On the Implementation of a
Content-Addressable Network

Alexandru Popescu
Dept. of Computing
School of Informatics
University of Bradford
Bradford, West Yorkshire, UK
E-mail: A.O.Popescu@Bradford.ac.uk

Abstract—Over the last years, the Internet has evolved towards
becoming the dominant platform for deployment of new services
and applications such as real time and multimedia services,
application-level multicast communication and large-scale data
sharing. A consequence of this evolution is that features like
robust routing, efficient search, scalability, decentralization, fault
tolerance, trust and authentication have become of paramount
importance.

We consider in our paper the specific case of structured
peer-to-peer (P2P) overlay networks with a particular focus
on Content-Addressable Networks (CANs). An investigation of
the existing approaches for structured P2P overlay networks is
provided, where we point out their advantages and drawbacks.
The essentials of CAN architecture are presented and based on
that, we report on the implementation of a CAN simulator.
QOur initial goal is to use the simulator for investigating the
performance of the CAN with focus on the routing algorithm.
Preliminary results obtained in our experiments are reported as
well.

I. INTRODUCTION

P2P overlay networks have become very popular over the
last years due to features that makes them suitable for the
development or deployment of new services like overlay
multicast communication, large-scale data sharing and content
distribution. P2P networks exhibit three fundamental features:
self-organization, symmetric communication and distributed
control [1]. Compared to the classical client-server data shar-
ing, the P2P approach has the characteristics of a disruptive
technology in the sense that it offers the opportunity for ag-
gregation of very large storage and processing resources while
minimizing entry and scaling costs. The main consequence
of this is the presence of a much higher risk for failures
and therefore different methodologies have been developed for
increasing the robustness of P2P networks [1].

This paper is structured as follows. In Section II we provide
a short overview of the state of the art research in P2P systems.
This is followed in Section III by a description of how CANs
work. Our own implementation of the CAN routing protocol
along with simulation results are described in Section IV. In
Section V we present some brief conclusions and ideas for
future work.

Dragos Ilie
Dept. of Telecommunication Systems
School of Engineering
Blekinge Institute of Technology
Karlskrona, Sweden
E-mail: dragos.ilie@bth.se

Demetres Kouvatsos
Dept. of Computing
School of Informatics
University of Bradford
Bradford, West Yorkshire, UK
E-mail: D.D.Kouvatsos @scm.brad.ac.uk

II. P2P SYSTEMS: STATE OF THE ART

Some of the most important issues related to P2P systems
that must be considered in the research and design of such
systems are concerning naming, routing, congestion control
and security. Other important research issue for P2P networks
is the indexing system used in a specific P2P network. By an
index we mean a {key, value} pair in the general sense, where
the key is a concise reference (e.g., a name or numerical
identification) to a data object and the value denotes a node
or a collection of nodes that either store the data object or
have knowledge of its whereabouts. Indexes are generally
partitioned into three classes, namely local, centralized and
distributed. Each of these classes has own advantages and
drawbacks, as it is shown in [2]. A P2P local index means
that a peer only keeps track of its own data and it does not
receive any other reference for data at other nodes, e. g., like
in the case of the first Gnutella version. In a system with
centralized index, there is a single server that keeps track of
references to data existent on more peers, as it was the case of
Napster. The most advanced and popular systems are however
the ones with distributed indexes, where pointers to the target
data reside on several nodes.

An important mechanism connected to indexing is the
search system. There are a number of search systems existing
in today’s P2P networks, which can be partitioned into two
main classes [2]-[5]:

o Semantic-free systems, which are data-centric. These
systems are generally based on distributed hash tables
(DHTs), which build a mathematical relatioship between
the key and the value in the index. The DHT used induces
a specific form of routing geometry such as Plaxton trees,
rings, tori, butterflies, de Brujin graphs and skip graphs.
Examples of applications using semantic-free systems are
BitTorrent, e-Mule, Coral Content Distribution Network
and OceanStore.

o Semantic-based indexes are human-readable (e. g., they
can be keywords) and able to capture object relationships
such as those between the document name and the data
itself. The drawback, in this case, is related to the fact
that scarce data objects may not be found. Examples

of applications using semantic-based indexes are Napster
and Gnutella.

If the network uses a DHT substrate, the node identification
is typically mapped on the key space. Additionally, each
participating node becomes responsible for a subset of the key
space. In this scenario, searching for a key becomes similar
to routing a message towards a node and we speak about key-
based routing (KBR) or DHT-routing.

There are two main classes of P2P networks with reference
to routing substrate or geometry [3]: unstructured networks
and structured networks. Unstructured networks, also called
“first generation” networks, used initially flooding and ran-
dom walks for routing. More recently, these methods were
enhanced to alleviate the amount of overhead traffic by using
super-peers, clustering, selective forwarding or a combination
thereof. Examples of such networks are Gnutella and Kazaa.
The unstructured networks have the main advantage in the
form of simplicity but they have several important drawbacks
like, e. g., large routing costs, risk of failure in finding the
requested data objects, difficulties in providing scalability
when handling increased rates of aggregate queries or when
the system size increases. On the other hand, structured
networks, also called ’second generation” networks, use KBR
schemes that reduce the routing cost and provide a bound on
the number of hops required for localizing a target data item.
A good definition of structured P2P networks is that the P2P
network topology is tightly controlled and data objects are
placed at specific locations selected such as to obtain better
query performance. Examples of such networks are Plaxton,
Pastry, Tapestry, Chord and CAN [1], [2].

Structured P2P systems have an architecture based on using
the DHT as a layer, as shown in Figure 1. Information about
data objects is deterministically placed in this layer, at peers
identified by the key of the specific data object. Keys are
mapped by the overlay network protocol to a unique peer in
the overlay network. The search service is similar to a hash
table, in the sense that {key,value} pairs are stored in the
DHT and every participating node can efficiently retrieve the
value associated with a given key. DHT systems have several
advantageous features, e. g.,, decentralization, scalability and
fault tolerance.

The main criticism of structured systems surrounds the
issue of peer transience (i.e., churn), which has a serious
impact on the network performance. Other drawbacks of
these systems are significantly higher overheads than those
associated with unstructured systems as well as the lack of
support for keyword searches and complex queries. Because
of this, decentralized unstructured P2P overlay networks seem
today to be more popular [1]. However, recent efforts towards
the development of a unification platform for different DHT-
systems are making structured networks more attractive [6],
[7]. Such a platform will provide a KBR-based application
programming interface (API) coupled with a basic DHT
service model to easily deploy DHT-based applications.

Another important issue is regarding the query mechanisms
used in P2P systems and ways to optimize them. A query

Vahe

Vahie=Gat{Key)
—_—

RermoveKey)
—

Pt (Few, Vahae)
—

Fig. 1. Structured P2P system with DHT substrate

mechanism is used to construct efficient searches from user
input. There are today several query systems, e.g., range
queries, multi-attribute queries, join queries and aggregation
queries, each of them with own advantages and drawbacks
[2]. The challenge is to develop new models for query op-
timizations for large networks in the order of thousands and
tens of thousands of servers and millions of clients [8].

An interesting recent development is also the fact that the
border between unstructured and structured networks seems
to become less and less distinct. It has been found that
most unstructured networks evolve to include some form
of structure, typically hierarchical (e. g., regular nodes and
supernodes), in order to enhance their performance [2].

III. CAN ESSENTIALS

Content-Addressable Networks (CANs) are a robust, scal-
able, distributed systems designed for efficient search of data
stored in a DHT. The key space of the CAN is a n-dimensional
Cartesian coordinate space. The space wraps around the edges
of each dimension, thus creating a n-dimensional torus ge-
ometry. For the remaining of this paper, we focus on a 2-
dimensional coordinate space along the z,y coordinates with
the implicit assumption that the concepts presented here can
be extended to higher dimensions.

Each node in the CAN has an identifier that is mapped to a
point P in the key space. In addition, the node is responsible
for its zone, which is a rectangular portion of the key space that
surrounds the point P. Furthermore, the node has information
about adjacent zones and the nodes that are responsible for
them. The nodes are able to route messages in the CAN
overlay utilizing only information about neighbouring nodes
and their zones. Since the CAN space is a 2-dimensional co-
ordinate grid, this becomes a matter of routing along a straight
line. We present our routing implementation in Section IV-A.

The construction of a CAN overlay consists of three steps:
bootstraping, finding a zone and joining the overlay routing.

These correspond to the functions! BOOTSTRAP, FINDZONE
and JOINROUTING outlined in Algorithm 1.

Algorithm 1 CAN construction
1: S < BOOTSTRAP

¢ +— RAND(S)

P «— RAND(X,Y)

Z, N «— FINDZONE(c, P)

JOINROUTING(N)

6: procedure BOOTSTRAP

7: Contact a DNS server d

8 b +— d.LOOKUP(CAN domain)
9: ¢ +— b.GETCANNODES

10: return c

11: end procedure

> bootstrap node
> set CAN nodes

12: procedure FINDZONE(c, P)
Route JOIN message towards point P via node ¢
13: Z,N «— p.GETZONE > P is in p’s zone
14: return Z, N
15: end procedure

16: procedure JOINROUTING(N)
17: Send soft updates to all nodes NV
18: end procedure

19: procedure LOOKUP(domain)

20: Lookup IP address ip associated with domain
21: return ip

22: end procedure

23: procedure GETCANNODES
24: return subset of known CAN nodes
25: end procedure

26: procedure GETZONE

27: Give up half of own zone, Z, to calling node
28: Collect the set N of neighbours to half-zone Z
29: return Z, N

30: end procedure

The purpose of bootstraping is to enable the node to find
the IP address of an existing CAN node. The authors of [9]
do not insist on a particular bootstraping procedure, but rec-
ommend something similar to Your Own Internet Distribution
(YOID) [10]. It is therefore assumed that a Domain Name
System (DNS) lookup of the CAN domain will reveal the
IP address of a bootstrap node. The bootstrap node is used
to obtain a set of IP addresses corresponding to active CAN
nodes.

'In the pseudocode presented in this paper we use the convention that a
procedure name preceeded by a variable name and a dot indicate a remote
function call (e. g., n.LOOKUP means that function LOOKUP runs on node
n).

Upon succesfull completion of the bootstrap procedure, the
joining node must find its own zone. To do this, it starts
by picking randomly the IP address of a node b from the
list supplied by the bootstrap node. This is shown on line 2
of Algorithm 1. The function RAND shown there selects
randomly one element from each set passed into its param-
eters. On line 3, the function RAND takes two arguments, X
and Y, which are the set of points along the z- and y-axis,
respectively. In this case RAND selects randomly a coordinate
along the z-axis and another one along the y-axis and assignes
the values to the point P. P becomes implicitly the identifier
of the joining node.

The next objective of the new node is to find a zone
in the CAN, which contains P. To do this, the new node
assembles a JOIN message and then asks node ¢ to route it
towards point P. Upon receiving the JOIN message, node p,
which is responsible for the zone where P belongs, executes
the GETZONE procedure. The result of the procedure is the
division of p’s zone into two equal parts, where p keeps
one part and relinquishes the other, Z to the new node.
The procedure returns Z along with set of neighbours N
responsible for zones adjacent to Z.

When the new node has found its zone, all nodes in the
system send an immediate update to their neighbours to
inform them if any change has occured in their zone. This is
followed by periodic updates update messages where similar
information is exchanged.

In the case a node leaves the CAN, one of its neighbours
takes its zone. Zone information is then refreshed during
periodic routing updates. The absence of routing messages
from a neighbour is taken as indication of a node failure. In
this case a takeover mechanism is initiated. The purpose of the
takeover mechanism is to assign the zone of the failed node to
one of its neighbours in a consistent manner (i. e., preventing
several nodes from attempting simultaneously to take over the
zone) [9].

IV. CAN IMPLEMENTATION

We have implemented the CAN construction algorithm as
well as basic routing functionality and are currently working
on implementing the ability to store data (i. e., values) at CAN
nodes.

Our implementation creates a 2-dimensional [0,1] x [0, 1]
coordinate space for the CAN. The first node to join the
CAN becomes the owner of the entire CAN space and it is
assigned the coordinates {0,0}. Additionaly, it is selected as
bootstrap node. This is just a matter of convenience and has no
impact on anything else other than the bootstraping procedure.
Each additional node to be added follows the description of
Algoritm 2.

A. Routing in CAN

As previously mentioned, if the random point P is not
located within the zone owned by the bootraping node, then
a JOIN request must be routed through the CAN. Starting
from the bootstrap node, the routing operation is accomplished

Algorithm 2 Add node to CAN
1: P+ RAND(X,Y)
2: N «— ADDNODE(P)
3: JOINROUTING(V)

4: procedure ADDNODE(P)

5: if P € c then > P is in origo node c’s zone
Check if a neighbor of node ¢, owner of point P has a
bigger zone, return biggest to split and save to p

6: p < c.PLUS1ZONE(P)

Split p’s zone, either still origo node or one of its neigh-
bors

Z,N < p.GETZONE > P is in p’s zone

else > P is not in origo node ¢’s zone
Owner of zone where point P lie needs to be found
9: Z, N «—FINDZONE(c, P)
10: end if
11: return N

12: end procedure

13: procedure PLUS1ZONE(P)
Compare zone area sizes of current node with its neigh-
bors and return node p with the biggest zone area

14: return p

15: end procedure

16: procedure FINDZONE(c, P)
Route returns owner of point P

17: p < c.ROUTE(P) > Route through CAN
Check if a neighbor of node p, owner of point P has a
bigger zone, return biggest to split and save to p

18: p < p.PLUS1ZONE(P)

19: Z,N «— p.GETZONE

20: return Z, N

21: end procedure

> P is in p’s zone

22: procedure GETZONE

23: Give up half of own zone, Z, to calling node
24: Collect the set IV of neighbours to half-zone Z
25: return Z, N

26: end procedure

27. procedure ROUTE(P)
Route JOIN message through CAN towards point P via
node ¢, return owner of point P

28: return p

29: end procedure

30: procedure JOINROUTING(N)
31 Send soft updates to all nodes [V
32: end procedure

by attempting to follow a straight line through the Cartesian
space from source to destination. This is done simply by
greedy forwarding to the neighbor whose zone extends furthest
towards the destination. In a 2-dimensional coordinate space
two nodes are neighbors if their coordinate spans overlap along
one dimension and abut along the other dimension.

In our current CAN-implementation, the routing operation
always starts from the bootstrap node located at the origo in
the coordinate space. For each node on the path, the algorithm
computes the extremities of each neighbor zone to find the
one with the shortest distance to P along a straight line. For
each neighbor zone the distance to P is computed from eight
different points: four of them are the zone corners and the
remaining four are the middle points on each zone border.
The neighbour, whose zone contains the point with the shortest
distance to P, is a candidate for the next hop on the path. To
avoid loops, the algorithm never selects the same node twice.
Therefore, if a candidate is already an intermediate node on
the path, the algorithm selects the next eligible candidate.

When the number of CAN nodes grows, zones become
rectangular areas of different size. In this scenario, there is an
increasing probability that the algorithm will become trapped
in a zone where all neighbor nodes are already intermediate
nodes on the path. In such a case the routing algorithm enters
a recovery mode that forces the JOIN message to backtrack its
steps one at a time. For each step back all the neighbors of the
node at that particular step are checked for an alternative path
towards the destination. The recovery mode continues until a
valid path is found.

B. Routing Performance

The performance of the routing algorithm outlined in the
previous section depends on how often the algorithm enters
the recovery mode. To get preliminary information of the
algorithm performance we have run the two experiments.

In both experiments we start with an empty CAN. Then we
add up to 100 nodes to the CAN in the first experiment, and
up to 1000 nodes to the CAN in the second experiment. For
each node n to be added we keep a variable a,, that counts
the number of times the routing algorithm enters the recovery
mode for that node. We run each experiment 100 times and
compute the average number of times each node n enters the
recovery mode. We call this statistic mean routing failures per
node n and we denote it by A,,. More formally,

100
1

= 1700 Qp

r=1

A,)

where a,, indicates the number of times node n enters
recovery mode during simulation run r. The plots for A4,, when
the number of simulated nodes is 100 and 1000, are shown
in Figure 2 and Figure 3, respectively. We can observe that
the performance of the routing algorithm degrades with an
increasing number of nodes. This is an indication that our
CAN implementation faces scalability problems unless the
routing algorithm improves.

T T T
meansumpernode100 —+—

JAVAR VARl
/ I
1 \
: viviattiall
g o |
2 T AT L
i iR
i 11 '
L | T/ || 4
' AL TIAY)N
Vil IV
FUNTY U
AT ANA R .
T FVE 4
o5t WA Y 1
[
[N \[T l
X | MO |
0 el %) =Y I I I I I
0 10 20 30 40 50 60 70 80 90 100
nodes
Fig. 2. Mean routing failures: 100 nodes over 100 simulation runs

70
meansumpernode1000 —+—

60

50

failures

30 -

| \m\‘] w |u J, w “"" ‘I "Ih
ol Ih I |
I i

iR i “‘[lw'"ﬁ ‘|

20

10 -

0 100 200 300 400 500 600 700 800 900 1000
nodes

Fig. 3. Mean routing failures: 1000 nodes over 100 simulation runs

The reason behind the degrading performance is that when
the number of peers increases, CAN zones become smaller.
The routing algorithm becomes more likely to be trapped in
a zone with neighbours already visited. In order to avoid a
routing loop, the algorithm backs out incrementally, until it
finds a neighbour not visited previously.

V. CONCLUSIONS

There is still much work remaing to complete this CAN
implementation. It is imperative to address the routing perfor-
mance issue in order to improve the overall scalability of the
system. We have recently become aware of a more efficient
way to perform CAN routing [11], based on identification of
CAN zones with binary sequences. We plan to evaluate this
algorithm as part of our future work.

In the long term we would like to move the CAN implemen-
tation into a simulator such as MyNS [12] or OmNeT++ [13].
This will allow us to study CAN’s performance in the pres-
ence of large amounts of churn. Furthermore, we would like
to compare CAN performance to the performance of other
structured-based overlays such as Pastry and Tapestry.

REFERENCES

[1]1 E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay networks schemes,” IEEE Commu-
nications Surveys and Tutorials, vol. 7, no. 2, pp. 72-93, 2nd quarter
2005.

J. Risson and T. Moors, “Survey of research towards robust peer-to-peer

networks: Search methods,” RFC 4981, Sep. 2007. [Online]. Available:

http://www.ietf.org/rfc/rfc4981.txt

H. Balakrishnan, F. M. Kaashoek, D. Karger, R. Morris, and I. Stoica,

“Looking up data in P2P systems,” Communications of the ACM, vol. 46,

no. 2, pp. 43-48, Feb. 2003.

[4] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,

and I. Stoica, “The impact of dht routing geometry on resilience and

proximity,” in Proceedings of the ACM SIGCOMM, Karlsruhe, Germany,

Aug. 2003, pp. 381-394.

B. Yang and H. Garcia-Molina, “Efficient search in peer-to-peer net-

works,” in Proceedings of ICDCS, Vienna, Austria, Jul. 2002.

F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards

a common API for structured peer-to-peer overlays,” in Proceedings of

IPTPS, Berkeley, CA, USA, Feb. 2003.

[7] D. llie and A. Popescu, “A framework for overlay QoS routing,” in
Proceedings of 4th Euro-FGI Workshop, Ghent, Belgium, May 2007.

[8] D. Kossmann, “The state of the art in distributed query processing,”
ACM Computing Surveys, vol. 32, no. 4, pp. 422-469, Dec. 2000.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
able content-addressable network,” in Proceedings of ACM SIGCOMM,
San Diego, CA, USA, Aug. 2001, pp. 161-172.

[10] P. Francis, “Yoid: Extending the internet multicast architecture,” Apr.
2000, unpublished paper. [Online]. Available: http://www.isi.edu/div7/
yoid/docs/yoidArch.ps.gz

[11] J. Eberspdcher, R. Schollmeier, S. Zols, and G. Kunzmann, “Structured
P2P networks in mobile and fixed environments,” in Proceedings of
HET-NETs, Ilkley, UK, Jul. 2004.

[12] “Myns simulator.”” [Online]. Available: http://www.cs.umd.edu/users/
suman/research/myns/index.html

[13] “Omnet++ simulator.” [Online]. Available: http://www.omnetpp.org/

[2

—

[3

[t

[5

[t}

[6

=

