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Abstract Commercial packages for transient circuit simulation are often based on
the modified nodal analysis (MNA) which allows an automatic setup of model equa-
tions and requires a nearly minimal number of variables. However, it may lead to
differential-algebraic equations (DAEs) with higher index. Here, we present a hy-
brid analysis for nonlinear time-varying circuits leading to DAEs with index at most
one. This hybrid analysis is based merely on the network topology, which possi-
bly leads to an automatic setup of the hybrid equations from netlists. Moreover, we
prove that the minimum index of the DAE arising from the hybrid analysis never ex-
ceeds the index from MNA. As a positive side effect, the number of equations from
the hybrid analysis is always no greater than that one from MNA. This suggests that
the hybrid analysis is superior to MNA in numerical accuracy and computational
effort.

1 Introduction

When modelling electric circuits for transient simulation, one has to regard Kirch-
hoff’s laws for the network and the constitutive equations for the different types of
network elements. They are originally based on the branch voltages and the branch
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currents existing in the network. They form the basis for all modelling approaches
as for instance the popular modified nodal analysis (MNA).

Concerning the huge number of variables involved (all branch voltages and
branch currents), one is interested in a reduced system reflecting the complete circuit
behaviour that can be generated automatically. Whereas MNA focuses on a descrip-
tion depending mainly on nodal potentials, the hybrid analysis approach [1] here
employs certain branch voltages and branch currents obtained from a construction
of a particularnormal tree.

A normal tree is a tree containing all independent voltage sources, no indepen-
dent current sources, a maximal number of capacitive branches, and a minimal num-
ber of inductive branches. Normal trees have already been used in [2] for state ap-
proaches for linear RLC networks. The results have been extended in [3] for linear
circuits containing ideal transformers, nullors, independent/dependent sources, re-
sistors, inductors, capacitors, and, under a topological restriction, gyrators.

The hybrid analysis is a common generalization of the loop analysis and the
cutset analysis. Kron [4] proposed the hybrid analysis in 1939, and Amari [5] and
Branin [6] developed it further in 1960s. In contrast to MNA, the hybrid analysis
retains flexibility in the selection of a normal tree, which can be exploited to find a
model description that reduces the numerical difficulties.

The differential-algebraic equations (DAEs) arising from the hybrid analysis are
called thehybrid equations. Recently, the analysis of theindexof the hybrid equa-
tions has been developed. For linear time-invariant RLC circuits, it is shown in [7]
that the index of the hybrid equations never exceeds one, while MNA often results
in a DAE with index two. Moreover, [7] gives a structural characterization of cir-
cuits with index zero. For linear time-invariant electric circuits which may contain
dependent voltage/current sources, an algorithm for finding an optimal hybrid anal-
ysis which minimizes the index of the hybrid equations was proposed in [8].

For nonlinear time-varying circuits, this paper shows that the index of the hybrid
equations is at most one, and gives a structural characterization for the index being
zero, which is an extension of the results in [7]. By this structural characterization,
we prove that the minimum index of the hybrid equations does not exceed the index
of the DAE arising from MNA (cf. [9–11]). Here, we follow the hybrid analysis
approach in [8] but use projection techniques (cf. [10]) in order to prove the index
results for general nonlinear time-varying circuit systems.

The organization of this paper is as follows. In Section 2, we describe nonlinear
time-varying circuits. We present the procedure of the hybrid analysis in Section 3.
We analyze the hybrid equation system in Section 4, and characterize its index in
Section 5. All the technical proofs omitted in this paper can be found in [12].

2 Nonlinear Time-Varying Circuits

Here, we consider nonlinear time-varying circuits composed of resistors, conduc-
tors, inductors, capacitors, and voltage/current sources.
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We denote the vector of branch currents byi, and the vector of branch voltages by
u. The vector of currents through independent voltage sources, independent current
sources, capacitors, inductors, resistors, conductors, controlled current sources, and
controlled voltage sources are denoted byiV , iJ, iC, iL, iR, iG, iSJ , andiSV . Similarly,
the vector of voltages are denoted byuV , uJ, uC, uL, uR, uG, uSJ , anduSV . The
physical characteristics of elements determineconstitutive equations. Independent
voltage and current sources simply read as

uV = vs(t) and iJ = j s(t). (1)

Capacitors and inductors can be modelled by

iC =
d
dt

q(uC, t) and uL =
d
dt

φ(iL, t). (2)

Moreover, we assume that conductors and resistors are described byiG = g(uG, t)
anduR = r(iR, t). Finally, let the controlled sources be given in the form ofiSJ =
γ(iSV ,uSJ , t) anduSV = ρ(iSV ,uSJ , t).

A square matrixU is calledpositive definiteif x>Ux > 0 for all x 6= 0. In this
paper, we assume the following conditions.

Assumption 1 The capacitance matrixC, the conductance matrixG, the resistance
matrixR, the inductance matrixL, and the controlled source matrixSgiven by

C =
∂q

∂uC
, G =

∂g
∂uG

, R=
∂ r
∂ iR

, L =
∂φ
∂ iL

, and S=




∂ρ
∂ iSV

∂ρ
∂uSJ

∂γ
∂ iSV

∂γ
∂uSJ




are all positive definite.1

IntroducinguY :=
(

uG

uSJ

)
, uZ :=

(
uR

uSV

)
, iY :=

(
iG
iSJ

)
, iZ :=

(
iR
iSV

)
, f(iZ,uY, t) :=

(
g(uG, t)

γ(iSV ,uSJ , t)

)
, andh(iZ,uY, t) :=

(
r(iR, t)

ρ(iSV ,uSJ , t)

)
, we find

iY = f(iZ,uY, t), uZ = h(iZ,uY, t) (3)

and the matrix

(
∂h
∂ iZ

∂h
∂uY

∂ f
∂ iZ

∂ f
∂uY

)
to be positive definite because of Assumption 1.

Let Γ = (W,E) be the connected network graph with vertex setW and edge set
E. An edge inΓ corresponds to a branch that contains one element in the circuit.
For a consistent model description,Γ contains no cycles consisting of independent

1 Assuming the controlled source matrixSto be positive definite is very restrictive and usually not
fulfilled when controlled sources are considered alone. However, controlled sources are often used
to describe certain transistor behaviour. Considering the whole static behavior of a transistor (e.g.
including bulk resistances) as a controlled source may lead to a positive definite matrixS.



4 Satoru Iwata, Mizuyo Takamatsu, and Caren Tischendorf

voltage sources only and no cutsets consisting of independent current sources only.
We splitE into Ey andEz, i.e.,Ey∪Ez = E andEy∩Ez = /0. A partition (Ey,Ez) is
called anadmissible partition, if Ey includes all the independent voltage sources, all
the capacitors, all the conductors as well as all the controlled current sources, and
Ez includes all the independent current sources, all the inductors, all the resistors as
well as all the controlled voltage sources.

We call a spanning treeT of Γ a reference treeif T contains all the edges of the
independent voltage sources, no edges of the independent current sources, and as
many edges inEy as possible. Note that a reference treeT may contain some edges
in Ez. A reference tree is callednormal if it contains as many edges corresponding
to capacitors and as few edges corresponding to inductors as possible. The cotree of
T is denoted byT = E \T. The hybrid equations are determined by an admissible
partition (Ey,Ez) and a reference treeT, which is not necessarily normal. For the
sake of simplicity, we adopt a normal reference tree throughout this paper.

With respect to a normal reference treeT, we further spliti andu into

i =(iV , iτC, iτY, iτZ, iτL, i
λ
C, iλY , iλZ , iλL , iJ)> andu=(uV ,uτ

C,uτ
Y,uτ

Z,uτ
L,u

λ
C,uλ

Y ,uλ
Z ,uλ

L ,uJ)>,

where the superscriptsτ andλ designate the treeT and the cotreeT. With respect
to a normal reference treeT, the vector valued functionf is also split intof τ andf λ .
This meansiτY = f τ(iZ,uY, t) andiλY = f λ (iZ,uY, t). Similarly, we splith, q, andφ .

By the definition of a normal reference tree, thefundamental cutset matrixK is
given by

K =




iV iτC iτY iτZ iτL iλC iλY iλZ iλL iJ
I 0 0 0 0 AVC AVY AVZ AVL AVJ

0 I 0 0 0 ACC ACY ACZ ACL ACJ

0 0 I 0 0 0 AYY AYZ AYL AYJ

0 0 0 I 0 0 0 AZZ AZL AZJ

0 0 0 0 I 0 0 0 ALL ALJ




.

ThenKirchhoff ’s current law(KCL) may be written asKi = 0. Kirchhoff ’s voltage
law (KVL) providesK⊥u = 0 with K⊥ being thefundamental loop matrix

K⊥ =




uV uτ
C uτ

Y uτ
Z uτ

L uλ
C uλ

Y uλ
Z uλ

L uJ

−A>VC −A>CC 0 0 0 I 0 0 0 0
−A>VY −A>CY −A>YY 0 0 0 I 0 0 0
−A>VZ −A>CZ −A>YZ −A>ZZ 0 0 0 I 0 0
−A>VL −A>CL −A>YL −A>ZL −A>LL 0 0 0 I 0
−A>VJ −A>CJ −A>YJ −A>ZJ −A>LJ 0 0 0 0 I




.

3 Hybrid Analysis

In this section, we describe the procedure of the hybrid analysis. The idea is to use
all constitutive equations such that the equationsKi = 0 andK⊥u = 0 provide a
system depending onuτ

C, uτ
Y, iλZ , andiλL only. The details are described in [12]. The
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second and third line ofKi = 0 as well as the third and fourth line ofK⊥u = 0
provide us thehybrid equations(or hybrid equation system)

−A>CZuτ
C−A>YZuτ

Y−A>ZZhτ +hλ = A>VZvs(t),

−A>CLuτ
C−A>YLu

τ
Y−A>ZLhτ −A>LL

d
dt

φ τ +
d
dt

φ λ = A>VLvs(t),

ACYf λ +ACZiλZ +ACLiλL +
d
dt

qτ +ACC
d
dt

qλ = −ACJjs(t),

f τ +AYYf λ +AYZiλZ +AYLiλL = −AYJj s(t),

where

q = q(uτ
C,A>VCvs(t)+A>CCuτ

C, t), φ = φ(−ALLiλL −ALJjs(t), iλL , t),

f = f(−AZZiλZ −AZLiλL −AZJj s(t), iλZ ,uτ
Y,A>VYvs(t)+A>CYuτ

C +A>YYuτ
Y, t),

h = h(−AZZiλZ −AZLiλL −AZJj s(t), iλZ ,uτ
Y,A>VYvs(t)+A>CYuτ

C +A>YYuτ
Y, t).

The procedure of the hybrid analysis is as follows.

1. The values ofuV andiJ are obvious from (1).
2. Compute the values ofiλZ , iλL anduτ

C, uτ
Y by solving the hybrid equations.

3. Compute the values ofiτZ, iτL from the fourth and fifth line ofKi = 0 (KCL) and
uλ

C, uλ
Y from the first and second line ofK⊥u = 0 (KVL) by substituting the

values obtained in Steps 1–2.
4. Compute the values ofuτ

Z, uλ
Z , uτ

L, uλ
L , andiτC, iλC, iτY, iλY by substituting the values

obtained in Steps 1–3 into (2) and (3).
5. Compute the values ofiV anduJ by substituting the values obtained in Steps 1–4

into the first line of KCL and the fifth line of KVL.

All operations in Steps 3–5 are substitutions and differentiations of the obtained
solutions. Consequently, the numerical difficulty is determined by the index of the
hybrid equation system. Higher index variables as known from MNA do not appear
in the hybrid equation system. In this paper, we prove that the hybrid equation sys-
tem has index at most one. The proof relies on thetractability indexconcept for
DAEs with the use of a projector based analysis.

4 Hybrid Equations with Properly Stated Leading Term

Consider a DAE in the form of

A
d
dt

d(x(t), t)+b(x(t), t) = 0. (4)

Let A be anm× n matrix. We defineD(x, t) :=
∂d(x, t)

∂x
, B(x, t) :=

∂b(x, t)
∂x

, and

M(x, t) := AD(x, t). A matrix P satisfyingP2 = P is called aprojector.
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Definition 1 ( [13, Definition 2.1]).The equation (4) is aDAE with properly stated
leading termif the size ofD(x, t) is n×m, kerA⊕ imD(x, t) = Rn holds for all
x and t from the definition domain, and there is ann× n projector functionP(t)
continuously differentiable with respect tot such thatkerP(t) = kerA, imP(t) =
imD(x, t), andd(x, t) = P(t)d(x, t).

A DAE with properly stated leading term (4) arises in circuit simulation via anal-
ysis methods such as MNA [14]. A DAE with properly stated leading term was first
introduced in [15]. The analysis of such DAEs has been developed in [14,16–19].

Obviously, the DAE (4) represents a regular ODE if and only if the matrixM(x, t)
is nonsingular for allx andt of the definition domain. In this case we say that the
DAE (4) has index 0. In the case of a singular matrixM(x, t) for all x andt, the DAE
(4) contains algebraic equations. Furthermore, one may have to differentiate certain
part of the system to get a solution. A simple criteria for the absence of this problem
is given by the tractability index 1 condition (see [13], Theorem 4.3).

Definition 2 ( [13, Definition 3.3]). The DAE (4) is regular with index 1on
their definition domain ifM(x, t) is singular andkerD(x, t)∩{z ∈ Rm| B(x, t)z ∈
imM(x, t)}= {0} for all (x, t) of the definition domain.

Remark 1( [20, Remark 4.6]).A DAE (4) is regular with index 1 if and only if the
matrix M(x, t)+B(x, t)Q(x, t) is nonsingular for allx andt with a projectorQ(x, t)
satisfyingimQ(x, t) = kerM(x, t).

We rewrite the hybrid equation system as a DAE with properly stated leading
term. A reflexive generalized inverseof a matrixA is a matrixA− which satisfies
AA−A = A andA−AA− = A−. Let us define

A =




0 0 0 0
−A>LL I 0 0

0 0 I ACC

0 0 0 0


 , d(x, t) = A−A




φ τ(−ALLiλL −ALJjs(t), iλL , t)
φ λ (−ALLiλL −ALJjs(t), iλL , t)
qτ(uτ

C,A>VCvs(t)+A>CCuτ
C, t)

qλ (uτ
C,A>VCvs(t)+A>CCuτ

C, t)


 ,

x(t) =




iλZ
iλL
uτ

C
uτ

Y


 , b(x, t) =




−A>VZvs(t)−A>CZuτ
C−A>YZuτ

Y−A>ZZhτ +hλ

−A>VLvs(t)−A>CLuτ
C−A>YLu

τ
Y−A>ZLhτ

ACYf λ +ACZiλZ +ACLiλL +ACJjs(t)
f τ +AYYf λ +AYZiλZ +AYLiλL +AYJj s(t)


 .

This gives the hybrid equation system in the form of (4). Under Assumption 1, the
hybrid equation system (4) is shown to be a DAE with properly stated leading term.

5 Index of Hybrid Equations

In this section, we show that the index of the hybrid equations is at most one, and
give a structural criteria for hybrid equations with index zero. We now introduce the
Resistor-Acyclic conditionfor admissible partition(Ey,Ez).
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[Resistor-Acyclic condition]

• Each conductor and controlled current source inEy belongs to a cycle consist-
ing of independent voltage sources, capacitors, and itself.

• Each resistor and controlled voltage source inEz belongs to a cutset consisting
of inductors, independent current sources, and itself.

Consider the graph̃Γ obtained fromΓ = (W,E) by contracting all edges of inde-
pendent voltage sources and capacitors and deleting all edges of inductors and inde-
pendent current sources. The Resistor-Acyclic condition means thatΓ̃ is acyclic [7].

Theorem 1.Under Assumption 1, the index of the hybrid equations is at most one
for any admissible partition(Ey,Ez) and normal reference treeT. Moreover, the
index is zero if and only if an admissible partition(Ey,Ez) satisfies the Resistor-
Acyclic condition.

Here we present only a sketch of the proof. Details are given in [12]. Computation
of the matrixM(x, t)+B(x, t)Q(x, t) leads to (omitting the arguments)

M +BQ=




BZ 0 0 −A>YZ+BH

∗ ML 0 ∗
∗ 0 MC ∗

AYZ+BF 0 0 BY


 for Q =




I
0

0
I


 .

Here,ML andMC are nonsingular and

(
BZ −A>YZ+BH

AYZ+BF BY

)
=

(
0 −A>YZ

AYZ 0

)
+

(
BZ BH

BF BY

)
is a sum of a positive semidefinite and a positive definite matrix. These

properties implyM + BQ to be nonsingular. SinceAD(x, t) = A

(
L 0
0 C

)
A> holds,

also the second statement of Theorem 1 is clear.
By Theorem 1, we can prove that the minimum index of the hybrid equations

never exceeds the index of the DAE arising from MNA for nonlinear time-varying
circuits without controlled voltage/current sources.

Remark 2.A simple algorithm for finding the optimal admissible partition is given
in [7]. See [7, Examples 4.13–4.14] for circuit examples, which trace the procedure
of the hybrid analysis and make comparisons between the hybrid analysis and MNA.

Remark 3.For nonlinear time-varying circuits composed of resistors (all modelled
as conductances), inductors, capacitors, and voltage/current sources, the dimension
of the hybrid equation system is no greater than that one for the MNA system. This
is becausedim(uτ

C,uτ
Y) < n for n being the number of nodes of the circuit,dim iλL

is not greater than the number of inductors in the system, anddim iλZ is not greater
than the number of (controlled) voltage sources of the system.
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