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1. Introduction 

One of the most important and challenging 
problems in science and engineering applications is 

to solve nonlinear equations of the form 
0=)(xf

.The Newton method is most likely the best-known 
iterative method for solving nonlinear equations and 
is given as follows:   
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                           (1) 
Recently, several modifications of the 

Newton method have been proposed and analyzed, 
which have either an equal or better performance 
than the Newton method; for examples, refer to to 
(Kou et al.,  2010 ) and (Neta  and  Petkovic, 2010 ). 
Researchers have devoted a significant amount of 
attention to developing three-step iterative methods 
with an eighth-order of convergence for solving 

nonlinear equations of the form 
0=)(xf ; for 

examples, refer to (Kou et al.,  2010 ), (Neta  and  
Petkovic, 2010 ),( Sharma and Sharma , 2010), 
(Siyyam et al., 2011), (Siyyam et al., 2011), 
(Soleymani et  al., 2012). 

Combining two methods of third order 
modifications of Newton’s methods (Chun, 2006), 
(Chun, 2005) ; for solving nonlinear equations of the 

form 
0=)(xf

 by R. Ezzati and F. Saleki (Ezzati 
and Saleki, 2011); gives the iterative method as 
follows:   
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 When 1= A  and 2=B , the fourth-order iterative 
method can be determined as follows:  
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 The error equation corresponding to the above 
method is given as follows:  
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 for 2,3,...=k . 

Combining the iterative method (2) with 
Newton’s method, the iterative method can be 

obtained as follows:  )(
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 According to the following theorem, the iterative 
method  (3)  has an eighth-order of convergence. 

 Theorem 2.1: (Traub, 1982) Let 
)(1 x

 and 
)(2 x

 
be two iterative methods with an order of 

convergence 
p

 and 
q

, respectively; then, the order 
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of convergence of the iterative method 

))((=)(
12

xx 
 is pq . 

Furthermore, per one cycle, the iterative 
method (3) requires three evaluations of the functions 

and two evaluations of its first derivatives, 5=s . 
Therefore, the efficiency index is given as follows:  

 
sEI
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 1.5157.8= 5

1

  
An iterative method is an optimal method if 

it’s order of convergence is 
12 s

 and efficiency index 

is 
s

s 1)(

2


 (Kung and Traub, 1974). Thus, method (3) is 
not optimal and does not meet the Kung and Traub 

conjecture (Kung and Traub, 1974). However, (1)  
and (2) are optimal iterative methods. 

The goal of this study is to simultaneously 
increase the order of convergence and efficiency 
index as high as possible . Therefore, we have to 
replace the first derivative in the last step of (3), i.e., 

)(
n

zf 
, by a combination of previously evaluated 

function values, 
)(),(

nn
xfxf 

 and 
)(

n
yf

. 
This report is organized as follows: In 

Section 2, we describe the concept of the composition 
of the iterative methods and, consequently, prove that 
the iterative method defined in (3) has an eighth-
order of convergence. Three different estimations for 
the first derivative in the last step of (3) are presented 
in Section 2. Furthermore, Section two, proves that 
the order of convergence of the last two new resulting 
iterative methods is eight with an efficiency index of 

1.681881/4  . Therefore, these last two new iterative 
methods defined in (18)  and (27) are optimal and 
satisfy the conjecture of Kung and Traub (1974). In 
Section 3 various numerical examples are presented, 
to illustrate and, confirm the performance and 
accuracy of our proposed iterative methods as well as 
compare methods of the same order of convergence. 
2. Construction of Higher-Order Iterative 
Methods 

To improve the efficiency index of method 
(3), several estimations for the first derivative in the 

last step 
)(zf n


 of (3) are proposed by using a 

combination of previously evaluated function values. 
In Section (2.1), we presented the first method, which 
is the estimation based on Cordero et al. (2010); and 
proved in Theorem (2.1.1) that the order of 
convergence of the resulting iterative method is 

seven. More, two estimations of 
)(

n
zf 

 are described 
based on Neta and Petkovic (2010), and Siyyam et al. 

(2011). The last two methods will be proved to have 
an eighth-order of convergence. 
2.1  Method One 

 A three-step family of iterative methods 
based on the modified Kou’s method (Kou , Li and 
Wang, 2007); is considered by Cordero et al. (2010). 

A second degree Taylor polynomial of 
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 is used 

to approximate 
)(

n
yf 

, and substituting this with an 

appropriate approximation of 
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yf 

 in 
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 is 
given as follows:  
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 By substituting the estimation obtained in (4)  into 
(3), the following new iterative method can be 
obtained as follows:  
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 Per one full iteration, the method requires three 
evaluations of the function and one evaluation of its 
first derivative; therefore, its efficiency index is 

1.62667= 1/4 
. Furthermore, as 

4

3

2
, the 

method is not optimal. 

 Theorem 2.1.1: Let I  be a simple zero of a 

sufficiently differentiable function 
RIf :

 for an 

open interval I . Then, the method that is defined by 
equation (5)  has a seventh-order of convergence and 
satisfies the error equation as follows:  
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Proof : Let   be a simple zero of the nonlinear 

equation 
0=)(xf

, and  nn
ex =

 
 By the Taylor expansion, we have the equation as 
follows:  
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 Dividing (7) by (8), the equation becomes as 
follows:  
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 Substituting (7),  (8) and  (9)  into ny
 in (5)  gives 

the equation as follows:  
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 By expanding 
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 with respect to  , the 
expression is given as follows:  
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Substituting (7),  (8) ,  (10) , and  (11)  into n
z

 in (5),  
gives the equation as follows:  

2

234325

43

232 965(164...)3(= ccccccecccz nn 
2

34

3

2545

2

263672 1222391750135 cccccccccccc 
5

23

3

2

2

3

3

32

4

24

2

42 2076186239579991 cccccccccc   
).(O)624 987

2 nn eec    (12) 

 By expanding 
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 with respect to  , the 
expression is given as follows:  
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By using (10) ,  (11) ,  (12) and (13)  , the expression 
is obtained as follows:  
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 By using (6) ,  (7) ,  (12) , and  (13) , the equation is 
obtained as follows:  
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 By using (6) ,  (8) ,  (12) , and  (15), the expression 
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follows:  
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Substituting (10), (12) ,  (13) ,  (14)  and (16) into 1nx
 

 in equation  (5), the equation can be expressed as 
follows:  
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 Therefore, the equation is given as follows:  
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Equation (17)  establishes the seventh-order 
convergence of the method that is defined by 
equation (5). □ 
2.2  Method Two 

 A general technique is given by Neta and 
Petkovic (2010); to construct such methods using 
inverse interpolation and any optimal two point 
methods and present an approximation of the third 
step, which can be placed into the last step in the 
method  (3). Thus, the new iterative method to solve 

the nonlinear equation of the form 0=)(xf  is 
given as follows:  
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Per one full iteration, the method requires 

three evaluations of the function and one evaluation 
of its first derivative; therefore, its efficiency index is 

1.681881/4  , which implies that the method is an 
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optimal eighth -order method according to Kung and 
Traub’s conjecture (1974). In the next theorem, we 
will show that the order of convergence of the 
iterative method  (18)  is eight. 

 Theorem 2.2.1: Let I  be a simple zero of a 

sufficiently differentiable function 
RIf :

 for an 

open interval I . Then, the method that is defined by 
equation (18)  has an eighth-order of convergence 
and satisfies the error equation as follows:  
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 By substituting (7) ,  (10) ,  (22)  and  (23)  into 1nx
 

in (18), the equation is obtained as follows:  
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 Equation (24) establishes the eighth-order 
convergence of the method that is defined by 
equation (18). □2.3  Method Three 

 Siyyam et al. (2011); considers composing 
the two-step family of a fourth-order equation based 
on Chun (2007),  with the classical Newton’s method 
to obtain a three-step iterative method. A new 

estimation for 
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, also proposed in (Siyyam et 
al., 2011), is provided by the third-degree polynomial 
as follows:  

       
nnnn

yxxxaxxaxxaaxP 
2

3

2

210
=)(  (25) 

 where f  is interpolated at nn
yx ,

 and n
z

; and

)(=)(
nn

xPxf 
 is satisfied . Therefore, the 

expression becomes as follows:  

)])(,,[],,[()(=)()(
nnnnnnnnnnn

xzyxxfzyxfxfzPzf 

)])(,,[],,[()(=)()(
nnnnnnnnnnn

xzyxxfzyxfxfzPzf 

).])(,,[],,[2(
nnnnnnnn

yzyxxfzyxf 
   (26) 

Substituting (26)  into the last step of 
equation (3), we obtain the new iterative method as 
follows:  
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 The next theorem shows that the order of 

convergence of the iterative method defined in (27)  
is eight. Moreover, per one full iteration, the method 
requires three evaluations of the function and one 
evaluation of its first derivative; therefore, its 

efficiency index is 1.681881/4  , which implies that 
the method is an optimal eighth order method 
according to Kung and Traub’s conjecture (1974). 

 Theorem 2.3.1: Let I  be a simple zero of a 

sufficiently differentiable function RIf :  for 

an open interval I . Then, the method that is defined 
by equation (27)  has an eighth-order of convergence. 

 Proof: Use equations (6) ,  (12) ,  (14) and (21) , to 
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 can be expressed in terms of ne

 as 
follows:  

...)(32)[(=],,[ 2

23432 
nnnnn eccceccfyxxf 
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3
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2
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4

3

2
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3

234 661812892 cccccccccc 
 

3

2

44637

4

25

2

3582 3422166326 cccccccccccc 
 

2

2

3

3

2

2

2

4 12624 cccc  ])32128 76

23

4

2

2

3 necccc 
 

).(O 8

ne                             (29) 
 Thus, using equations (8), (10) , (12) , (28) and (29), 
we can write the estimation of Siyyam et al.in 

)()(
3 nn

zPzf 
 as described in the last step of  (27)  

in terms of ne
 as follows:  

...)62()[1(=

)()(
44

242

2

23

3






n

nn

ecccccf

zPzf


 

53

3

24

6

2

2

4423 461140320( ccccccccc   
)(O])3926084 76

62

2

25

4

23

2

2

2

3 nn eecccccccc  .  (30) 
By substituting equations  (12),  (13)  and  (30)  into 

1nx
 in (27), the equation becomes as follows:  

                                        ).(O         

)963(=

9

87
2

5
23

3
2

2
3

4
24

2
2341

n

nn

e

eccccccccccx



 

 (31) 
 Therefore, the expression can be written as follows:  

                              ).(O       

)963(=

9

87
2

5
2 3

3
2

2
3

4
24

2
2341

n

nn

e

ecccccccccce





 (32) 

Equation (32)  establishes the eighth-order conver-
gence of the method that is defined by equation 
(27).□ 
3. Numerical Examples 

Three high-order iterative methods have 
been derived for solving nonlinear equations of the 

form 0=)(xf , namely the seventh-order iterative 
method defined in equation (5), which we will refer 
to as (SQM1), the eighth-order iterative method 
defined in (18), which we will refer to as (SQM2) 
and the eighth-order iterative methods defined in 
(27), which we will refer to as (SQM3). To confirm 
our theoretical results and illustrate the efficiency and 
accuracy of our developed methods, we tested these 
iterative methods using several numerical examples 
and compared them with other existing eighth-order 
iterative methods. 

We can compare our iterative methods, 
(SQM1), (SQM2) and (SQM3), with the eighth-order 
iterative methods of Kou et al., (KM1), (KM2) in 
(Kou  et al., 2010), which are defined as follows: 

,
)(

)(
=

n

n

nn
xf

xf
xy




 
  ,,=

2 nnnnnn
yxyxHyz 
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,
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)(
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n

n

nn
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zyH


 

           (33) 
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,
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 with  =0 , 
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 With  =0  
and the eighth-order iterative method of 

Nazir et al. (NAM) in (Mir and Akram, 2009), the 
equation is given as follows:  
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 (36) 
 where  
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)(2
=)(
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
 

The particular eighth-order iterative method of 
Sharma et al. (SM1) in (Sharma and Sharma, 2010), 
is defined as follows:  
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 W  can be expressed as follows:  

                
,1=)( 2tttW 
 

 The same method was used by Sharma et 
al.(SM2) in (Sharma et al., 2011), to produce another 
eighth-order method as follows:  
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 where  

)(2)()(()((       

)()())()()(([= 3

iiii

iiiii

wfxfxfwf

zfxfxfwfwf


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))(2)())(()()((2      2
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iiiii
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                (39) 

All computations were performed using 
MATLAB 7.11 with 1000 significant digits. Table(1) 

shows the absolute value of the function at n
x

, 
||

1 nn
xx 

  and 
|| 

n
x

 for the test functions for all 
the iterative methods mentioned in this section, 

where n  represents the number of iterations and is 

taken in the table to be 3,   is the zero of the 

function and 0x
 is the initial estimation of  . 

Furthermore, the computational order of convergence 
for all the iterative methods mentioned is displayed, 
where the computational order of convergence (
COC ) can be approximated by using the formula as 
follows (Weerakoon  and  Fernando, 2000): 

.
|))/((|

|))/((|

1

1






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
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nn

nn

xxln

xxln
COC

 
The following test problems are used to 

demonstrate the performance of the new developed 
iterative methods and compare with other existing 
eighth- order iterative methods. 
 
Table  1:  Comparison of various iterative methods 

with 3=n    

Method 
 

|)(| nxf
   

|| nx
   COC   

)(1 xf
, 

0.25=0x
  

1SQM
  0.214e-338 0.107e-338 7.000 

2SQM
 0.335e-522  0.167e-522 8.000 

3SQM
  0.670e-515 0.335e-515 8.000 

1KM   0.107e-461 0.535e-462 7.972 

2KM   0.426e-451 0.213e-451 8.029  
NAM   0.412e-497 0.206e-497 8.000 

1SM   0.933e-497 0.467e-497 8.000 

2SM   0.479e-441 0.240e-441 8.000 

)(2 xf
, 

15.5=0x
 

1SQM
   0.132e-246   0.769e-246  7.000  

2SQM
  0.321e-548 0.187e-547 8.000  

3SQM
   0.546e-365  0.318e-364  8.000  

1KM   0.120e-491  0.696e-491  7.930  

2KM   0.100e-414  0.584e-414  7.834  
NAM    0.437e-407   0.254e-406  8.000  

1SM    0.359e-518 0.209e-517  8.000  

2SM   0.644e-386 0.375e-385 8.000 

)(3 xf
, 

11.9=0x
 

1SQM
   0.244e-258  0.832e-258   7.000  

2SQM
 0.150e-511 0.510e-511  8.000  

3SQM
   0.625e-385  0.213e-384  8.000  

1KM    0.699e-482  0.238e-481  7.915 

2KM    0.486e-501  0.165e-500  7.877 
NAM    0.332e-447  0.113e-446   8.000  

1SM    0.392e-491 0.134e-490  8.000 

2SM   0.472e-433 0.161e-432  8.000 

)(4 xf
, 

0.5=0x
 

1SQM
   0.286e-515  0.270e-515   7.000  

2SQM
  0.234e-796  0.221e-796 8.000  

)4(1log=)(
1

xxxxexf 
, 

215921350.22045246 . 

3
1

=)(
2


x

xxf
, 

283269529.63359556 . 

5)(log=)(3  xxxf , 
423157188.30943269 . 

1/21)(arcsin=)( 2

4  xxxf , 
839836920.59481096 . 

)(cos=)(5 xexf x 

, 
040801241.74613953 . 

xxxf )(cos=)(
6 , 

321516060.73908513 . 



 Life Science Journal 2014;11(12)       http://www.lifesciencesite.com 

 

91 

3SQM
   0.186e-774  0.175e-774   8.000  

1KM    0.298e-777  0.282e-777 7.998  

2KM   0.103e-724  0.974e-725 7.986  
NAM    0.468e-803 0.442e-803 8.000  

1SM   0.839e-775 0.793e-775 8.000  

2SM   0.488e-745 0.461e-745 8.000 

)(5 xf
, 

1.6=0x
 

1SQM
   0.369e-474  0.319e-474   7.000  

2SQM
 0.660e-700  0.570e-700 8.000 

3SQM
   0.294e-738  0.254e-738  8.000  

1KM    0.281e-674  0.242e-674  7.970  

2KM    0.445e-660  0.384e-660 7.973  
NAM    0.135e-822  0.117e-822 8.000  

1SM    0.109e-712   0.939e-713 8.000 

2SM   0.105e-749 0.908e-750 8.000 

)(6 xf
, 

0.6=0x
 

1SQM
  0.185e-448  0.110e-448 7.000 

2SQM
 0.181e-635  0.108e-635 8.000 

3SQM
   0.413e-675  0.247e-675 8.000 

1KM    0.369e-650  0.221e-650 8.018  

2KM    0.213e-645  0.127e-645  8.015  
NAM    0.401e-730  0.240e-730 8.000  

1SM    0.950e-673  0.568e-673 8.000  

2SM   0.309e-747 0.184e-747 8.000 
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