

%The initial and apriori distribution ts assumed to be uniform
pi=[0.5, 0.5];

logPrio = — log (M) ;

%% Compute the posterior probabilities

29

for indexP=1:N

p=par (indexP) ;

P=[p 1-p; 1-p p];

for indexQ=1:N
g=par (indexQ) ;
Q=[0.5 0.5; q 1-q];
lalpha = logforwardProb (obs, P, Q, pi);
m=max(lalpha (T,:));

Ippn (indexP ,indexQ) = mtlog (sum(exp(lalpha(T,:)-m))) +...

+logPrio;
end
end

%% Maximum Likelihood

[row, col] = find (lppn=—max(max(lppn)));
pMLL = par(row) ;

gMLL = par(col);

%% Find the mormalizing factor and the marginal Distributions

% The mazimum value for every row

mVecRow=max(lppn ,[] ,2) ;
% The mazimum value for every column
mVecCol=max(lppn) ;

%The mazimum wvalue, in total.

mx = max(mVecRow) ;

% A matriz of the same size as lppn, with all elements equal to
Y%maximum values for Ippn, on each row respectively.

maxMatRow = repmat (mVecRow,1 ,N);

% A matriz of the same size as lppn, with all elements equal to
Y%maximum values for Ippn, on each column respectively.
maxMatCol = repmat (mVecCol ,N,1) ;

% The logarithm of the non—normalized marginal distributions
Y%for every p, log(P’(p)).

logProbMargPn = mVecRow + log (sum(exp (lppn—maxMatRow) ,2)) ;

% The logarithm of the mon—normalized marginal distributions

%for every q, log(P’(q)).
logProbMargQn = mVecCol + log (sum(exp (lppn—maxMatCol) ,1));

% The normalizing factor, e.g. the sum of all non normalized
% posterior probabilities.
log_ norm_factor = mx + log (sum(exp (logProbMargPn—mx))) ;

% Normalized log_-probabilities

logProbMargP = logProbMargPn — log_norm_factor;
mxP=max(logProbMargP) ;

30

the

the

logProbMargQ = logProbMargQn — log_norm _factor;
mxQ=max(logProbMargQ) ;

%% Exzpectation of p

pExpt=zeros(N,1);

for indexP=1:N
%Compute the marginal distribution divided by exp(mzx).
pProb=exp (logProbMargP (indexP)—mxP) ;
%Compute the actual term for the expected wvalue
pExpt (indexP)=par (indexP) *pProb;

end

%Adjust for exp(mz), sum over all wvalues

lpExp=mxP+log (sum(pExpt)) ;

% The real expected wvalue of p

pExp=exp (IpExp) ;

%% Ezpectation of q
qExpt=zeros(N,1);
for indexQ=1:N
%Compute the marginal distribution divided by exp(mz).
qProb=exp (logProbMargQ (indexQ)—mxQ) ;
%Compute the actual term for the expected value
qExpt (indexQ)=par (indexQ) *qProb;
end
%Adjust for exp(mz) and the normalizing factor, sum over all values
lqExp=mxQ+log (sum(qExpt)) ;
% The real expected Value of p
qExp=exp (1qExp) ;

%% Variance of p
%Expectation for p—squared
pSquaredExpected=zeros (N,1) ;
for indexP=1:N
p=par (indexP) ;
pSq = p " 2;
%Compute the marginal distribution divided by exp(mz).
pProb=exp (logProbMargP (indexP)—mxP) ;
%Compute the actual term for the expected wvalue
pSquaredExpected (indexP)=pSq*pProb;
end
IpSquaredExpect = mxP + log (sum(pSquaredExpected));
pSquaredExpect = exp(lpSquaredExpect);
pVar= pSquaredExpect — pExp~2;

%% Variance of q

%Expectation for gq—squared
gSquaredExpected=zeros (N,1) ;

31

end

for indexQ=1:N
g=par (indexQ) ;
aSq = q " 2;
%Compute the marginal distribution divided by exp(mz)
qProb=exp (logProbMargQ (indexQ)—mxQ) ;
%Compute the actual term for the expected value
gSquaredExpected (index@Q)=qSq*qProb;
end
lgSquaredExpect=mxQ + log (sum(qSquaredExpected));
qSquaredExpect=exp(lqSquaredExpect) ;
gqVar= gqSquaredExpect — qExp~2;

32

