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a b s t r a c t

The usual nonlinear corrections for a Helmholtz resonator type impedance do not seem to
be based on a systematic asymptotic solution of the pertaining equations. We aim to
present a systematic derivation of a solution of the nonlinear Helmholtz resonator
equation, in order to obtain analytically expressions for impedances close to resonance,
while including nonlinear effects. The amplitude regime considered is such that when we
stay away from the resonance condition, the nonlinear terms are relatively small and the
solution obtained is of the linear equation (formed after neglecting the nonlinear terms).
Close to the resonance frequency, the nonlinear terms can no longer be neglected and
algebraic equations are obtained that describe the corresponding nonlinear impedance.
Sample results are presented including a few comparisons with measurements available
in the literature. The validity of the model is understood in the near resonance and non-
resonance regimes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An important type of acoustic liner for aero-engine inlet and exhaust ducts constitutes of a honeycomb array of small
cells called Helmholtz resonators. The Helmholtz resonator is a cavity filled with air and having a small opening called the
neck. When excited with a fluctuating external pressure, the mass of air plug inside the neck moves against the large volume
of compressible air inside the cavity, which acts as a spring, while viscous forces and vortex shedding cause dissipation of
energy. Altogether this establishes a mass–spring–damper system. The damping is normally relatively small such that a
resonance frequency can be identified. At and near resonance, the dissipation is largest and so narrow band sound
absorption is achieved for frequencies close to resonance. This process is the basic design criterion for the liners. The
resonator, as “seen” from outside, is characterized by its impedance Z ¼ ZðωÞ, relating (spatially averaged) pressure and
velocity at the wall. Ideally, Z is a wall property and independent of the acoustic field. However, in particular near resonance
Z is amplitude dependent for high but relevant amplitudes, for example of the “buzz saw” noise in a turbofan engine due to
the shocks produced in front of the fan at take off and the blade tips operate in a supersonic regime [2,6]. Since liners are
designed to operate at resonance, it is important to know quantitatively and understand qualitatively such impedances
Z with good precision.

The nonlinear effects are mainly of hydrodynamical origin, due to the resistive losses and vortex shedding at inflow/
outflow from the opening. This is physically a process of great complexity [15,20] which has indeed exacerbated the
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possibility to obtain the impedance with an accurate model based on first principles. Ingard and Labate [23] investigated the
motion of air associated with sound waves at audio frequencies in the neighbourhood of an orifice and proved a quantitative
connection with the nonlinearities of the impedance of orifices. Guess [4] developed a semi-implicit method for calculating
the parameters of a perforate in order to achieve a specified acoustic impedance for single-frequency excitation. Zinn [5]
proposed a resistance formulation with the aid of conservation equations. Cummings and Eversman [1] demonstrated
theoretically, with some approximations, that the net acoustic energy dissipation can occur when sound waves interact with
free shear layers and compared the predicted and the measured net energy loss in the transmission of high amplitude
impulsive acoustic waves. Hersh and Walker [13] proposed a nonlinear differential equation as a model for Helmholtz
resonator response to a sound wave in the presence of grazing mean flow and provided a semi-empirical solution of the
problem. The fundamental nature of their problem is the very high amplitude excitation of the resonator in the presence of
grazing flow and hence a differential equation (slightly) different from ours. Innes and Crighton [11] gave a complete
systematic solution to this model equation using matched asymptotic expansions.

In these examples, the nonlinear corrections of the impedance are based on physically inspired modelling assumptions,
but otherwise do not aim to solve the equations of the nonlinear resonator [21,12,3]. In contrast, the properties of the
Helmholtz resonator have been obtained from the full equations in [6–10,16,17] but these are all fully CFD, DNS or LES
simulations which do not give information for the simpler models.

The present work focuses on a systematic derivation of an asymptotic solution of a stand-alone nonlinear Helmholtz
resonator equation from first principles. The extra complication of grazing flow along the liner wall will not be considered
here. This effect is important if the mean flow boundary layer is thin enough and the resonator outflow velocity is
comparable to or higher than the mean flow velocity.

We start with the classical modelling of the Helmholtz resonator and formulate a perturbation problem in terms of a
small parameter ε which is based on the excitation amplitude of a given pressure of fixed frequency. The stationary solution
of this problem is solved asymptotically up to second order. Secular effects of the external forcing are treated in the usual
way by a suitable Lindstedt–Poincaré type transformation. A non-standard problem was the modulus term juj of the
velocity. This prohibits a standard asymptotic expansion because the location of the zeros of u is a priori unknown. This
problem has been tackled by adding an unknown shift of the origin, to be determined along with the construction of the
solution, and using the fact that the stationary solution has the same periodicity as the driving force.

2. Mathematical formulation

A sketch of the Helmholtz resonator considered is shown in Fig. 1. A simple and classic model (in various forms presented
in the previously mentioned literature), that includes nonlinear separation effects for the air flow in and out the neck, is
derived as follows. If the cross-sectional area Sb of the bottle is large compared to the cross-sectional area Sn of the neck, the
acoustic velocities in the bottle will be small compared to those in the neck. Hence we may assume that the pressure and
density perturbations pin and ρin in the bottle are uniform. If the cavity neck is acoustically compact, i.e. kℓ51 for a typical
wavenumber k¼ω=c0, we can neglect compressibility in the neck and determine the line integral of the momentum
equation

ρ0
∂v
∂t

þv � ∇v
� �

þ∇p¼ μ∇2v

along a typical streamline with velocity v from a point (just) inside to a point (just) outside the neck. We obtain the relation

ρ0

Z ex

in

∂v
∂t

� dsþ1
2
ρ0 v2ex�v2in
� �þ pex�pin

� �¼ Z ex

in
μ∇2v � ds; (1)

with v¼ JvJ and μ denoting the viscosity. Following Melling [21] we average pressure and velocity along the neck's cross
section, assume that the averaged squared velocity is approximately equal to the squared averaged velocity, and obtain

ρ0

Z ex

in

∂v
∂t

� dsþ1
2
ρ0 v2

ex�v2
in

� �
þ pex�pin
� �¼ Z ex

in
μ∇2v � ds: (2)

Assuming that the streamline does not change in time, we haveZ ex

in

∂v
∂t

� ds¼ d
dt

Z ex

in
v � ds: (3)

S b

V pin

u in
u n

pex

S n

Fig. 1. Helmholtz resonator.
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The velocity line integral evidently scales on a typical length times a typical velocity. If end effects are minor, we can use the
neck flux velocity v ¼ unex with a corresponding length being the neck length ℓ, added by a small end correction δ to take
into account the inertia of the acoustic flow at both ends just outside the neck (inside and outside the resonator). Then we
have Z ex

in
v � ds¼ ðℓþ2δÞun: (4)

End corrections δ for various geometries are given by Ingard [14]. For a circular orifice, for example, we may use

δ¼ 0:85
Sn
π

� �1=2

; (5)

although one should be aware of the fact that this suggests an accuracy, totally incompatible with the modelling
assumptions necessary for (4).

For the stress term line integral we observe that, apart from un itself, it will depend on flow profile, Reynolds number,
wall heat exchange, turbulence, separation from sharp edges, and maybe more. Following Melling [21], we will take these
effects together in a resistance factor R, which will be assumed relatively small, in order to have resonance and a small decay
per period to begin with. We thus have Z ex

in
μ∇2v � ds¼ �Run: (6)

(Note that this form is exact for a Poiseuille flow with parabolic profile.) Due to separation from the outer exit, we have with
outflow vinC0 with vex ¼ un jetting out, while similarly during inflow, vexC0 with vin ¼ un jetting into the cavity; see Fig. 2.
The pressure in the jets, however, has to remain equal to the surrounding pressure (pex and pin respectively) because the
boundary of the jet cannot support a pressure difference. Therefore, we have altogether

ρ0 ℓþ2δð Þ d
dt
unþ

1
2
ρ0un un þRun ¼ pin�pex:

���� (7)

The second equation between pn and un is obtained by applying the integral mass conservation law on the volume V of
the cavity. The change of mass must be equal to the flux through the cavity neck, which is in linearised form for the density
perturbation ρin

V
dρin
dt

¼ �ρunSn � �ρ0unSn: (8)

Assuming an adiabatic compression of the fluid in the cavity, we have pin ¼ c20ρin. Elimination of ρin and un from (7) by using
(8) and redefining ðℓþ2δÞ≕ℓ yields the nonlinear Helmholtz resonator equation:

ℓV
c20Sn

d2pin
dt2

þ V2

2ρ0c40S
2
n

dpin
dt

dpin
dt

����
����þ RV

ρ0c20Sn

dpin
dt

þpin ¼ pex: (9)

For a proper analysis it is most clarifying to rewrite the equation into non-dimensional variables. For this we need an
inherent timescale and pressure level. For vanishing amplitudes and negligible dissipation the equation describes a
harmonic oscillator, so the reciprocal of its angular frequency

ω0 ¼
c0
ℓ

ℓSn
V

� �1=2

in-flow phaseout-flow phase

Fig. 2. Separation and vortex shedding during the out-flow and the in-flow phase.
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is a suitable timescale of the problem. By dividing the nonlinear damping term by the acceleration termwe find the pressure
level 2ρ0c20ℓSn=V at which the nonlinear damping would be just as large as the other terms. So for a pressure that is a small
fraction, say ε, of this level we have a problem with only little nonlinear damping. In addition we assume that the linear
damping is small and of the same order of magnitude as the nonlinear damping (that is to say: near resonance. Away from
resonance the nonlinear termwill be relatively smaller). Also, the driving amplitude pex will be an order smaller than pin. In
order to make all this explicit we introduce a small parameter ε (via the external forcing amplitude), and make
dimensionless

τ¼ω0t; pin ¼ 2ερ0c
2
0

ℓSn
V

� �
y; pex ¼ 2ε2ρ0c

2
0

ℓSn
V

� �
F ; R¼ ερ0c0

ℓSn
V

� �1=2

r; (10)

where 0oε51 and r; y; F ¼ Oð1Þ.
Suppose that we excite the Helmholtz resonator harmonically, such that pex ¼ C cos ðωtÞþHðtÞ consists of a time-

harmonic component of frequency ω plus a small contribution of higher harmonics H due to the interaction with the
resonator.1 In the scaled variables τ and F this becomes

F ¼ F0 cos Ωτð Þþενh τð Þ; Ω¼ ω

ω0
; (11)

where ν¼ 1 in the resonant case and ν¼ 2 in the non-resonant case.
Note that ε is a bookkeeping parameter, meant to measure the “smallness” of the various parameters and variables.

In practice it is determined by the external forcing pex, so in the simple case of a harmonic excitation we can take F0 ¼ 1, and
this will be done in any example below. Hence we have, for a case with harmonic excitation at a pressure level given by SPL
dB, an equivalent value of ε given by

ε¼ 2� 10�5 � 10SPL=20

2ρ0c20
ℓSn
V

1
2

ffiffiffi
2

p

0
B@

1
CA

1=2

: (12)

Finally we arrive at the weakly nonlinear forced oscillator as given by (13). The initial conditions are not important as we
are interested only in the stationary state2 of the oscillator synchronised with the forcing

d2y
dτ2

þε
dy
dτ

dy
dτ

����
����þεr

dy
dτ

þy¼ εF0 cos Ωτð Þþε1þ νh τð Þ: (13)

We note in passing that the problem considered by Innes and Crighton [11] relates to ours if we replace y0jy0j by y0jyj, assume
y¼ Oðε�2Þ and F ¼Oðε�4Þ, and neglect r.

3. Asymptotic analysis

3.1. Non-resonant case

Away from resonance, when 1�Ω2 ¼ Oð1Þ, the perturbation problem is regular and relatively straightforward. We will
include it here for reference.

We look for solutions of

y00 þεy0jy0jþεry0 þy¼ εF0 cos ðΩτÞþε3hðτÞ (14)

that are only caused by the external forcing. Since this forcing term is OðεÞ and we are not near resonance, the response is of
the same order of magnitude, and we transform y¼ εY , where Y ¼Oð1Þ

Y 00 þε2Y 0jY 0jþεrY 0 þY ¼ F0 cos ðΩτÞþε2hðτÞ: (15)

After substituting the assumed expansion Yðτ; εÞ ¼ Y0ðτÞþεY1ðτÞþε2Y2ðτÞþ⋯ and collecting the coefficients of Oð1Þ, we have

Y 00
0þY0 ¼ F0 cos ðΩτÞ: (16)

The solution that follows the driving force is periodic with frequency Ω and so

Y0 ¼
F0

1�Ω2 cos Ωτð Þ; (17)

1 H will play no role in the results, but appears from the liner application of Section 5. Here, the external forcing field is a combination of incident and
reflected waves, say pex ¼ f ðtÞþgðtÞ and vexp f ðtÞ�gðtÞ. If incident part f is harmonic, reflected part g will be harmonic plus higher harmonics. We will see,
however, that these higher harmonics are one or two orders of magnitude smaller, and therefore play no role in y1, Eq. (34), respectively Y1, Eq. (19).

2 In the appendix it is proved that solutions of Eq. (13) are stable, so the stationary solution exists.
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Next we collect the coefficients of OðεÞ to obtain

Y 00
1þY1 ¼ �rY 0

0 ¼
rF0Ω
1�Ω2 sin Ωτð Þ (18)

with solution

Y1 ¼
rF0Ω

ð1�Ω2Þ2
sin Ωτð Þ: (19)

We may go on to Oðε2Þ and find the appearance of higher harmonics. Efficiently collecting terms together, we obtain for the
full solution

y¼ εF0
ð1�Ω2Þ cos ΩτþεrΩ sin Ωτ

ð1�Ω2Þ2þε2r2Ω2
þO ε3
� �

(20)

showing that the response is indeed OðεÞ and follows the excitation almost in phase ð1�Ω240Þ or anti-phase ð1�Ω2o0Þ.
This is not the case anymore near resonance when 1�Ω2 ¼OðεÞ.

3.2. Resonant case

Near resonance when 1�Ω2 ¼ OðεÞ, it was assumed and indeed confirmed by (20) that the amplitude y rises to levels of
Oð1Þ, and the assumption that the nonlinear damping is negligible to leading orders is not correct. As the physics of the
problem essentially changes when Ω¼ 1þOðεÞ, we introduce a parameter s¼Oð1Þ and assume that

Ω¼ 1þεs: (21)

However, posed in this form we obtain secular terms in the expansion cos ðτþεsτÞ ¼ cos ðτÞ�εsτ sin ðτÞþ⋯ of the driving
force, which prohibits a uniform approximation of y later [19, Section 15.3.2]. Therefore we remove the ε-dependence from
the driving force by absorbing Ω into a new time coordinate.

Moreover, the asymptotic expansion of the modulus jy0j introduces difficulties near the ε-dependent (and unknown)
zeros of y0. This will be tackled by a translation of the origin by an amount θðεÞ, such that the locations of the sign change of
y0 are fixed (as y is synchronised with the driving force) and independent of ε. (Of course, a certain amount of smoothness is
anticipated such that y0 has the same number of zeros per period as the forcing term.) So we introduce

~τ ¼Ωτ�θðεÞ
to obtain

Ω2d
2y

d~τ2
þεΩ2dy

d~τ
dy
d~τ

����
����þεΩr

dy
d~τ

þy¼ εF0 cos ~τþθð Þþε2h; (22)

where θ is to be chosen such that y0ð~τÞ ¼ 0 at ~τ ¼Nπ. In other words, Ωτ¼ ωt ¼ θ corresponds with the phase lag of response
pin to excitation pex.

When we substitute the following (assumed uniform) asymptotic expansions for y and θ [18]:

yð~τ; εÞ ¼ y0ð~τÞþεy1ð~τÞþε2y2ð~τÞþ⋯ and θðεÞ ¼ θ0þεθ1þ⋯;

and collect like powers of ε, we find for y0

d2y0
d~τ2

þy0 ¼ 0; y00 Nπð Þ ¼ 0: (23)

This has the general solution

y0ð~τÞ ¼ A0 cos ð~τÞ; (24)

with A0 and θ0 to be determined. Although y0 is the result of driving force F, at this level we do not have any information
about their relation yet, so we cannot determine the integration constants A0 and θ0. Therefore, we continue with the next
order y1.

d2y1
d~τ2

þy1 ¼ F0 cos ~τþθ0ð Þ�2s
d2y0
d~τ2

�dy0
d~τ

dy0
d~τ

����
�����r

dy0
d~τ

¼ F0 cos ð~τþθ0Þþ2sA0 cos ð~τÞþA0jA0j sin ð~τÞ sin ð~τÞ
�� ��þrA0 sin ð~τÞ (25)

From the arguments that y is the stationary solution and its asymptotic expansion is uniform in ~τ , it follows that no resonant
excitation is allowed on the right hand side of the equation for y1. This means that we should suppress the cos- and
sin-terms, including the first term of the Fourier expansion of

sin ~τð Þj sin ~τð Þj ¼ �1
π

∑
1

n ¼ 0

sin ð2nþ1Þ~τ
n2�1

4

� �
nþ3

2

� � ¼ 8
3π

sin ~τþ⋯ (26)
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to obtain

F0 cos θ0 ¼ �2sA0; F0 sin θ0 ¼
8
3π

jA0jþr
� �

A0 (27)

or

8
3π

jA0jþr
� �2

þð2sÞ2
" #

A2
0 ¼ F20; tan θ0ð Þ ¼ �

8
3π

jA0jþr

2s
: (28)

In general, the equation for A0 has to be solved numerically, from which θ0 follows. There exist two (real) solutions, while if
ðA0; θ0Þ is a solution, then also ð�A0; θ0þπÞ. So, if convenient, we could assume that A0 is positive and maintain jA0j ¼ A0, but
this depends on θ0.

The next order y1 is then given by

y1 ~τð Þ ¼ A1 cos ~τþB1 sin ~τþ 1
4π

A0jA0j ∑
1

n ¼ 1

sin ð2nþ1Þ~τ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� � (29)

with derivative

y01 ~τð Þ ¼ �A1 sin ~τþB1 cos ~τþ 1
4π

A0jA0j ∑
1

n ¼ 1

ð2nþ1Þ cos ð2nþ1Þ~τ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� � (30)

and so the boundary condition

y01 Nπð Þ ¼ �A1 sin Nπð ÞþB1 cos Nπð Þþ 1
4π

A0jA0j ∑
1

n ¼ 1

ð2nþ1Þ cos ðð2nþ1ÞNπÞ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� �
¼ ð�1ÞNB1þ

ð�1ÞN
4π

A0jA0j ∑
1

n ¼ 1

2nþ1
n nþ1ð Þ n2�1

4

� �
nþ3

2

� �¼ ð�1ÞN B1þ
2
9π

A0jA0j

 �

¼ 0 (31)

is satisfied by

B1 ¼ � 2
9π

A0jA0j because ∑
1

n ¼ 1

2nþ1
n nþ1ð Þ n2�1

4

� �
nþ3

2

� �¼ 8
9
:

The sum of the telescoping series is easily found by partial fractions and noting the terms cancelling in pairs. Altogether we
have

y1 ~τð Þ ¼ A1 cos ~τ� 2
9π

A0jA0j sin ~τþ 1
4π

A0jA0j ∑
1

n ¼ 1

sin ð2nþ1Þ~τ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� � : (32)

The amplitude A1 is to be determined in a similar way as with y0 by suppressing resonant terms in y2. The next order term y2
is obtained from (22) when it is expanded to Oðε2Þ and terms of Oðε2Þ are collected

y002þy2 ¼ �s2y000�2sy001�2sy00jy00j�2y01jy00j�ry01�rsy00�θ1F0 sin ð~τþθ0Þþh: (33)

After substituting y0 and y1, and considering only the terms on the right hand side that are possibly in resonance with the
left hand side, we obtain

y002þy2 ¼ s2A0 cos ~τþ2sA1 cos ~τ� 4
9π

sA0jA0j sin ~τ

þ 2sA0 sin ~τþ2A1 sin ~τþ 4
9π

A0jA0j cos ~τ�1
π
A0jA0j ∑

1

n ¼ 1

cos ð2nþ1Þ~τ
n nþ1ð Þ n�1

2

� �
nþ3

2

� �
 !

jA0 sin ~τj

þrA1 sin ~τþ 2
9π

rA0jA0j cos ~τþrsA0 sin ~τ�θ1F0 cos θ0 sin ~τ�θ1F0 sin θ0 cos ~τþ⋯ (34)

By Fourier expansion it can be found that

cos ~τj sin ~τj ¼ 4
3π

cos ~τþ⋯; ∑
1

n ¼ 1

j sin ~τj cos ð2nþ1Þ~τ
n nþ1ð Þ n�1

2

� �
nþ3

2

� � ¼ 1
π

80
27

�π2

3

� �
cos ~τþ⋯ (35)

and only higher harmonics otherwise. Suppressing the cos- and sin-terms of (34) thus results in

2sA1�θ1F0 sin θ0 ¼ �s2A0�
1
3
� 64
27π2

� �
A3
0�

2
9π

rA0jA0j;

16
3π

jA0jþr
� �

A1�θ1F0 cos θ0 ¼ � 44
9π

jA0jþr
� �

sA0: (36)

By solving the linear system (36), we can obtain A1 and θ1.
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4. Time-domain solution

The solution y¼ y0þεy1þOðε2Þ ascertains in principle (for small ε) a better approximation of y than the leading order
approximation y0, which would later provide a better approximation of the impedance. We have this full solution as

y ~τ; εð Þ ¼ A0þεA1ð Þ cos ~τ� 2
9π

εA0jA0j sin ~τþ 1
4π

εA0jA0j ∑
1

n ¼ 1

sin ð2nþ1Þ~τ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� � þ⋯: (37)

where ~τ ¼ωt�θ and θ¼ θ0þεθ1þ⋯. The constants A0, θ0 and A1, θ1 can be determined from (27) and (36) respectively.
Consider first the leading order approximation. Eq. (28) for A0 has two real symmetric solutions (of which we normally

need to consider only the positive one), but solving A0 ¼ A0ðsÞ is not straightforward. Therefore, it is useful to consider the
inverse, s¼ sðA0Þ, given by

4s2 ¼ F20
A2
0

� 8
3π

jA0jþr
� �2

(38)

Since s2Z0 we see immediately that solutions exist only for a finite interval in A0, while s-1 only when A0-0.
In particular, we have

A0C
F0
2jsj; tan θ0C� r

2s
or θ0C� r

2s
þnπ; (39)

which is in exact agreement with the asymptotic behaviour for Ω¼ 1þεs, s large, corresponding to the linear solution (17).
In fact, by tracing the solution parametrically as a function of s, we can see that if we start with θ0 ¼ 0 for s-�1, we end
with θ0 ¼ π for s-1. In this way, we have obtained the expression for A0 and θ0; see Fig. 3 for an example.

Substituting the obtained value of A0 and θ0 in (36), we can solve the linear algebraic system to obtain A1 and θ1. This
way, we have determined all the coefficients in (37); hence, the solution y is known which, when used with (10), gives pin

pin ¼ 2ερ0c
2
0
ℓSn
V

"
ðA0þεA1Þ cos ðωt�θÞ� 2

9π
εA0jA0j sin ωt�θð Þþ 1

4π
εA0jA0j ∑

1

n ¼ 1

sin ð2nþ1Þðωt�θÞ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� �þ⋯

#
: (40)

From this solution and (8) we may determine the neck velocity un

un ¼ 2εωℓ

"
ðA0þεA1Þ sin ðωt�θÞþ 2

9π
εA0jA0j cos ωt�θð Þ� 1

4π
εA0jA0j ∑

1

n ¼ 1

ð2nþ1Þ cos ð2nþ1Þðωt�θÞ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� � þ⋯

#
; (41)

which will be used to obtain the impedance of the resonator in the later section.

4.1. Comparison in time-domain with a fully numerical solution

The solution (37), correct till OðεÞ (y0) and Oðε2Þ ðy0þεy1Þ, is compared with a fully numerical solution of (13), obtained by
Mathematica with a standard Runge–Kutta routine, see Fig. 4. In both cases r¼0.2, s¼ 1, while ε¼ 0:28 in the left figure and
ε¼ 0:88 in the right. Note that this last case is added to see how the solution behaves for values of ε that are really not small
anymore. The one with ε¼ 0:28 is indeed remarkably accurate for y0þεy1, and we may observe an error of y0 and y0þεy1
compared to y that follows indeed the predicted behaviour of OðεÞ and Oðε2Þ. The one with ε¼ 0:88 cannot be expected to be
really accurate, but surprisingly the results are still of the right order of magnitude.

We note, however, that there is always the assumption that s¼Oð1Þ and 1�Ω2 ¼OðεÞ. In other words, the validity of the
resonance solution is for an interval in frequency of ω¼ω0ð1þOðεÞÞ. When we leave this interval, the non-resonant solution
(20) should gradually become applicable.
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Fig. 3. Solution of amplitude (A0, A1) and phase (θ0 , θ1) as a function of s, while r¼ F0 ¼ 1.
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5. Impedance calculation

In order to obtain realistic numbers, we will consider the impedance Z as the effective impedance of an array of
Helmholtz resonators, where the spatially averaged neck velocity is identified to the external acoustic velocity. Therefore,
we add a porosity factor Sn=Sb to un and obtain

vex ¼
Sn
Sb
un: (42)

Then we have to define what we mean with impedance for a sound field that is not entirely harmonic anymore. The natural
choice is to define the impedance as the ratio of the Fourier transforms of the external pressure pex and (minus) the external
velocity vex at excitation frequency ω.

Z ηð Þ ¼ p̂exðηÞ
� v̂exðηÞ

¼
1
2π
R1
�1 pex tð Þe� iηt dt

� 1
2π
R1
�1 vex tð Þe� iηt dt

η¼ωð Þ: (43)

5.1. Non-resonant impedance

Taking the Fourier transforms of pex and vex, we have, from (14), (8), and (10), for η40

p̂ex ηð Þ ¼ 1
2π

Z 1

�1
pex tð Þe� iηt dt ¼ ε2ρ0c

2
0
ℓSn
V

F0δ η�ωð Þ (44)

and

v̂ex ηð Þ ¼ 1
2π

Z 1

�1
vex tð Þe� iηt dt ¼ � Sn

Sb
εωℓ �ε

F0
1�Ω2

1
i
δ η�ωð Þþε2

rF0Ω

ð1�Ω2Þ2
δ η�ωð Þ

" #
; (45)

and so (with V ¼ LSb) we obtain

Z ωð Þ ¼ � p̂exðωÞ
v̂exðωÞ

¼ ερ0c20
Lω

� ε2rΩ

ð1�Ω2Þ2
þ i

ε

1�Ω2

 !�1

: (46)

To leading order in ε, we obtain the usual expression for the linear impedance as

Z ωð ÞCSb
Sn

Rþ iρ0ℓω0
ω

ω0
�ω0

ω

� �� �
: (47)

5.2. Resonant impedance

Taking the Fourier transforms of pex and vex, we have for η40

p̂ex ηð Þ ¼ 1
2π

Z 1

�1
pex tð Þe� iηt dt ¼ ε2ρ0c

2
0
ℓSn
V

F0δ η�ωð Þ (48)
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Fig. 4. Comparison of solution y0 and y0þεy1 for r¼0.2, s¼ 1 and ε¼ 0:28 (left) and ε¼ 0:88 (right) with a fully numerical solution.
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and

v̂ex ηð Þ ¼ 1
2π

Z 1

�1
vexðtÞe� iηt dt ¼ Sn

Sb
εωℓe� iθ

"
� iðA0þεA1Þδðη�ωÞþ 2

9π
εA0jA0jδ η�ωð Þ� 1

4π
εA0jA0j ∑

1

n ¼ 1

ð2nþ1Þδðη�ð2nþ1ÞωÞ
n nþ1ð Þ n2�1

4

� �
nþ3

2

� � þ⋯

#
;

(49)

and so (with V ¼ LSb) we obtain

Z ωð Þ ¼ � p̂exðωÞ
v̂exðωÞ

¼ ερ0c20F0
Lω

� � ieiθ

A0þεA1þ i
2
9π

εA0jA0j
: (50)

It is interesting to consider Z to leading order in ε

Z ωð ÞCερ0c20F0
Lω

� ieiθ0

A0
¼ ρ0c0

c0
ωL

R
ρ0ω0ℓ

þ 4
3π

Jun J
ωℓ

þ2i
ω�ω0

ω0

� �
(51)

(where Jun J denotes the amplitude of un) and observe that indeed ReðZÞ is of the often assumed form aþbJun J . Although
our a and b are not constants and depend on ω, this is a higher order effect because ω¼ω0ð1þOðεÞÞ. To leading order in
ε they are constant. ImðZÞ is independent of the excitation amplitude.

In order to illustrate formula (50), we have plotted in Fig. 5 resistance ReðZÞ and reactance ImðZÞ as a function of Ω,
obtained for a typical geometry at different driving amplitudes, corresponding with ε varying from 0.05 to 0.28. As may be
expected from (51), the main effect of the forcing amplitude is in the resistance. The reactance is practically independent
of it. Typically, the resistance, being highest at or near the resonance frequency and decaying along both sides, increases
everywhere with the amplitude, but more for frequencies less than resonance.

5.3. Comparison with Motsinger and Kraft [12]

The behaviour in (50) may be compared in Fig. 6 with the measurements and predictions given by Motsinger and Kraft in
[12]. Their predictions are (a.o.) based on a resistance of the form R¼ ρ0c0ðaþbjvjÞ with suitably chosen a and b.
Unfortunately, only little experimental data for the higher amplitudes are available. The parameter values we used are based
on ω0=2π ¼ 2200 Hz, ℓ¼ 0:001 m, L¼0.035 m, Sn=Sb ¼ 0:05, r¼0.1.

The agreement is reasonable, taking into account that the ε's are not very small and no experimental data are available in
this frequency range for the higher amplitudes. Especially the increase of the maximum with the amplitude is confirmed.
Only for the higher amplitudes (with value of ε¼ 0:99 or higher, that is far beyond what could be considered asymptotically
“small”) and frequencies well above resonance the decay suggested by [12] is not confirmed.

5.4. Comparison with Hersh et al. measurements [3]

The Hersh et al. model [3] to predict the impedance is based on the experimental calibration of empirical parameters that
were derived in the formulation. They introduced six assumptions, mostly inspired from measurements, to model the
nonlinear terms. Shown in Fig. 7 is the comparison of our non-resonant and resonant impedance values with two model
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Fig. 5. Real and imaginary parts of impedance Z for a Helmholtz resonator as a function of nondimensional frequency at different driving amplitudes.
The realistic configuration that is chosen corresponds with Sn=Sb ¼ 0:05, r¼0.2, ω0=2π ¼ 1447 Hz, L¼0.035 m, ℓ¼ 0:002 m.
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configurations which have different values of ℓ. The maximum of 120 dB curve was used for calibration and find r, and the
same value of r was used for other amplitudes. The nonlinear curves asymptotically match with the linear curve and this
transition is quite smooth for lower ε such that we can go from one model to the other. The resistance compares nicely at the
near resonance frequencies when s¼Oð1Þ with one amplitude fitted. Away from resonance ðεs¼ Oð1ÞÞ we see
a considerable overprediction of the resistance. The reactance shows a good comparison across the range of frequencies.
The same comparison was done with other experimental configurations from [3] and a reasonably good agreement is found
for the near resonance frequencies.

5.5. Comparison with Ingard and Ising [22]

Ingard and Ising [22] measured simultaneously fluctuating velocity and pressure, using hot wire measurements, followed
by the exploitation of their phase relation to obtain the impedance at relatively high amplitudes. The chosen amplitudes
were relatively high and in the domain of the Innes and Crighton theoretical model [11]. The comparison shown in Fig. 8 is
very accurate. This is a fortuitous result because we cannot expect correct behaviour of the asymptotic analysis at such high
ε¼Oð1Þ. It is a general observation that the predicted impedance in the close neighbourhood of resonance frequency is
always agreeable even with higher values of ε.

5.6. Comparison with Melling [21]

The measurements of Melling were used to further validate the model. Melling measured the impedance of a series of
resonators constructed with multiple orifices backed by a cavity. Fig. 9 shows that the model predicted nonlinear resistance
of a resonator constructed with an orifice diameter ð4Sn=πÞ1=2 ¼ 0:127 cm, ℓ¼ 0:056 cm, L¼7.5 cm and ðSb=πÞ1=2 ¼
3:46ðSn=πÞð1=2Þ cm. The value of r is calibrated by its value giving the 143.5 dB amplitude. The first three points of the
measurements, being equal in magnitude, are apparently in the linear (non-resonant) range. The model prediction is quite
reasonable over the full amplitude regime.

5.7. Comparison of impedances based on y0 and y0þεy1 approximations

It is of interest to know when the driving amplitude becomes large enough to warrant the extra term εy1 in the
approximation of Z. Shown in Fig. 10 is the comparison of the impedance values obtained from y0 and y0þεy1
approximations for different values of ε. Taking the same realistic geometry as above (Fig. 5), the value of ε varies from
� 0:05 to 0.28 as the external driving amplitude is changed from 100 dB to 130 dB. We see that OðεÞ correction in the
resulting resistance (the reactance is practically independent, especially near resonance) can be neglected for the lower
amplitudes, but is indeed essential for the higher amplitudes.

6. Conclusions

A systematic approximation of the hydrodynamically nonlinear Helmholtz resonator equation is obtained, including the
resulting impedance if the resonator is applied in an acoustic liner. To leading order, the usually assumed form of the
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resistance, aþbjvj, is recovered. The only unknown parameter that we need to adapt is resistance factor r, although in many
cases the effective neck length ℓ is also unknown and has to be estimated. Comparisons with measurements prove that the
model predicts the near resonance impedance at s¼Oð1Þ to a good accuracy.
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Our approach, based on the systematic use of asymptotic analysis, allows higher order corrections, which indeed are
shown to be important and relevant for practical configurations involving high amplitudes.

The real part of the found impedance (the resistance) shows the usual characteristic behaviour as a function of frequency,
namely a maximum at or near the resonance frequency and a decay along both sides. All values increase with the amplitude,
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ðSb=πÞ1=2 ¼ 3:46ðSn=πÞ1=2 cm. The desired resistance is obtained for r¼1. 0:0705516oεo0:705516.
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but slightly more for the frequencies less than resonance. The imaginary part of the impedance (the reactance) is linear in
frequency in a way that it vanishes at resonance and is practically independent of the amplitude.
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Appendix A. Stability of stationary solution

From the physical origin of the problem, it is very likely that there exists a stable steady solution for a steady external
forcing, such that we are not approximating a solution that just would not exist in any realisation. We have checked this
mathematically by proving the boundedness of a small perturbation ξ of our solution y in (13), satisfying the following
equation:

ðy00 þξ00Þþεðy0 þξ0Þjy0 þξ0jþεrðy0 þξ0ÞþðyþξÞ ¼ εFðτÞ: (52)

Since, by assumption, y is any solution of the original equation, we have to linear order for small ξ (and a slight error near
the zeros of y0 þξ0)

ξ00 þϕðτÞξ0 þξ¼ 0 (53)

where ϕðτÞ ¼ εðrþ2jy0jÞZ0 (even strictly positive if r40). We assume an initial condition with ξð0Þ2þξ0ð0Þ2 ¼ E20. From (53)
we have for the mechanical energy 1

2 ξ2þξ02
� �
d
dτ

1
2

ξ2þξ02
� �� �

¼ ξ0ξ00 þξ0ξ¼ �ϕξ02r�ϕ ξ2þξ02
� �

:

It follows that ðd=dτÞ lnðξ2þξ02Þr�2ϕ. After integration and using the positivity of ϕwe find eventually

ξ2þξ02rE20 exp �2
Z τ

0
ϕðτÞ dτ

� �
:

Hence it follows that perturbations are bounded and will decay to zero, confirming the existence of a stable stationary
solution. Shown in Fig. 11 is a plot of ξ and 1

2 ξ2þξ02
� �

.
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