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Abstract

Delay functions, which vary timing of rewards but fix the money dimen-
sion, can elicit the form of discount functions with minimal assumptions. We
provide conditions to test for separable discounted utility (SDU). We elicit
individual delay functions for a range of amounts and time horizons. When
we impose SDU assumptions, we classify more than half our analysis sample
as exponential discounters. However, we reject SDU assumptions for 68% of
the sample in favor of magnitude-dependent discounting with time distortion.
The finding has a significant implication for how experimental results are in-
terpreted, since the SDU assumption is necessary for small-stakes behavior in
experiments to be informative about large-stakes behavior in the market.
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1. Introduction

This paper uses a behavioral object we refer to as "delay functions" as an alternative
method for studying time preference. While there is a major empirical debate over
whether individuals are exponential or hyperbolic discounters,! both exponential and
hyperbolic models share the common assumption that the agent’s preferences can be
represented by a Separable Discounted Utility (SDU) function,

U(m,t) = D(t) - u(m).

Here, separability refers to the fact that the evaluation of time and money are unre-
lated. While SDU is attractive as a parsimonious model for theoretical analysis, it is
a substantive assumption for experimental conclusions: separability implies that the
level of discounting shown in small stakes behavior (as often used in experiments)
is informative about more important decisions, such as saving for retirement. Our
delay functions approach can test the validity of the SDU assumption as well as
provide information about the structure of discounting even if SDU assumptions are
violated.

We conduct an experiment measuring delay functions on a sample of the American
population and find that the SDU assumption is rejected for 68% of our analysis
sample.? The take-away lessons from this result are that (i) non-separable models
may be important for understanding economic behavior, and (ii) experimental results
may not be directly valid for real-world decisions.

Most empirical discounting studies work with "present value" data in which the
dates of the rewards are fixed and an amount $/ is elicited that makes the subject
indifferent between $s at time ¢; and $/ at time t,. Researchers then typically assume
an SDU model and attempt to estimate D and u. Delay functions instead ask, what
delay ®;(s,t) makes the subject indifferent between $s at time ¢ and $/ at time
®,(s,t)? Delay functions thus fix the money dimension for both earlier and later
rewards, and vary only the time dimension for the later reward. Specifically, for a
fixed small reward s and large reward [, a delay function elicits for each ¢ the delay
from time zero ®;(s,t) such that

(5,£) ~ (I, By(s,1)). (1.1)

!See e.g.Andreoni and Sprenger [2012], Augenblick, Niederle, and Sprenger [2013].

2This result is consistent with recent research of Ericson et al. [forthcoming], showing that
a non-SDU heuristic model outperforms all common SDU models in a cross-validated prediction
exercise. Their heuristic model, however, is only defined for binary choices, not multiple price list
or multiple delay list elicitation methods.




That is, the subject reveals that s at time ¢ is as good as [ at time ®(s,t). This
delay function ® reveals that the ‘loss of attractiveness’ (discounting) of s due to a
delay over any interval [t, '] is equal to that of [ over [®,(s,t), ®;(s,?')], and thus it is
an embodiment of the agent’s discount function. Delay functions can be obtained in
an experimental setting by using a ‘multiple delay list’ rather than a ‘multiple price
list” procedure, or alternatively by the Becker-DeGroot-Marschak mechanism.

Delay functions allow researchers to estimate general discounting models that
allow subjects to discount different size rewards differently ("magnitude-dependent
discounting"). Existing evidence suggests that this may be the case: experiments
often find a magnitude effect in choice, with subjects seeming to exhibit more patience
towards larger rewards (Frederick et al [2002], Noor [2011], Andersen et al. [2013]).

The main theoretical result in this paper delivers an explicit formula for com-
puting the subject’s discount function on the basis of the data ®. This is done for
preferences with very little structure: complete, transitive, continuous preferences
that satisfy monotonicity and impatience, admitting General Discounted Utility rep-
resentations of the form

U(m,t) = D(m,t) - u(m),

where D(-,0) = 1. We provide the expression for D in terms of ®. The general
theorem is then specialized for the purpose of applications. In particular, we are in-
terested in tests for the existence of SDU representation. While SDU is an attractive
theoretical assumption (parsimony, appealing axioms), its descriptive validity is of
interest here. Thus, it is valuable to have a simple test and let the data speak on
whether separability adequately describes decision-makers’ behavior.

Our main specialization restricts attention to a flexible class of delay functions:

®(m,t) = (a(m)t’ + b(m))*".

This subsumes the behavior of common SDU models (exponential, generalized hyper-
bolic), where delay functions are linear and of the specific form ®(m, t) = [1 + kb(m)] t+
b(m),with £ > 0 and b decreasing in m. The flexible functional form permits non-
linearity in the delay function. For this class of delay functions, the test for SDU
discounting is simply that there is some k& > 0 such that a(m) = 1 + kb(m)? for all
m.

We prove that subjects who fail the SDU test can nevertheless be attributed
the magnitude-dependent exponential discounting with time-distortion: D(m,t) =

3Whether this observed fact rejects SDU is controversial, because experiments must typically
estimate both D (¢) and the curvature of u (m). The delay function approach does not require us
to estimate u.



e~m*" where a is decreasing. In this model, the subject is more patient towards

larger rewards, as suggested by the magnitude effect. Magnitude-dependent discount-
ing could arise from a decision process where the agent has limited cognitive resources
and finds it optimal to pay more attention only to higher rewards. It may also re-
late to models of mental accounting in which larger rewards are assigned to different
accounts, or models of self-control and temptation preferences (e.g. Gul and Pe-
sendorfer [2001], Fudenberg and Levine [2006]) in which the degree of self-control
implemented may vary with the magnitude of reward at stake. Time distortions are
motivated by a literature suggesting non-linear perception of time (e.g. Zauberman
et al. [2009]).

We elicit delay functions in an experiment on a representative sample of the
American population recruited from a professional sampling service. We conduct all
our estimation at the individual level, allowing for heterogeneity across individuals
in preferences and models. We first assume that delay functions are linear (7 = 1 in
the above class) and that the agents are SDU (a(m) = 1+ kb(m) for all m). Within
this subclass, the individual is exponential if £ = 0 and hyperbolic if £ > 0. We
find that the median k& in our analysis sample is virtually zero, suggesting that more
than half of our sample were exponential discounters if we limited consideration to
SDU models with linear delay functions only.* However, we then directly test the
SDU assumption. For 68% of our analysis sample, we reject SDU (with or without
time distortion) at p < 0.05, finding strong evidence of non-SDU discounting. Using
model selection criteria, only 18% of our sample has a best-fit model that is consistent
with SDU. These results suggest that if researchers only examine SDU models, they
may mistakenly conclude that individuals are exponential discounters.

The rejection of separability has a significant implication for the extrapolation
of experimental results. The only way experimental results involving small stakes
can be used to make assertions about choices involving large stakes is precisely by
assuming separability. Without separability, a theory is needed to understand the
validity of such assertions. The results also reveal that there is a possibly significant
benefit to researching economic explanations outside the class of SDU models. A
worthwhile avenue for future research is to model magnitude-dependent discounting
of the type revealed in our experiment and to study its implications in economic
settings.

Our theoretical analysis applies to any type of dated reward (money, food, work,
etc.). Our experiment uses money, following most of the literature. However, there is

4Using a related elicitation method, Attema et al [2010] restrict consideration to SDU models
and find that 58% of classifiable subjects were exponential discounters. They do not, however, test
the SDU assumption.



a dispute over whether money from experiments is consumed when received. While
many models assume that individuals will smooth their consumption across time,
models of mental accounting or dual-self models (e.g. Fudenberg and Levine [2006))
predict that income from experiments may be consumed when received. Andersen
et al. [2008] have data on risk questions and time-money tradeoff questions, and
jointly estimate the curvature of utility, discount function, and degree of consumption
smoothing. They estimate that payments are consumed when received; see also
Booij and van Praag [2009]. However, in recent work, Augenblick, Niederle, and
Sprenger [2013] find substantial differences in the degree of preference reversals for
money versus real effort tasks, suggesting choices over money may not reveal the
discount function. However, if individuals do smooth consumption over time, taking
advantage of outside-the-lab borrowing and lending, then subjects’ choices should
reveal the interest rate they face (Cubitt and Read [2007]). If the interest rate faced
is constant in the range of dollar amounts considered (in our experiment, $50 to
$100), then their choices should appear as though they were SDU discounters. We
in fact reject SDU for most subjects. This rejects, at the very least, exponential
discounting of income (as opposed to consumption).

The remainder of the paper proceeds as follows. We close the introduction with
related literature. Section 2 presents the main theoretical results and Section 3
presents specializations. Section 4 presents our experiment and results and Section
5 concludes. All proofs are contained in appendices.

Related literature

We term the common method of eliciting discount functions as the "present
value" approach: subjects choice between dated rewards (m,t) and give indifference
points of the form (s,t) ~ (I,t'), where, for any dates ¢,t’ either the future reward [
is fixed and the subjects’ "present value" s is obtained, or the present reward s is
fixed and the "future value" [ is obtained.” In recording how present /future value of
a reward changes with ¢, the data reflects behavior when both the money and time
dimensions are changed. This is reflected in how conclusions are drawn about the
discount function. Presuming the SDU model, the discount function D(t) is elicited
by computing (5

u(s
D=7
and so eliciting the discount function requires an assumption on u. The early liter-
ature assumed that u is linear. Since this assumption typically yields implausibly
high discount rates, the literature has sought methods of eliciting discount functions

°See Fredrick et al [2002] for a review of the experimental literature, and later experimental
work by Coller and Williams [1999] and Harrison et al [2002].



and the curvature of u simultaneously. Andersen et al [2008] replace the linearity
assumption with the expected utility assumption, and they use both risk preferences
and time preferences to jointly estimate several specifications of 4 and D. Andreoni
and Sprenger [2012] replace the linearity assumption with the assumption that pref-
erences over consumption streams are represented by a time-additive SDU model
> D(t)u(m;) with CRRA u. Subjects are asked to choose their allocation of an
endowment over two periods for different interest rates and endowments, and thus
their intertemporal demand curves are obtained, to which v and D are jointly fit.

The theoretical literatures on multi-attribute utility and conjoint measurement
(Fishburn [1967], Krantz et al [1971]) introduce the “sawtooth method” to behav-
iorally isolate the components of any separable representation, and this is built on
the idea of varying only one dimension while fixing others.® Attema et al’s [2010]
study of discount functions and Wakker and Deneffe’s [1996] study of probability
weighting are experimental implementations of the sawtooth method. The delay
function approach presented in this paper differs from the sawtooth method: It is
established for preferences that do not necessarily lie in the SDU class. Moreover, the
theoretical derivation of the discount function is very different — we find a solution
to a functional equation rather than doing a direct construction with the sawtooth
method. Finally, we avoid incentive compatibility issues that exist in the experi-
mental application of the sawtooth method, as discussed in Harrison and Rustrom
[2009].7

Relatedly, Laury, McInnes, and Swarthout [2012] also show a procedure for elic-
iting discount rates using variation in the probability a payment will be made, rather
than the amount (as in the present value approach) or the delay (as in our proposed
approach). Their approach also assumes SDU, as well as either expected utility
theory or a particular probability weighting function. Similarly, Olea and Strzalecki
(2014) provide a method using "annuity compensations" to estimate quasi-hyperbolic
discounting without estimating the utility function uw. Their approach assumes a

OThese papers consider a preference over binary attributes (z,y). Fix any y, y' and zo and
suppose that x1 is a quantity such that the agent exhibits (z1,y) ~ (xg,¥’). Furthermore, suppose
it is determined that, iteratively for i = 2,..,n, that (x;,y) ~ (x;-1,y’). If the preference has a

multiplicative representation, U(z,y) = v(x)-u(y), then each indifference point satisfies vgyi)l) =k
for all i = 1,..,n, for some constant k := % Since v is unique up to an affine transformation,

v(xo) and v(x;) can be normalized, and consequently v is pinned down on {zy,..,2,}. The grid
can be made arbitrarily finer. This procedure is referred to as the ‘saw-tooth method’ (Fishburn
[1967]) and the noted sequence is an example of a ‘standard sequence’ (Krantz et al [1971]).

"In the sawtooth method, a subject’s answer to one question becomes an input into the next
question. Therefore by misstating preferences it is possible for subjects to affect the sequence of
questions they face in a way that improves their expect outcome.



quasi- or semi-hyperbolic discounting model- members of the SDU class— while our
approach can test the underlying SDU assumption.

2. Theoretical Foundations

We present here the main theoretical result that provides the foundations for our
experimental procedure.

The primitive of our analysis is a revealed preference relation >~ over the set
of dated rewards X = M x 7, where time is continuous and given by 7 = R,
with generic elements ¢, ¢', and the set of rewards (e.g. money) is a bounded interval
M = [0,m] with generic elements m, m’, s, [. Data on such a preference is the minimal
and simplest data that may be used to study the basic structure of time preference
in a general way.

The choice data needed for our analysis is the delay function ® : M x T — T,
which is obtained via the indifference:

(ma t) ~ (m7 q)(m, t))v

for all 0 < m < m and each ¢t. That is, ®(m,¢) is defined as the date such that m at
t is just as good as m at ®(m, t).% Varying ¢ leads to a variation in the desirability of
(m, t), and this is measured by variation in the delay ®(m, ). The simplest example is
a linear delay function, ®(m,t) = a(m)t+ b(m). The delay function can be obtained
in practice by using the Becker-DeGroot-Marschak mechanism or by adapting the
Multiple Price List (MPL) popularized by Coller and Williams [1999] and Harrison
et al [2002].°

Our general result presumes only that the preference - admits a General Dis-
counted Utility (GDU) representation:

U(m,t) = D(m,t) - u(m),

8Compared to the notation ®;(s,-) in the Introduction for any pair of rewards s < I, here we fix
the largest reward [ at m, and suppress it in the notation.

9 An MPL asks questions of the form “Do you prefer $100 now or $z in 6 months?” where x varies
over a grid z1,...,zn41 of dollar amounts. The implied interest rate associated with x increases
monotonically moving down the list, and the point at which the subject switches from preferring
the earlier reward to the later reward determines an interval [z;, x;11] within which an indifference
point ‘($100,now) ~ ($z,6 months)’ lies. A ‘Multiple Delay List’ asks a sequence of questions of
the form “Do you prefer $50 in 1 month or $100 in ¢ months?” where ¢ varies over a range of time
periods t1,..,tn4+1 in a way that the implied interest rate decreases monotonically moving down the
list.



where u : M — R, is a utility index (a strictly increasing, continuous function
satisfying u(0) = 0) and D : M x 7 — (0,1) is a discount function (a continuous,
strictly decreasing function satisfying D(m,0) = 1 and lim; ., D(m,t) = 0 for all
m > 0) such that D(m,t)u(m) is strictly increasing in m. We will often refer to the
tuple (D, u) as the GDU representation. If a preference admits a GDU representation
then we say it is regular. Lemma A.1 confirms that regularity corresponds only to
very basic properties such completeness, transitivity, monotonicity and impatience.!’

Any increasing transformation of a GDU representation yields another GDU rep-
resentation, so there are an infinity of such representations for a given preference.!!
In order to demonstrate the generality of our approach to studying discount func-
tions, we proceed without requiring more structure on the preference or restricting
attention to any particular subclass of representations. Later we specialize to prepare
for applications.

The exhaustive set of restrictions on the delay function implied by the regularity
assumption is given in the following proposition.

Proposition 2.1. ® is generated by a regular preference 77, if and only if:
(i) ®(m,t) is continuous.
(ii) For any t, ®(-,t) is strictly decreasing and lim,, .o ®(m,t) = oco.
(iii) For m > 0, ®(m, -) is strictly increasing and ®(m,t) =t for all t.

Part (ii) reflects monotonicity with respect to money: the delay function increases
monotonically to infinity as m decreases to 0. Intuitively, as the sooner-smaller
reward m decreases and becomes less desirable, the large reward has to be pushed
into the future in order to maintain indifference. In a similar fashion, part (iii) reflects
monotonicity with respect to time.

2.1. General Framework

The main result in this paper identifies the set of discount functions attributable to
the preference -, and the utility index u that corresponds to each discount function.

10The intuitive appeal underlying the connection between delay functions and discount functions
does not rely on transitivity, so we expect that our results can be extended to models of intransitive
preference, such as Ok and Masatlioglu [2007]. We maintain regularity since it enables a clear
exposition.

1To see this, first note that for any utility index u there exists a unique representation U for
a regular preference 77 (for this standard result see for instance Fishburn and Rubinstein [1982]).
Our assertion then follows from the fact that any representation U can be uniquely written in the
form of a GDU representation (D, w) as follows: for any representation U, the utility index w in
any GDU functional form is uniquely defined by u(m) = U(m,0), and D is uniquely defined by

D(m,t) = 28 for all m > 0.

u(m)




Say that a function g : Ry — R, is a restricted transformation if it is continuous,
strictly increasing, unbounded and satisfies g(0) = 0.

Theorem 2.2. Consider a regular preference - and its delay function ®. Then 7
admits the GDU representation (D, u) if and only if there is a restricted transforma-
tion g and some scalar u(m) > 0 such that for all m > 0 and t,
D(m,t) = 6—[g(¢(m,t))—g(¢’(m70))]7
and for all m > 0,
u(m) = e 9@y (7).

The result characterizes all the discount functions and corresponding utility in-
dices that can be attributed to the preference 7~. The functional forms involve
an increasing transformation g of ®. Discount functions are defined in terms of
the difference g(®(m,t)) — g(®(m,0)), whereas utility indices are defined in terms
of g(®(m,0)). Observe that the discount function is completely characterized in
terms of the delay function ®. While u is also characterized in terms of ®, it es-
sentially only reflects the information contained in present values: by definition,
(m,0) ~ (m, ®(m,0)). In contrast D requires information on how ® changes as a
function of t. The result reveals that obtaining a functional form for ® is all that is
necessary to obtain all the discount functions attributable to the subject.

The simple idea behind the proof is as follows. Note that the two indifference
points

(s,0) ~ (M, ®(s,0)) and (s,t) ~ (M, D(s,1))

reveal that the loss of attractiveness (due to discounting) in (s,t) relative to (s,0)
must equal the loss in (7, ®(s,t)) relative to (m, ®(s,0)). This translates into the
statement that any discount function D attributable to the preference 7~ must satisfy
the equality g((jé)) = g((gg((jé)))) By definition, D(s,0) = 1, and so this inequality
can be rewritten as:

D(s,t) - D(m, (s,0)) = D(m, (s, t)).

But this is a functional equation where D is the unknown function and ® is the
known function. The proof verifies that a discount function D is a solution to this
functional equation if and only if there exists a utility index w for which (D, u) is
a GDU representation for the preference . The general solution of the functional
equation is leads to the statement of the theorem. (In the appendix we prove a more
general result by allowing M to be unbounded).

9



2.2. The Efficiency of Delay Functions

Theorem 2.2 not withstanding, the set of compatible discount functions can be com-
puted through present value data as well: it is readily seen that (D,u) is a GDU
representation for a regular preference - if and only if u is a utility index and the
discount function satisfies

u(p(m, 1))

D(m,t) = a(m)

where p(m, t) is the present value of (m,t). The proof of this is trivial, and it provides
a characterization of the set of discount functions and corresponding utility indices
just as Theorem 2.2 does.

However, in practical settings, where data is necessarily limited, ®-data better
reveals the information in 77 than present value data tradeoff data. We substantiate
this claim here in the context of the SDU model. Fix the set of periods and prizes
and order them so that 0 = ¢; <ty < ... <tyand 0 < my < ... < m;. Write the
corresponding finite space of dated rewards as X;; := {mq,..,m;} x {0,ts,..,t;}.
Suppose that the present value data is given by p;; such that

(pij, 0) ~ (my,t;) for all m; and all ¢; > 0.

Assume that the analyst is interested in SDU representations. Say that the (magnitude-
independent) discount function D is attributable to the present value data if there
exists a utility index u such that u(p;;) = D(t;)u(m;) for all (m;,t;) € X;;. Let the
set of attributable D be denoted by D¥. This is indexed by I since we will be varying
I below.

Given X7, let p*(= pr1) denote the present value of (my,t;), the largest reward
at the earliest future period. Suppose that ®-data is obtained by determining 7,
such that

(p*,7;) ~ (myg,t;) for all t; > 0.

That is, we determine 7; such that ®(p*, 7;) = t;. Say that the discount function D
is attributable to the ®-data if D(¢)D(®(p*,t1)) = D(P(p*,t)) for all these periods
71, ..,7;.'2 Denote the set of attributable D by D?.

The present value and ®-data are related by a common time horizon ¢; and also
the indifference point (pr1,0) ~ (my,t;) which defines both p;; and ®(p;1,0). The
following theorem reveals that the J — 1 data points for ® are more discerning than
the I - (J — 1) data points for present values, regardless of the number I of rewards.

12This is equivalent to requiring that there are utilities 0 < u(p*) < u(m;) such that D(t)u(p*) =
D(®(p*,t))u(my) for these t’'s. Observe that u(p*) = D(®(p*,t1))u(m;) must hold and so the
utilities can be substituted out, yielding the original definition.

10



Theorem 2.3. Suppose that 77, admits some SDU representation. Then for all I,
D® C DY.

The proof of the theorem is based on the following insight: limited present value
data will at best put bounds on the participant’s true delay function ® and this is
the only extent to which it restricts the range of possible D’s. The remainder of
the data, no matter how rich, will only help determine what u goes with any such
D (observe that in Theorem 2.2 the utility index is determined by ®(-,0), which
essentially comes from money-time trade-off data). Limited direct data on & will
speak more than data that just puts bounds on ®.

The ‘true’ D is in both D® and D}. The theorem therefore tells us that there is
greater efficiency achieved by using ®, in that we can get closer to the true D with
fewer data points. Stated differently, the theorem reveals that the degree of potential
misidentification is greater with present value data than it is with ®-data. In this
sense, limited ® data provides a better picture of the agent’s entire preference than
does present value, which is the claim we set out to establish. This theorem thus
provides further validation for our claim that ® serves as a behavioral definition of
discount functions.

3. Specializations'?

We proved the result for a class as general as the GDU class so as to enable a wide
variety of applications. Practical interest will typically lie in subclasses with much
more structure, such as the SDU class or its generalizations. We consider a class
smaller than GDU that subsumes SDU. In the sequel we further specialize within
this class.

The literature discusses two dimensions along which discounting can deviate from
exponential discounting. The first is time distortion (non-linear perception of time, as
in Zauberman et al. [2009]). The second is magnitude-dependence (greater patience
towards larger rewards, as in the magnitude effect discussed in Frederick et al [2002]);
this has not received much attention in theoretical literature. A functional form that
allows for both is:

D(m,t) = e~@m)9®), (3.1)

for some a : M — R, and g : R, — R,. Note that the SDU model obtains if
a(-) =1.

13This subsection can be skipped without loss of continuity.

11



The proposition highlights some of the ordinal content of the representation.

Proposition 3.1. Consider a regular preference that admits a discount function
D(m,t) = e=m)9®)  Then:
(a) a(-) is a continuous decreasing function satisfying a (-) > 0 and a(m) = 1.
(b) g(-) is continuous, strictly increasing, unbounded and satisfies g(0) = 0. A
twice differentiable g is linear if and only if the delay function ® is linear in t.

The proposition reveals the following. First, given regularity, a must be decreasing
function of m. Intuitively, if a larger reward is discounted more heavily, then the agent
may prefer $50 over $100 at some large enough ¢, violating monotonicity. Therefore
the ordinal restriction of regularity is consistent with only one kind of magnitude-
dependence, namely that of greater patience towards larger rewards. Second, the
existence of time distortion is an ordinal property: it represents nonlinearity in the
delay function in ¢.

To restrict attention to this class is to implicitly make an assumption on the
agent’s delay function. For completeness we clarify the technical restriction:'*

Proposition 3.2. Consider a regular preference 7~ and its delay function ®, and take
any a, g that satisfy the properties in Proposition 3.1. Then preference 7~ admits a
GDU representation with a discount function of the form D(m,t) = e=*™)9®) if and
only if ® satisfies,

9(®(m, 1)) — g(®(m,0)) = a(m) - g(t), (3.2)

for all m,t.

The restriction on the delay function is not a transparent one, but what matters
for our purposes is that it is lax enough to allow for a variety of functional forms some
of which, as we will see below are adequate for a general analysis. Some examples
are presented in the table.

“The proof of Proposition 3.2 notes that a discount function D(m,t) = e~ [9(2(m)=g(®(m,0))]
in our main theorem takes the desired form if and only if the power term g(®(m,t)) — g(®(m,0))
equals a(m) f(t) for some function f. Observing that for m = m the power term becomes g(¢) — 0
it follows that f = g. Hence the condition (3.2).

For the proof for Proposition 3.1, write §(m) = e~*(M) suppose s < [ and observe that Monotonic-
ity (ie, for any ¢, larger rewards are preferred) requires that §(1)¥® - u(l) > §(s)/® - u(s) and thus

, A\ S ,
5((?) > <%) for all ¢. If % > 1, the unboundedness of f implies that this inequality cannot
hold for all ¢, a contradiction. Thus d(s) < §(I), and a(-) must be decreasing. The remaining

properties follow readily from regularity.

12



®-Function Discount Function D Generated by transformation:
O(m,t) = g~ '(g(t) + g(2(m,0))) D(t) = e~ a(m)=1, anyg

®(m,t) = (1+ a®(m,0))t + P(m,0) | D(t) = (1 + at)™* a(m)=1, g(t)=In(1+ at)
®(m,t) = a(m)t + ®(m,0) D(m,t) = e~ra(m)? g(t) =t

®(m, 1) = [a(m) - 1 + ®(m,0)°]7 | D(m, 1) = e " g(t) = t°

D(m, t) = [(1+at)eC )(1;r04<1>(m 0))—1] D(m,t) = (1+at) ™™ | g(t) = In(1 + at)

Table 1: #-functions and associated D.

Unless the analyst uses richer data in order to pin down the representation, or
further restricts the representation (for instance we take g(¢) = t” in our application),
there may be more than one pair of a and ¢ satisfying (3.2) for a given ®, and for
each such pair a different representation for the preference may be obtained. While
such non-uniqueness of a representation is a nuisance of sorts in theoretical work, in
the current context it is a strength: different representations may provide different
intuitive explanations for a given behavior, which may be relevant for interpretation
and applications. The usefulness of such nonuniqueness will be demonstrated in the
sequel, where we showed that behavior arising from hyperbolic discounting can be
replicated by magnitude-dependent discounting.

3.1. A Tractable Class of Delay Functions

To prepare for our experimental application of Theorem 2.2, we introduce a class of
delay functions that lies within the restricted framework of the previous subsection.
This is a functional form that accommodate familiar behaviors like Stationarity and
Preference Reversals but is flexible enough to accommodate nonlinearities in the
data, and more besides:

O(m,t) = (a(m)t” + b(m)")7 (3.3)

for v > 0. Given Proposition 3.1, regularity requires that a(-) is weakly decreasing
and satisfies a(m) = 1, and b(-) is strictly decreasing and satisfies b(m) = 0.'> Thus,
the curves ®(m,-) are upward sloping, non-intersecting, and the curves for lower m
lie strictly above those for higher m. Time distortion (curvature of the delay function

15To see that a(-) must be weakly decreasing, suppose m > m’ and a(m) > a(m’) then for large
t we would obtain ®(m,t) > ®(m’,t), a contradiction.

13



in t) is captured by . The delay function is linear (resp concave, convex) if 7 = 1
(respy > 1,y < 1).1¢

We first identify conditions under which there exists an SDU representation. Refer
to magnitude-independent discount functions D(t) as separable discount functions.

Proposition 3.3. Consider a regular preference >~ and with a delay function ® that
has the nonlinear form (3.3). A separable discount function D(t) can be attributed
if and only if there exists k > 0 such that, for all m,

a(m) =1+ kb(m)". (3.4)

If k = 0, then the only attributable separable discount function is exponential dis-
counting with time distortion,

Dt)=e"", r>0.

If £ > 0, then the only attributable separable discount function is hyperbolic dis-
counting with time distortion,

D)= (1+k")", 7>0.

Thus, the test for the existence of an SDU representation is simply that the
slopes a(m) must be a linear function of b(m)” in (3.3). The slope k£ > 0 of this
function determines the shape of the separable discount function, which can either
be exponential or hyperbolic, but with time distortion. If the delay function is linear
(v = 1) then there is no time distortion and we obtain the corresponding standard
models.

If the SDU test fails we can nevertheless still identify the non-SDU representation
that exists:!7

Proposition 3.4. The delay function ® has the form (3.3) if and only if the following
general exponential discount function can be attributed to it:

D(m,t) = 6"”“(’”)'”, r>0

where a(-) is weakly decreasing in the size of the reward.

16The expression for the second derivative of ®(m,t) wrt to t is (1 — 7)(a(m)t? +
1-2+

b(m)7)
2mb) .

t20=D[1 — (M)V], and the term in the square brackets is always negative since

7
"To prove this, simply apply Prop 3.2 with the transformation function g(r) = r7.
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As before, the direction of the magnitude dependence in a(-) is an ordinal re-
striction, and strongly reminiscent of the magnitude effect discussed in the literature
(Frederick et al [2002]). The free parameter  needs additional data to pin down, but
for our purposes below it will suffice to restrict attention to the canonical representa-
tion obtained by setting » = 1. An attractive feature of this canonical representation
is that all its parameters are fixed by .

A noteworthy observation is that hyperbolic discounting is behaviorally a special
case of the general exponential discount function on the domain of dated rewards: all
subjects with linear ¢ are representable by general exponential discounting but only
a subset are representable by hyperbolic discounting. Therefore the analysis reveals
that magnitude-dependent discounting is an alternative explanation for preference
reversals attributed to hyperbolic discounting. The two forms of discounting are
substantially different in spirit. Hyperbolic discounting is suggestive of a self-control
problem, whereas the magnitude effect is suggestive of bounded rationality: the
former suggests a passion for the present [1997] whereas the latter suggests that
subjects pay greater attention to larger rewards [2011].

4. Empirical Application

4.1. Experiment Design

For an empirical application of the method, we recruited 100 participants aged 18-65
from an online sampling service (Qualtrics) designed to produce an approximately
representative sample based on age, gender, and income.!® Prior to collecting this
data, we ran a pilot using participants recruited from an online labor market (Amazon
MTurk); results are quite similar.'?

Participants were paid a flat participation fee and received incentives to respond
truthfully, as 10% of participants were randomly selected to be paid for one of their
choices. This level of incentives is in line with previous work, e.g. Andersen et al.

18The sampling service screens out inattentive participants who fail basic attention checks, such
as answering questions too quickly or answering illogically or inconsistently. 11 such participants
were screened out. Additionally, 20 subjects began the experiment but did not complete it. These
participants do not count toward our 100 completed participants.

9The Mturk pilot was unincentivized. The procedure was similar, but differed in the set of
smaller, sooner magnitudes considered: m € {$25, $50, $75,$90} .The pilot analysis sample (drop-
ping non-monotonic choices and subjects who ever have a list on which they always take the
larger-later option) was 44 of 118 participants; (many subjects always chose $100 over $25). In pi-
lot analysis sample, we find more evidence of decreasing impatience. We get similar results testing
model restrictions.
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2008 pay 10% of their sample.

Participants faced a series of multiple delay list decisions. On each list, they were
asked to choose between (m, t)— smaller amount m at time ¢— and a series of options
(100,t + A), with A € {1,2,3,5,7,9,13,17,22, 28, 35,43, 68} . Participants saw lists
for 5 smaller-sooner amounts m € {$50, $60, $70, $80, $90} available at 6 different
time horizons for the smaller-sooner amount ¢ € {0, 1, 3,5, 12,24} weeks, for a total
of 30 lists. As required by the theory, the larger-later amount was constant on all
lists (here, $100). Thus, on one particular list, participants choose between $50 at
time 0 versus $100 at time 1, then $50 at time 0 versus $100 at time 2, etc.

Our objective is to find each participant’s delay function ®;(m,t) s.t. (m,t) ~
(m, ®;(m,t)). For each participant ¢ on each multiple delay list, we determine the
indifference point from the point at which the participant switches from choosing
the larger-later reward to the smaller-sooner reward. We place the indifference point
at the midpoint of the interval: if the participant chooses larger-later at ¢ + A; and
smaller-sooner at t + Aji1 then ®;(m,t) = 3 (A; + Aji). If a participant always
chooses the earlier option on a list, ®;(m,t) = 3 (14 0) = 3.

So, for example, a participant who chose the larger-later option in "$50 in 1 week
v. $100 in 2 weeks", but the smaller-sooner option in "$50 in 1 week v. $100 in
3 weeks", has revealed they are willing to wait 2 weeks but not 3 weeks for $100.
Hence, ®;(25,1) = 2.5. If a participant always chooses the larger-later option on a
particular list,?’ they were too patient for us to estimate their delay function. High
levels of patience do not allow us to observe the characteristics of their discount
function: e.g. very patient exponential discounting looks very similar to very patient
hyperbolic discounting. This issue is not unique to our method; similar issues apply
to multiple price lists.

To construct our Analysis Sample, we drop the 26/100 subjects who ever make
a non-monotonic choice (they do not have a unique switching point on some list).
We then limit to the 40/74 who never have a multiple delay list on which they
always choose the larger-later option. Of these excluded subjects, 26% make the
more patient choice on every question asked, and 59% always make the more patient
choice on the majority of multiple delay lists. Participants who are very patient do
not allow us to observe the characteristics of their discount function. In robustness

20The maximum available delay offered was constrained for the purposes of payment reliability
and feasibility. The latest available payment in this experiment was 92 weeks later, or almost 2
years. The preferences of patient participants could be better captured with lists that use higher
smaller-sooner amounts (e.g. m = 99). However, we wanted to limit the total number of decisions
made to avoid taxing participants’ attention and cognitive ability. Incentive-compatible dynamic
designs would be complicated to explain and implement. Pre-testing indicated that our chosen
range of magnitudes and delays captured the preferences of the largest fraction of participants.

16



checks, we broaden our sample to include those participants who always choose the
larger-later option on less than 10 m, t pairs and impute a value of the delay function
for those choices; the fraction of subjects consistent with an SDU representation is
quite similar.

4.2. The Data

Our Analysis Sample has broad demographic coverage and is similar to the U.S.
population. It is 57% male, with a median age of 48, and 50% are married. By
comparison, the 18-65 U.S. population has a median age of 43 and a marriage rate
of about 50% (2011-2013 American Community Survey). Our sample has a range of
income levels: 33% have household incomes below $35,000 and 30% have household
incomes above $75,000. By comparison, about 35% of U.S. households have incomes
below $35,000 and about 33% have incomes about 75,000. The full sample also has
very similar characteristics.

For each participant i, magnitude m of the smaller-sooner payment, and time
horizon ¢ to the earlier payment, we calculate At;,,; = ®;(m,t) — ¢, which is the
maximum additional delay the participant is willing to accept while still choosing
the larger-later payment. The larger At;,,. is, the more patient the choice. Figure
1 plots the average At;,,; across participants, broken out separately by magnitude
of and time to the smaller-sooner payment. In the upper left panel, the average
maximum additional delay participants are willing to take to choose $100 over $50 is
10.7 weeks when the smaller-sooner reward was available today, and 13.1 weeks when
the smaller-sooner payment was available at 24 weeks. In the lower right panel, we
find that on average, participants are only willing to wait 3-4 additional weeks for
$100 over $90, regardless of when the $90 became available.

Constant impatience (i.e. exponential discounting) implies that the maximum
additional delay At;,,; should not vary by the horizon ¢ to the smaller-sooner re-
ward, while decreasing impatience (e.g. hyperbolic discounting) implies that At;,,
should increase with ¢. Visually, Figure 1 shows only very limited evidence of de-
creasing impatience at the aggregate level- only the $50 v. $100 choice displays
a noticeable increasing pattern.?’ But individual heterogeneity is important. We
regress the maximum additional delay for each participant ¢, amount m, horizon ¢
against participant-specific fixed effects for smaller-sooner amount and for horizon

21 This is consistent with a stream of literature that has not found aggregate decreasing impatience
for monetary rewards, including McClure et al. [2004], who use the same payment method as we do,
and Andreoni and Sprenger [2012], who take care to remove many confounds in their estimation of
preferences. Other work, such as Olea and Strzalecki (2014), has found evidence of both decreasing
impatience and increasing impatience for monetary rewards.
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Figure 1: Average maximum additional delay accepted for larger-later reward. Sam-
ple: Analysis Sample.

to the smaller-sooner payment: At;,,; = 0, + &;,,where 0,,, is a vector of indicator
variables for the smaller-sooner reward magnitudes interacted with participant, and
&, 1s a vector of indicator variables for the different ¢, also interacted with partici-
pant. While At ,,, can vary across participants and amounts in an arbitrary way
(captured in 6;,,), constant impatience requires that At; ,,; not depend on the hori-
zon t to the smaller-sooner reward. Thus, we test the restriction that all £;, = 0.We
reject this restriction (and thus constant impatience) via a likelihood ratio test at
p < 0.001.%2

22We can also test separately, for each participant, whether ¢,, = 0 for that particular i, but
doing so has much less power. For 25% of the participants in the Analysis Sample, we reject that
& =0at p<0.05.
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4.3. Results

Having calculated the values of the delay function ®;(m,t) from participants’ switch-
ing points, we then seek to characterize its structure. Given the values of ®;(m, t) for
each m,t pair, we estimate four delay functions via non-linear least squares. These
delay functions vary in whether they enforce SDU and/or no time distortion (i.e.
linear delay function) structure, and are as follows:

e SDU-Linear: ®;(m,t) = 3,,, + (1 + k;5,,,) t , where (,,, varies across partici-
pants and magnitudes, and k; varies across participants only and is common
across magnitudes. Following Proposition 3.4, we constrain k£ > 0.

1
e SDU-NonLinear: ®;(m,t) = [3)¢ + (1 + k;8),)t"]7 , which adds the time
distortion parameter vy, that can vary across participants; we still require £; > 0.

e NonSDU-Linear: ®;(m,t) = 3,,, + imt,where o, 5,,, vary across participants
and magnitudes.

e NonSDU-NonLinear: ®;(m,t) = 5]} + aimt”’i]l/ 7t which adds the time dis-
tortion parameter vy, that can vary across participants.

The SDU-Linear model is of particular interest, since most economic applications
of discounting assume SDU and do not allow for time distortion. When we estimate
the SDU-Linear model, we find the distribution of k; seen in Figure 2: the mean k; is
0.028, and the median k; is virtually zero (2.13x10716), suggesting the the majority
of our sample are exponential discounters. In fact, for 75% of our sample, we cannot
reject the restriction that k; = 0 at the p < 0.05 level. (We find similarly small
median k; in the SDU-NonLinear model as well, as shown in Table 2 )

However, what appears to be evidence of exponential discounting is instead an
artifact of imposing the SDU model. We reject the SDU restrictions, indicating
participants cannot be exponential (SDU) discounters. Because each model is more
general than the previous ones, we can use a likelihood ratio test to assess the restric-
tions implied SDU and linearity (no time distortion). The SDU model is simply the
NonSDU-NonLinear model with the constraints that ~v,,, = 1 and oy, = 1+ k;3;,,
The parameter estimates in the Non-Linear Non-SDU then tell us how choices deviate
from the SDU model.

Table 2 shows that we strongly reject the restrictions implied by the SDU model
using our likelihood ratio tests. For 68% of the sample we can reject at p < 0.05 the
restrictions implied by the SDU-Linear model in favor of the NonSDU-NonLinear
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Figure 2: Distribution of Estimated k; Under the Assumption of the SDU-Linear
Model. Sample: Analysis Sample.

model; we reject the SDU-NonLinear in favor of the NonSDU-NonLinear model for
70% of the sample.??

The non-linearity of the delay function (i.e. time distortion) is not crucial to
the results. We can only reject the NonSDU-Linear model in favor of NonSDU-
NonLinear for 38% of the sample. In additional to the results in the table, we have
also compared the SDU-Linear model directly to the NonSDU-Linear model. Doing
so simply fixes 7, = 1 and tests the restriction that o, = 1 + k;5,,, For 58% of
the sample, we can reject at p < 0.05 the restriction implied by the SDU model in
favor of the Linear Non-SDU model.

We then use a commonly used model selection criterion, the Akaike Information
Criterion (AIC), to determine the "best-fit" model, without privileging any model

23While it is slightly surprising that we reject the more general SDU model for a larger fraction of
the population, this can occur because the null model being tested against the unrestricted model
differs. For the participant for which we reject the SDU-NonLinear model but not the SDU-Linear
model at p<0.05, we have verified that while the SDU-NonLinear fits slightly better than the SDU-
Linear model, the test rejects SDU-NonLinear at p=0.032 and SDU-Linear at p=0.054 because the
degrees of freedom for the SDU-NonLinear likelihood ratio test are 4 instead of 5.
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as the null hypothesis. Of course, a model with more parameters will of course be
able to capture more variation in the data. However, the AIC trades off a penalty
for additional parameters against the improved fit to select among models. Table
2 shows that one of the non-SDU models are preferred for 82% of participants.
The most frequently selected model is the NonSDU-NonLinear model, chosen for
53% of participants. In addition to the results in the table, we have also removed
consideration of non-linearity and compared the SDU-Linear model to the NonSDU-
Linear model. In this case, the AIC prefers the NonSDU-Linear model 73% of the
time over the SDU-Linear model.
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Table 2: Model Selection and Delay Function Parameters

% of Sample For Which Model is

Model Chosen by AIC: Rejected by LR Test: Parameters: Mean, [Median], (Std. Dev.)
Bm=s0  Bm=00 Qm=50 Qm=g0 ki Vi
SDU-Linear 13% 68% 1041 3.43 2.84E-02
[7.55] 2.46] [2.13E-16]
(9.84)  (3.53) (0.08229)
SDU-NonLinear 5% 70% 10.72  3.90 4.95E-02  1.03
[7.42] [3.19] [5.41E-12] [1.01]
(10.22) (3.65) (0.11284)  (0.06)
NonSDU-Linear 30% 38% 1040 358 110 1.01

6.76]  [3.13] [1.04] [1.00]
(9.59) (3.22) (0.38) (0.19)
NonSDU-NonLinear 53% NA 980 354 136  1.05
[7.39]  [3.19] [1.05] [1.01]
(8.66) (3.39) (1.42) (0.25)

1.35
[1.14]
(1.19)

Sample: Analysis Sample. Median parameters displayed. Mean parameters displayed, with medians in brackets and standard deviations in

parentheses below. For the NonSDU-NonLinear model, the means and standard deviations exclude one extreme outlier subject. Likelihood

ratio tests conducted relative to NonSDU-NonLinear model.



For each model, the row in Table 2 displays the mean and median estimated
parameters for the all participants. Because each participant is described by a vector
of parameters (e.g. f3,,, for m = 50,60, ...,90) we display a subset of the parameters—
those for the lowest and highest m. The various f,,_5, parameters imply that for a
decision between $50 today and $100 sometime in the future, the median participant
would be willing to wait 6.76 weeks (as predicted by the NonSDU-Linear model) to
7.55 weeks (as predicted by the SDU-Linear model).?! The lower f3,,_q, parameter
indicates that the median participant is willing to wait is only 2.5-3.2 weeks for $100
over $90 today. An mean «,,—5 value of 1.36 means that for each additional week
the smaller-sooner payment is delayed (t = 1,2,...) , on average participants would
be willing to wait an additional 0.36 weeks (=1.36-1) after the time of the smaller-
sooner payment. (Recall, the delay function is measured in absolute time, not time
relative to the smaller-sooner payment.) While the median subject has an « near 1,
close to constant impatience, there can is substantial variation around the median.
Finally, v captures the non-linearity in the delay function; it is more clearly described
in the figure.

To illustrate the different delay functions, we examine one particular partici-
pant in Figure 3; the population average parameters mask substantial individual
heterogeneity. The figure displays the participant’s estimated delay functions for
two different smaller-sooner amounts m, for the SDU-Linear, NonSDU-Linear and
NonSDU-NonLinear models (we omit the SDU-NonLinear model for readability).
Each panel also includes a 45° line, which is the delay function that would be pro-
duced by SDU exponential discounting. First, note that on the right panel (m = 90),
the lines virtually overlap and are close to the 45° line, showing the models don’t make
very different predictions for the choice between $90 and $100. However, the models
substantially differ in the left panel, which describes the choice between $50 and
$100. Note that the NonSDU-Linear model and SDU-Linear model lines cross— we
find the SDU-Linear model predicts more patience when time to the smaller-sooner
payment t &~ 0, but less patience when ¢ is above 10. The NonSDU-NonLinear model
predicts a similar willingness-to-wait to the other models when the smaller-sooner
payment is available at short time horizons (¢ near zero). Yet it quickly diverges when
the smaller-sooner payment is available at a longer delay. At about 1 month to the
smaller-sooner payment (¢ = 4), the NonSDU-NonLinear delay function shows much
more patience than the SDU-Linear model: a willingness-to-wait of about 36 weeks,
12 weeks more than the approximately 25 weeks predicted by the other models.

24Note that while Figure 1 shows the mean additional delay accepted for $50 v. $100 when t = 0
is about 10 weeks, the median additional delay is approximately 8 weeks, near to what is implied
by the 3,,_50 estimates.
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Figure 3: Delay Function Models Plotted Using an Example Participant’s Estimates.
Note: Parameters are as follow. SDU-Linear model: k; = 0.0055, 55, = 22.0,
Bgo = 5.1. NonSDU-Linear: 35, = 18.2, a50 = 1.60, B¢y = 5.9, ago = 0.92. NonSDU-
NonLinear: v = 0.50, 855 = 20.7, aso = 0.77, B9y = 3.7, ago = 0.67.

Finally, a quick glance at Table 2 suggests that the results satisfy the conditions
that «;,, and [, decrease in m, as required by regularity. We more rigorously
verify this for the most general NonSDU-NonLinear model by estimating a linear
relationship between «;,, and m and between ,,, and m. Pooling all participants to
address noise,?® we find the expected statistically significant negative trend on both
cases: q;, = —0.009m, B,,, = —0.159m, rejecting a zero coefficient with p < 0.10 in
both cases. (While our participant-specific estimates are subject to more noise, 68%
of the participant-specific trends are negative, and only 1 out of 80 trends is positive
and statistically significant.)

2We drop the one outlier participant with extreme parameters values (e.g. v = 27, asg =

4.97e+09.) Including this participant still gives aggregate negative trends, significant for 5 but not
for a.
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4.4. Robustness

The common SDU discount functions (exponential, hyperbolic, generalized hyper-
bolic) produce a linear delay function and are thus appropriately tested for in our
analysis above. However, some SDU discount functions treat ¢ = 0 specially and
produce a nonlinear delay function that is not of the form considered in Proposition
3.3. For instance, the quasi-hyperbolic # — § model produces a linear delay function
when no option is available at t = 0, but has a nonlinearity at ¢ = 0. Similarly, the
Benhabib, Bisin, and Schotter (2010) fixed-cost of delay model, in which payments
delayed from t = 0 to ¢t > 0 incur a fixed-cost, has a nonlinearity at ¢ = 0; nonethe-
less, it produces a linear delay function when ¢ > 0. Additionally, immediate t = 0
payments may be treated differently due to confounds, such as trust, uncertainty, or
transactions costs.

To account for special treatment of ¢ = 0, we repeat the above analysis excluding
all choices in which the smaller-sooner option is available at t = 0. We compare the
SDU-Linear model (which would be produced by the quasi-hyperbolic model and
fixed-cost of delay model) to the NonSDU models. Results are very similar:*® with
a likelihood ratio test, the SDU-Linear model is rejected in favor of the NonSDU-
Linear model for 64% of participants and rejected in favor of the NonSDU-NonLinear
model for 69% of participants. Moreover, the AIC best-fit criterion only chooses the
SDU-Linear model for 22% of subjects.

We also explore robustness to sample selection. We examine an expanded sample
that drops only participants who always choose the larger-later option for more than
10 of the m, t pairs or who ever make a non-monotonic choice.?” For the resulting 51
participants, the AIC model selection criteria prefers the SDU-Linear model for only
24% of the sample, and we still reject the SDU-Linear model for 63% of the sample
in favor of the Non-Linear Non-SDU model via a likelihood ratio test.

5. Concluding Remarks

This paper approaches the practical question of how to design intertemporal choice
experiments from the perspective of decision theory: the behavioral foundations for

26Dropping the ¢ = 0 choices, we have difficult fitting the model for 4 participants, who we then
exclude from this analysis.

2TIn this expanded sample, we need to impute the indifference point for lists on which the par-
ticipant always chose the larger-later option. We impute their choices as though they choose the
earlier option when the later option was available at an additional delay of 93 weeks, a 25 week
increment over the last option they actually faced. We explored alternative imputation strategies,
which gave similar results.
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the object of interest (discount functions) is studied by writing a behavioral definition
and characterizing the connection between the two. The general mapping is obtained
by behaviorally defining the discount function by the delay function ®, and second by
noting that functional equations provide a means of characterizing the connection
between ® and the representations (D, u). This result suggests a procedure for
experimentally testing theories and eliciting discount functions.

While separability is an assumption made for the sake of parsimony in economic
models, we evaluate whether there is an empirical price for assuming it. In both our
main experiment and pilot experiment, we find that more than half our participants
are not well-characterized by separable discounted utility. More than simply rejecting
SDU, we show that the form of our estimated delay functions are consistent with a
magnitude-dependent discount function. The general framework we examine invites
further exploration. Our results suggest that exploring non-SDU preferences will be
fruitful, and that empirical applications might benefit from searching for explanations
for observed behavior that do not rely on SDU.

On the extent of magnitude dependence, our experiment shows that subjects
treat $50 differently enough than $100 to give rise to a highly significant rejection
of separability. Take the canonical representation D(m,t) = e ™" where all
parameters are fixed by the data, a(50) = 1.36 from Table 2 and a(100) = 1 by
regularity. With a one week delay ¢ = 1 (in order to shut down time distortion), we
see that

D(50,1)
D(100,1)

that is, the agent discounts $50 much heavier than she does $100. It seems intuitive
that $50 and $100 might be treated very differently, just as it is also intuitive that
for larger stakes a $50 difference may not lead to a very pronounced difference.

While our delay function approach is defined for the analysis of time preference,
it can be adapted easily to other domains as well. For instance, experiments on risk
often offer subjects lotteries that have one nonzero payoff. Such lotteries can be
written as (m,p), where p is the probability of the nonzero outcome. By defining
‘time’ as t = % —1 our procedure becomes immediately applicable to the study of risk
preference, where the general representation takes the form U(m,p) = f(m,p)u(m)
and where f is the decision weight.

— (t7(a(100)=a(50)) _ 0.70,
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A. Appendix: Regularity and Proof of Proposition 2.1

Say that a preference 77 over X is regular if it satisfies the following basic restric-
tions:*8

1- Order: 7 is complete and transitive.

2- Continuity: For each (m,t), the sets {(m/,t') : (m/,t') 77 (m,t)} and {(m/, ') :
(m,t) Z (m/,t")} are closed.

3- Impatience:

(i) For all m > 0 and ¢t <, (0,¢) ~ (0,t') and (m,t) = (m,t).

(ii) For each m,m’ such that m’ > m > 0, there is ¢ such that (m,0) > (m/, ).

4- Monotonicity: For all ¢, if m < m/ then (m/,t) = (m,t).

We establish some basic results on regularity which are used later, though not
always explicitly.

Lemma A.1. For any continuous increasing u : M — R, a regular preference 7,
admits a representation U : M x T — R such that U(-,t) is continuous and strictly
increasing, U(m, -) is continuous and strictly decreasing if m > 0 and constant if m =
0, and U(m,0) = u(m). Conversely, any preference that admits such a representation
_ Ulm,

Twz)t) for any m > 0, any such representation can

be written as a GDU representation (D, u).

is regular. By defining D(m,t)

Proof. The first claim is established in [1982, Thm 1]. The remaining are trivial. m

Lemma A.2. If 7 is regular then

(a) For every m,t and d there exists m' < m such that (m’,t) ~ (m,t + d).
Moreover, for every m,t and m' < m there exists d such that (m’,t) ~ (m,t + d).

(b) For any s < | and T such that (s,0) ~ (I, 7), and for every t' > 7T there exists
t such that (s,t) ~ (l,t"). Moreover, when s > 0 then for any t > 0 there is a unique
T >t such that (s,t) ~ (I,T).

(c) For each (m,t) there exists a unique ‘present value’ 1)(m,t) satisfying

(¢(m, ), 0) ~ (m, 1).

Moreover, (0, ) = 0, 1»(m, -) is strictly decreasing for any m > 0, lim;_,, ¥)(m,t) =
0 for all m, and ¥(m, -) is continuous.
(d) If (s,0) ~ (I,7) and (s,t) ~ (I,T+7), then T + 71 > t.

28 Continuity presumes that R, has the euclidean topology, any subset of R, has the subspace
topology, and X has the product topology.
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Proof. Part (a) follows from Impatience, Monotonicity and Continuity; we omit
the proof. The t in part (b) exists by Impatience, Monotonicity and Continuity: By
Monotonicity, (s,t') =3 (I,¢'). By Impatience and the fact that (s,0) ~ (I,7) and
t" > 1, it follows that (s,0) = (I,#'). Thus, by Continuity, (s,0) = (I,t') = (s,t)
implies that there is ¢ such that (s,¢) ~ (I,t'), as desired. For the second claim in (b),
the existence of T is established in a similar way. Impatience guarantees uniqueness
when s > 0.

Turning to part (c): part (a) establishes the existence of present values, and
Impatience implies that ¢(m,-) is strictly decreasing for any m > 0. To see that
lim; ., ¥(m,t) = 0 for all m, suppose not. Then there exists m and s > 0 such that
(5,0) < (¢(m,t),0) ~ (m,t) for all t. But this contradicts Impatience. Finally, to see
that ¥ (m,-) must be continuous, take any strictly increasing homeomorphism and
consider the representation U delivered in Lemma A.1. Since u(¢(m,t)) = U(m,t)
and in particular, 1(m,t) = u='(U(m,t)), continuity of v~! implies that of ¢)(m, -).

For part (d), note that if 7'+ 7 < t then (s,7 4+ 7) > ({,7 + 7) by Impatience,
which then violates Monotonicity. m

The next lemma (stated as Proposition 2.1 in the text) characterizes regularity
in terms of properties of ®. Say that ® : M x T — 7 is generated by 77 if for any
0 <m < and each t, (m,t) ~ (m, ®(m,1)).

Lemma A.3. ¢ is generated by a regular preference 7~ if and only if:
(i) ®(m,t) is continuous.
(ii) For any t, ®(-,t) is strictly decreasing and lim,, .o ®(m,t) = oco.
(iii) For m > 0, ®(m, -) is strictly increasing and ®(m,t) =t for all t.

Proof. Prove the ‘if’ part. Let ®;'(¢) be defined by ®(®;'(¢),0) = t. Define a
function U(m,t) = &5 (®(m,t)), where the inverse exists and is continuous by the
monotonicity and continuity properties in (i)-(ii). Intuitively, U(m,t) is the present
value of (m,t), that is, if there was a regular preference generating ® then (z,0) ~
(m,t) ~ (m, ®(m,t)) and (z,0) ~ (m, ®(z,0)) would hold. Thus ®(z,0) = &(m,1),
and in turn, U(m,t) = v = &5 (®(m, 1)).

We first verify that U represents a regular preference. By (ii), for fixed ¢, since
®(m,t) strictly decreases in m and ®;"' is also strictly decreasing, it follows that
O, (®(m,t)) is strictly increasing in m. Therefore U(m,t) is strictly increasing
in m. Similarly, U(m,t) is strictly decreasing in ¢ if m > 0. By continuity of
U and by (i), U(0,t) = lim,, o U(m,t) = lim,, o ®;'(®(m,t)) = 0 for any t.
The other Impatience property follows from the fact that by (ii) and (iii), 0 <
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limy oo U(m, t) = limy_,eo 1 (B(m, 1)) < limy_o @5 H(P(M, 1)) = limy oo ' (1) =
0, that is, lim; .o, U(m,t) = 0. As already noted, U is continuous.

Finally, we check that ® is generated by the preference - represented by U,
that is, U(m,t) = U(m, ®(m,t)). Note that by definition and by (iii), U(m,t) =
O 1 (®(m,t)) = &y (). Thus, U(m, ®(m,t)) = &5 (®(m,t)) = U(m,t), as desired.
|

B. Appendix: Proof of Theorem 2.2

B.1. Proof

We formally prove the result by taking M = R, and noting that the same argument
establishes Theorem 2.2 as a corollary when M = [0, ).

For a given preference - and any rewards 0 < s < [, define the function ®; ()
by the indifference:

(s,t) ~ (I, Ps,(t)). (B.1)
For s =0 < [, let ®,,(t) := oc.
We first clarify the exhaustive implications of regularity on ®.

Lemma B.1. ® is generated by a regular 7~ if and only if:

(i) ®(s,l,t) is continuous,

(ii)) ®(s,-,t) is strictly increasing and ®(-,[,t) is strictly decreasing in s, and
moreover lim, o ®(s,1,t) = oo when [ > 0,

(iii) ®(s,1,-) is strictly increasing if s,1 > 0, and ®(m,m,t) =t for all t,

(1V) Doy iy (Prngimy (1)) = Pog s (t) for all t and my < my < mo.
Proof. Prove the ‘if’ part. Define CI>(_Z710)(7") by <I>(<I>(_l710)(r), [,0) =r. Let U(m,t) :=
@%?O(t), where the inverse exists by the monotonicity and continuity properties in
()-(ii). Intuitively, U(m,t) is the present value of (m,t), that is, it is a small reward
s = U(m,t) that satisfies,

P (s,m,0) = t.

We first verify that U represents a regular preference.

To see that U is continuous, suppose m,, — m, t, — t and to ease notation
write s, := U(my, t,), that is, ®(s,, my,0) = t,. We show that s, converges. Since
m,, — m, there is some M and N such that m,, < M for alln > N (wlog let N = 1).
Define T,, := ®(m,, M,t,). By (i), T,, converges. Observe that ®(s,, M,0) = T,
by (iv). Since ®(-, M, 0) is strictly monotone and continuous, it follows that ®;/(-)
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is continuous. Therefore, since T,, converges to T := ®(m, M,t), it must be that
Sp = Q)X/[{O(Tn) converges to s := @ﬁjo(T) = @;4170(<I>(m, M, t)), and in particular,

®(s, M,0) = ®(m, M,1).

It remains to show that ®(s, m,0) = t. By the displayed equality and (iv), ®(m, M, ®(s,m,0)) =
O(s, M,0) = ®(m, M,t) and so by (iii), ®(s,m,0) = ¢, as desired. Thus U is contin-
uous.

Now show the remaining regularity properties. By (ii), for fixed ¢, the equation
®(s,m,0) = t implies that as m increases, s must also increase. Therefore U(m,t)
is strictly increasing in m. Similarly, U(m,t) is strictly decreasing in ¢ if m > 0.
To show the second Impatience property, take any m,m’ such that m" > m > 0.
By (ii), there is a small enough s’ > 0 s.t. ®(s’,m/,0) > 0 = ®(m,m,0). Define
t = ®(s',m’,0). Then by (i), U(m’,t) < U(m,0), as desired. Finally we show the
first Impatience property, that is, U(0,t) = 0. By (ii) and (iii), since ®(m,m,t) = t,
it must be that for s that satisfies ®(s,m,0) = ¢ it must be that s < m. That
is, 0 < U(m,t) < m. Then by continuity of U, U(0,t) = lim,, o U(m,t) = 0, as
desired.

To conclude, we check that ® is generated by the preference - represented by
U. By definition, for any s < [, s = U(l,®(s,1,0)). Take any ¢ and suppose
s"=U(l,®(s,1,t)), that is,

Since (iii) implies ®(s, [, t) > ®(s,1,0), it follows that s” = U(l, ®(s,l,t)) < U(l,P(s,1,0)) =
s. That is, 8" < s <1[. B (s,1,®(s",5,0)) = ®(s”,1,0) and so, by the dis-
played equality, ®(s,l,®(s",s,0)) = ®(s,l,t). By (iii), ®(s”,s,0) = ¢, and this
implies that U(s,t) = s” = U(l, ®(s,l,t)), and thus ® is generated by U, as desired.

u

Lemma B.2. If D solves the functional equation (FE) below, then for any 0 <
my < My < ma,

D<m2a (I)mhmz (0)) ' D(m?)v <I>m2,m3 (0)> = D(m37 q)m17m3 (0))
Proof. Suppose m; < my < mg then the functional equation implies

D(m27 (I)ml,m2 (O)> ) D(m?n q)mz,m3 (0)) = D(m37 (I)mz,m3 (q)mhmz (0))

But transitivity of 7 implies @, s (Prny.ms (0)) = Pinyms (0). The assertion follows.
m
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Lemma B.3. The following statements hold:
(a) Consider any regular preference = and its ®-function. Then D can be at-
tributed to - if and only if D solves the functional equation:

D(Sv t) ’ D(Za (I)s,l(o)) = D(l> (I>8,l(t>>a (FE)

forall0 < s <[ andt.
(b) Suppose 77, is a regular preference with the function ®, and that D is a solution
to (FE). Then (D, u) represents 7 if and only if u is given by

w(m) { D(m, ®,,7(0)) -u(ﬁ) ifm<m for all m.,

[D(m, ®mm(0))]7! - u(m) otherwise ’
where i > 0 and u(m) > 0 are arbitrary.

Proof. We prove (a), and part (b) follows as a corollary of the proof.

First show that any attributable D must satisfy the functional equation. By
regularity, 7~ admits a representation U. Any representation can be written as a GDU
model with some D and u. By definition of the ®-function (1.1), it must be that for all
s,1 > 0 and ¢, both u(s) = D(l, ®4;(0))u(l) and D(s,t)u(s) = D(l, Ps;(t))u(l) hold.
Rearranging yields the functional equation. Observe that we have also determined
that a solution must always exist if ® comes from a regular preference 7.

For the converse, suppose D is a solution. Take any m > 0 and assign it any

utility u(m) > 0. Define

D(m, @mm(0))tu(m) otherwise for all m.

w(m) = { D(m, ®,,m(0)u(m) ifm<m
By continuity of D, the utility « is continuous as well (monotonicity will be deter-
mined shortly). Next we show that, given transitivity of 7Z, the utility u is consistent
with D in the sense that it satisfies

u(s) = D(I, ®,,(0))u(l) (B.2)
for all s,1 s.t. s <. To see this, consider the following cases:

Case 1- 5,1 < m.
Then u(s) = D(m, @57 (0))u(m) and u(l) = D(m, ®,7(0))u(m), which implies




By the Lemma, D(I, ®,(0)) - D(71, ®,11(0)) = D(7, B 11 (0)), that is, rmg=ml) —
D(l,®,,(0)). It follows that (B.2) holds.
Case 2- s <m </ B
Then u(s) = D(M, D,7(0))u(m) and u(l) = prarigy, which implies
u(s) = D(m, By (0)) D (1, By 1 (0))u(D).

By the Lemma, D(m, ®,7(0)) - D(I, 7,(0)) = D(l, ®,,(0)), and (B.2) follows.
CaseS—mgsgl; B
Then u(s) = D(Sg—g’im)) and u(l) = D(l%%, which implies

us) = 262mi0) )

D(s, ®75(0))

By the Lemma, D(s, ®75(0)) - D(I, ®5,(0)) = D(l, ®7,(0)), and (B.2) follows.

Thus u is consistent with D in the sense of (B.2). Observe that the equality also
assures us that u must be strictly increasing: D is strictly increasing in its second
argument and by Monotonicity and Impatience ®,,;(0) must be strictly increasing in
s. To show that there is a GDU representation with D, define U(m,t) := u(p(m,t)),
where p(m,t) is the present value of (m,t). Since p(m,t) is a representation for 7
and wu is strictly increasing, it follows that U(m, t) represents 7. But then U(m,t) =
u(p(m,t)) = D(m,t)u(m), as desired. =

The next lemma determines how to check if D solves (FE) on the basis of infor-
mation on @, 7, P, and the present value of (m, t) for all m > M and t < ®y;,,,(0).
Write p,,,; for the present value of (m,t), that is, (pm, 0) ~ (m,t).

Lemma B.4. Fix any m > 0. Then D solves (FE) for all 0 < s < [ and t if and
only if:

i) D solves (FE) for all 5,1 s.t. 0 < s <[ for s=m orl =, and all t; and

ii) D(m,t) = %% for all m > m and t < ®,,,(0).
Proof. The ‘if’ part is straightforward — note that part (ii) follows from lemma B.2.
Turn to the ‘only if” part. Suppose the hypothesis holds. Take any 0 < s <[ and t.
Consider the following cases. We make frequent use of the fact that if m; < my < mg
then transitivity implies @, ms( Py my (1)) = Pony my (t) for any t.

Case 1- s,[ <m.

By hypothesis, D(s,t)-D(m, ®;7(0)) = D(m, ®;7(t)) and D(I,t)-D(m, ®,7(0)) =
D(m, ®;7(t)). Moreover, by transitivity, ®;m(®,;(t)) = 57 (t). Observe that:
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D(m,cbl,m[qfi(cb (t)

0)
D(m<1>l ( ( )by hypothesis

= D(s,t)[%] We are done if we show that % =
But this follows
since
DL, ®4(0)) D(7T, @1.(0))

= D(m, ©;7(Ps,(0))) by hypothesis

= D(m, ®57(0 )) by transitivity. This completes the argument.

Case 2- s<m <.

By hypothesis D(s,t)-D(m, ®,7(0)) = D(m, ®s7(t)) and D(m, t)-D(l, @7,(0)) =
D(l, ®7,(t)) and by transitivity, ®m i (Psm(t)) = Ps,(t). Observe that

D(L, B, (1))

= D(l, @ (Psm(t))) by transitivity

= D(m, s (t )) D(l, ®,(0)) by hypothesis

= [D(s,1) - D(m, 57(0))] - D(I, 7,(0)) by hypothesis

= D(s,t)-[D(m, ®57(0))-D(l, P7,(0))]. We are done if D (7, ®,(0))-D(I, P7,(0)) =

). But this follows since
sm(0)) - D(1, 97,4(0))

= D(m, @1 (Ps7(0))) by hypothesis

= D(m, ®5,(0)) by transitivity. This completes the argument.

Case 3(i)- m < s <[ and t > ®7 4(0).

By hypothesis D(m, t)-D(s, ®m(0)) = D(s, ®m
D(l, ®,(t)) and by transitivity, @ ;(Pm s(t)) = P
implies that &' (t) exists. Observe that:

D(l, (1))

= D(l, (IDml( —5(t))) by transitivity

s(2)) and D(m, t)-D(1, @5,(0)) =
1(t). The restriction t > @ (0)

= D(m, @5, (t)) - D(1, ,1(0))
D(S(I)ms(q)_ s(1))
D(5,3m,5(0
=D | D(”)‘I)’ml(o We are done if we show that o™ @) = D(1 : ob
= (3,)-m e are done if we show that FoF™"5 (I, 25,(0)): ob-

serve that by hypothesis and transitivity, D(s, @ s(0))D(l, ®,,(0)) = D(l, @, ,(Pm s(0))) =
D(l, ®,(0)), as desired.
Case 3(ii)- m < s <l and t < ®74(0).
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) D(m, & 1 (0
By hypothesis, D(m,t) = D@(MCP—M

Since t < @ 5(0), it must be that p,,, > m.

D(s,t)- D(l,®,(0))

= g E;ETSE?); . &il,gflg(()())))) by hypothesis, where p is the present value of (s,t) (s
is the present value of (I, ®4;(0)) by definition)

_ D(Bm(0)

D(p,®mp(0))

= D(l,®,,(t)) by hypothesis since by transitivity p must be the present value of

(I, Ps,(t)) as well.

This completes the proof. m

where p,,: satisfies (ppe, 0) ~ (m,1t).

Fix any m > 0. For any m > 0 and ¢ > 0, define ®(m,t) by:

(m,t) ~ (m, ®(m,t)) ifm<m
(m,t) ~ (m,®(m,t)) otherwise.

Lemma B.5. D is attributable iff there is a continuous, strictly increasing and
unbounded function g satisfying g(0) = 0 such that

e—[g(d)(m,t))—g(cb(m,l)))] lfm S m

D(m,t) = e~ 19@n' (0)=9(@m O] if ;> 77 and t > Bz (0)
e~lamO)=g(@@mH.0] if m > 7 and t < gy, (0)

Proof. By lemma B.3, D is attributable if and only if it solves (FE). Suppose
D solves (FE). Then by lemma B.3, (D, u) represents 2~ for some u. Wlog, let
u(m) = 1. By regularity, ®(m,0) is continuous and strictly decreasing in m for
m < m and strictly increasing for m > m. Since u is strictly increasing, there is a
continuous strictly increasing function g satisfying ¢(0) = 0 such that?’

e~ 9(®(m0) if m < 7m
ulm) =9 o@mo)  ifm>m o

We will see shortly that g must be unbounded.*® Given that (D,u) represents
and u(m) = 1, the definition of ® implies u(m) = D(m, ®(m,0)) for m < m, and
u(m) = D(m, ®(m,0))"! for m > m. Therefore,

D(m, ®(m,0)) = e 9®MmO0) for m <m
D(m, ®(m,0)) = e 9@ for m >m

29By regularity ®(7,0) = 0 and so u(m) = e 9(®0)) = ¢=9(®(M0)) — 1 consistent with our
assumption that w(m) = 1.

30This does not imply that u is unbounded: though u(m) = e9(2(m.0)) for m > 7 for unbounded
g, regularity does not require ®(-,0) to be unbounded.
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We use this observation below. Another observation is that by regularity ®(m,0)
ranges from 0 to co as m varies over [0,7], and so we have

D(m, t) = e 90,

Moreover, since D is a discount function it must satisfy the property lim; .., D(m,t) =
0, which implies that g must be unbounded.

To find the general solution of (FE), we first show that D has the desired form
for 0 < m <'m. By the previous lemma, D solves the functional equation for s, s.t.
[0 < s <l=m] and all ¢, and in particular, it solves

D(m.t) - D(m, ®(m, 0)) = D(m, ®(m,t))

for any 0 < m < 7 and all t. Since we have determined that D (7, t) = e 9, this
functional equation therefore implies

D(m,t) = e~ 19 @m)=g(@mO)] {1 all m < 7 and t,

as desired.
Next consider m > m. By the previous lemma, D must satisfy

D(m,t) - D(m,®(m,0)) = D(m, ®(m,1)).

Then, given the earlier observations, D(m,®(m,t)) = D(m,t) - D(m,®(m,0)) =
e~ l9+9(®(m0)  Therefore,

D(m,t) = e~ 9@ O+ EmO for all m > 77 and ¢ > & (0).

Finally, to consider the case [m > m and t < ®s,,(0)], we note that by the previous
D(m7¢m,7n(0))

——_mmi L and therefore by our earlier observations
Dt rpy (0)) Y ’

lemma D(m,t) =

D(m’ t) — e—[g(@(m,o))—g(@(p(m,t),o))} fOI- m > m and t < ¢m,m(0)

Thus, we have shown that if D is attributable to the preference then it must have
the desired form.

To complete the proof, we need to check that the discount function solves (FE).
This is straightforward to establish in light of the previous lemma. For instance, for
the case where | = m, we see that

— 6—[g(¢’(m7t))—g(¢>(m,0))} e—lo(@ (72,8(m.0)) ~g(®(7,0))] — e~ l9(@(@,2(m,t)))—g(2(M,0))]

— e—[g(‘1>(mﬁt))—g(<1>(m70))+g(‘1>(m7<1>(m70))) 9(2(mM,0)] — o—[g(2(M,2(m,t)))—g(®(7,0))]

— g(®(m, 1)) —g(®(m, 0))+g((, B(m, 0))) = g(®(, B(m. 1))). But &(m, ) :

O 7 (2) = , and thus the last equation is an identity. m

35



C. Appendix: Proof of Theorem 2.3

It follows from the definition of admissibility that D(t) = e=9) is admissible for the
data {®(p1,t) : t = 79,.., 75} if and only if ¢ solves the functional equation

g(®(pr,t)) = g(t) + g(®(ps1,0), forall t = 79,.., 7.

The set of admissible D(t) = e=9%) is nonempty (the ‘true’ one is in the set). Take
any admissible D, and corresponding g.

Below we extend the data {®(psi,t) : t = 79,.., 75} to some function ® on a
subset of X = R%r in a way that is consistent with the present value data, and then
proceed to prove the theorem. Specifically, we inductively define ® on {p;;} x R..
It will be convenient to define, for each 1 < ¢ < I, the set S, C {p;;} of all observed
present values of rewards m,, .., my, that is, S, :== {p;;: ¢ <i<ITand j=0,.,J}.
Note that by regularity, m; = pjo.

First consider « = I. Define ®(my,t) =t for all t. For all j, define ®(p;;,0) = ¢,
and moreover, ®(py;,t) = g (g(t) + g(®(py,0)).

Next suppose that, for 1 < <1,

(a) @ is defined for m € S, and all ¢,

(b) ®(-,0) is strictly increasing on S,,

(c) for all p;; € S,

®(pij, 0) = @(my, t;),

(d) for all m; € S,

9(t;) = g(@(mi, ;) — g(®(m, 0))

Observe that this is satisfied for the case « = I that we just defined. We now extend
® to S,_; and all ¢ such that these conditions are satisfied.

If m,_1(= p—10) equals some m € S, then define ®(m,_1,t) = ®(m,t) for
all t. If m,_y < S, then define ®(m,_1,0) by taking any arbitrary number in
(max,,es, ®(m,0),00) and let ®(m,_1,t) = g *(g(t) + g(®(m,_1,0)) for all ¢. If
neither of these cases hold, then there exist m*, m, € S, such that m* is the smallest
element in S, that is greater than m, and m, is the largest element smaller than it.
Define ®(m,_1,0) by taking any number in the interval (®(m*,0), ®(m.,0)) (regular-
ity and the construction ensures that the interval is nonempty) and let ®(m,_1,t) =
g g(t) + g(®(m,—1,0)) for all t. Next for all j, define ®(p,—1;,0) = ®(m,_1,t;)
and moreover, ®(p,_1;,t) = g ' (g(t) + 9(®(p,-1,,0)). Then ® is defined on S, ; and
all t, and moreover, the analogues of (a)-(d) hold by construction. Continue this
construction till we obtain ® on {p;;} x R. This satisfies the analogues of (a)-(d)
for v = 1.
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To prove the theorem, take the admissible discount function D(t) = e™9®). By
property (b), we can extend ®(-,0) continuous and monotonically to all of R, and
define the utility index,

u(m) = e~ 9(@m0),
Given properties (c) and (d), determine that, for all i, j,

U(pz]) — e—g(q’(l)ij,o))

= e 9(@(mi,t;)) — o—[9(®(mit;))—g(®(mi,0))] . p—9(P(mi,0))

= e 9 u(m;) = D(t;)u(m;).

Thus, we have shown that any D that is attributable to ® data is also attributable
to the present value data.

D. Appendix: Proof of Proposition 3.1

Most of the assertions follow from Proposition 3.2. Regularity implies that a must
be weakly decreasing: if m > m/’ then by monotonicity (m,t) = (m/,t) for all t. The
representation implies

/
(m, 1) = () s ¢=9Oalm) =l 5, 400

u(m)’
but if a(m) > a(m’) then, although the inequality holds for t = 0 (since % < 1),
the unboundedness of g implies that the above inequality cannot hold for all ¢, which
violates monotonicity. Therefore a is weakly decreasing.

To see that the linearity of g corresponds to that of ® in ¢, recall that by Propo-
sition 3.2,

9(®(m,t)) = g(®(m,0)) = a(m) - g(t),

for all m,t. If g is linear then ®(m,t) = a(m) -t + ®(m,0), a linear function.
Conversely if @ is a linear function ®(m,t) = a(m) - t + f(m) then clearly linear g
and a(-) = «(-) is a solution to the functional equation. We want to show there are
no other solutions. Suppose there is a solution g that is twice differentiable. Then
using the functional equation we see that

g'(t)
g (@(m,t)) |

If ® is linear then ®”(m,t) equals 0 and so does the term in the square brackets,
that is, for all m, ¢,

g (®(m,1)) - ®"(m,t) = a(m) |g"(t) — g"(®(m, 1)) -

§"(1) _ (®0m.1)




By varying m between 0 and m we see that % must be a constant, in which case

it can either be linear or of the CARA form g(r) = e*" — 1, where k > 0 (since g
must be unbounded and satisfy ¢g(0) = 0). However the CARA form does not solve
the functional equation and so g must be linear.

E. Appendix: Proof of Proposition 3.3

We exploit proposition 3.2 which yields that a separable discount function D(t) =
69 can be attributed if and only if ¢ satisfies:

g((a(s)t7 +b(s)")7) = g(t) + g(b(s))-

First suppose a g that satisfies this equation exists. We show that a(s) and b(s)
must be linearly related. Take any s'. Letting t = ®(s’,0) = b(s") we see that

9((a(s)b(s")T +b(s)7)7) = g(b(s")) + g(b(s)) = g((a(s')b(s)” + b(s")7)7),

and since g is strictly increasing, a(s)b(s")"+b(s)” = a(s")b(s)”+0b(s")?, which implies

2=
2=

Thus if an g exists, then the ratio alffs));l must be a constant k for all s, and so

the equation a(s) = 1 + kb(s)” must hold, as desired. To see that k& > 0, note when

% = k for all s, then we have a functional equation g(((1 + kb(s)?)t” + b(s)”)%) =

g(t) + g(b(s)). Denoting x =t and y = b(s) we can write this as:

1

92" +y" +kx"y")7) = g(z) + g(y).

Suppose by way of contradiction that £ < 0. Write g((z” +y7(1 — |k| :ﬂ))%) =
g(x) + g(y) and take x such that (1 — |k|27) < 0. Then as y increases the LHS
decreases and the RHS increases (since g is strictly increasing), a contradiction.
Thus k > 0 must hold.

Conversely, suppose a(s) = 1 + kb(s)” holds with & > 0. Consider the above
displayed functional equation. Consider various cases:

(i) k= 0.

A solution is g(x) = cx”, ¢ > 0. Then D(t) = §' is attributable for any 6 € (0, 1).

(ii) & > 0.
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Then it is easily verified that g(z) = In(1 + kx7) is a solution, and so for any
r > 0, an attributable discount function is D(t) = e "0+k) — (1 4 k7)™,

Finally, the uniqueness properties of the SDU model (Fishburn and Rubinstein
[1982]) confirm that in each of the above cases there are no other attributable discount
functions within the SDU class. W
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