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a b s t r a c t

A major challenge in forest management is the ability to quickly and accurately predict bole volume of
standing trees. This study presents a new model that uses Multilayer Perceptron (MLP) artificial neural
networks for predicting tree diameters values. The model requires three diameter measures at the base
of the tree, and recursively predicts other diameter measures. The predicted diameters allow for calculat-
ing tree volume using the Smalian method. The performance of the proposed model was satisfactory
when compared with data obtained from tree scaling and volume equations.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The extensive coverage of forests in Brazil, alongside with the
huge supply chain involved from cultivation to product generation,
denotes the great importance of forestry in that country. This re-
sults in an increased capacity to generate jobs and income in this
economic sector. In 2001, statistics made by the Brazilian Society
of Silviculture (SBS) indicated that the contribution of forestry to
Brazil’s gross domestic product reached US$ 11 billion, and exports
were around US$ 4 billion. This generated about 2 million direct
and indirect jobs. The forest cover of the Brazilian territory, com-
bined with excellent soil and climatic conditions, indicate the great
advantages of forestry in Brazil (Juvenal and Mattos, 2002).

Approximately 3 million hectares of planted forests in Brazil are
of the genus Eucalyptus. Major investments by pulp and paper
industries, combined with the efforts of research institutions and
universities, have made that country one of the largest producers
of eucalyptus in the world.

Eucalyptus is a fast-growing, low-cost tree species that
produces more timber than other species. The yield of timber in
Brazil is 45—50 m3 ha�1 year�1. In Chile, USA, Canada and
ll rights reserved.
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Finland, the yield is 20, 10, 7 and 4 m3 ha�1 year�1, respectively
(Votorantim Celulose e Papel – VCP, 2004).

The volume of timber planting is essential information in guid-
ing rational and sustainable utilization of available forest resources.
Thus it is very important to quantify it as precisely as possible. The
most traditional method used by Brazilian timber companies are
the use of volumetric equations. These equations are set with tree
scaling samples when conducting forest inventory.

In volumetric equations, geometric assumptions are made
about the tree shape. Such assumptions require various measures
of diameters along the bole (trunk) for the construction of models
that represent the stratum (sub-area) of the stand. Nevertheless,
during the scaling, the sampled trees are felled. As this process
must be repeated several times until all sections of the population
are sampled, this task becomes very time-consuming and costly.
Consequently, companies often overlook forest scaling data, which
impairs predictions generated by volumetric equations (Andrade
et al., 2006).

Other methods of estimating the bole volume are proposed by
Smalian, Huber and Newton. These methods have been applied
in the forestry sector since late eighteenth century (Finger, 1992;
Machado and Figueiredo Filho, 2003; Scolforo, 2005).

From the 90’s onwards, many researchers have used artificial
neural networks (ANN) for approximating nonlinear functions.
ANNs do not require any geometrical assumption on the function
to be approximated. ANNs have been applied in many areas such
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Fig. 1. Three-layer MLP architecture.
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as finance, time series forecasting, and pattern classification,
among others.

Neural networks have been used in forest modeling to estimate
several parameters such as tree diameter, height, volume and oth-
ers. Guan and Gertner (1991) used ANNs to model growth and
mortality of trees. In Leduc et al. (2001) ANNs were used to gener-
ate a probability distribution of DBH to classify the trees. Age, aver-
age height of dominant trees, trees per acre and site identifier were
used as input data. Huang et al. (2009) used ANNs to find a fre-
quency distribution of stem diameter classes based on the upper
relative diameter, the average diameter and the diameter variation
coefficient. Xiao et al. (1998); Brandão (2007); Ranson et al. (2007);
Silva et al. (2008) predicted tree height based on the DBH, age and
other statistical information using artificial neural networks.
Diamantopoulou (2005b) predicted the diameter of fir trees using
artificial neural networks. Bole diameter, the diameter at breast
height and total tree height were used as input. The output of
the network was all diameters between 5.3 and 33.3 at intervals
of 4 m. The results were satisfactory, because fir trees are fairly
regular. Nevertheless, around 90% of the samples had to be used
for training, leaving only 10% for testing. In Diamantopoulou
(2005a); Diamantopoulou (2006); Görgens (2006); Baleeiro
(2007); Görgens et al. (2009); Silva et al. (2009); Özçelik et al.
(2010) neural networks were used to estimate tree volume. In
these studies, DBH and total height were used as input. A drawback
of these studies is that trees with the same DBH and total height,
but with different taper characteristics, resulted in equal volumes.

This work presents a new approach for predicting the diameters
of eucalyptus trees by using Multilayer Perceptron Neural Net-
work. We propose a recursive prediction of these diameters by tak-
ing into account only the measures of diameters at three different
heights at the base of each tree. The predicted diameters allow us
to calculate the tree bole volume through the Smalian method. Be-
sides allow us to estimate these volumes by considering only three
simple measures of each three, the present approach requires only
10% of the sampled trees for the training stage making the field
work easier and faster.

The contribution of this paper is the recursive prediction of
these diameters using with only three actual measurements taken
at the base of the tree. The predicted diameters allow for calculat-
ing tree bole volume using the Smalian method. Moreover, the pro-
posed model requires only 10% of the sampled trees for the
training stage.

This paper is organized as follows. In Section 2 the recursive
prediction model and the architecture of the MLP network are ex-
plained, where the most significant details are provided during
training. The methods for calculating volume, volumetric equa-
tions and validation methods are also explained. Section 3 presents
details on the performance of the proposed model and that of tra-
ditional methods. Finally, Section 4 presents the conclusions of this
study.

2. Prediction methods and artificial neural networks

2.1. Prediction

Series prediction is commonly used for time series. That may be
regarded as a modeling problem. For the prediction, a model is
built between the inputs and outputs. This model is used to predict
subsequent values based on previous values. Direct prediction and
recursive prediction are some of the methods used for long-term
time series forecasting (Ji et al., 2005).

2.1.1. Direct prediction
To predict the values of a series, M + 1 different models are built

according to Eq. (1).
d̂iþm ¼ fmðdi�1; dt�2; . . . ; di�nÞ; ð1Þ

where m = 0,1, . . .,M; M is the maximum horizon of prediction and n
is the size of the regressor which in turn is formed by the input vari-
ables of the right side of the equation.

Input variables on the right side of Eq. (1) form the regressor.
A satisfactory result was obtained by Diamantopoulou (2005b)

by using Multilayer Perceptron Neural Network to predict directly
the diameters of fir trees that are fairly regular ones.

2.1.2. Recursive prediction
Recursive prediction can be constructed by first making a one

step ahead prediction, according to Eq. (2).

d̂i ¼ f ðdi�1;di�2; . . . ; di�nÞ; ð2Þ

In order to predict the next value in the series, Eq. (2) is also
used, but the first term in this equation is the result obtained from
the previous step, as shown in Eq. (3).

d̂iþ1 ¼ f ðd̂i;di�1;di�2; . . . ; di�nþ1Þ: ð3Þ

In this work, diameters of trees of genus Eucalyptus are recur-
sively predicted using Multilayer Perceptron Neural Network.
Thus, for the prediction, diameters d1:3; d0:7 and d0:3 are used as in-
put, and the network output is the predicted diameter d̂2:0. In the
next step, the inputs are d̂2:0, d1:3 and d0:7 and the network output
yields the predicted diameter d̂3:0. These steps are repeated at
intervals of one meter along the stem until it reaches the total
height of the tree.

2.2. Multilayer Perceptron (MLP) artificial neural network

A Multilayer Perceptron (MLP) Neural Network is composed of
an input layer, one or more hidden layers and an output layer.
The input signal propagates feed-forward through the network,
layer after layer (Haykin, 1998). Fig. 1 shows the MLP used in this
work.

Several activation functions may be used in the MLP (Haykin,
1998). The activation function used in this work for the hidden
layer neurons and for the output layer neurons was the hyperbolic
tangent, also known as the tan-sigmoid or tansig, defined in Eq. (4).

uðaÞ ¼ tanhðaÞ ¼ 2
ð1þ expð�2aÞÞ � 1 ð4Þ



F.A.A.M.N. Soares et al. / Computers and Electronics in Agriculture 78 (2011) 19–27 21
There are several MLP training algorithms, such as gradient des-
cent, gradient descent with momentum, conjugate gradient, quasi-
Newton, Levenberg–Marquardt, etc.

The Levenberg–Marquardt technique is more efficient than the
conventional gradient descent technique (Hagan and Menhaj,
1994). The gradient descent technique is a steepest descent algo-
rithm and involves small enough steps on the local gradient of
the scalar field. One disadvantage of this method is the possibility
that the gradient descent finds a local minimum before the global
minimum is reached. The Levenberg–Marquardt algorithm is a
refinement of the Gauss–Newton method, which is a variant of
Newton’s method (Levenberg, 1944; Marquardt, 1963). Newton’s
method uses information from the second order partial derivative
of the performance index used to adjust the weights. Thus gradient
information is used in conjunction with error surface curvature
information.

In this study, all codes were written using MATLAB�. The MAT-
LAB Neural Network Toolbox™ was used both to implement and to
use the MLP and training algorithm (MATLAB, 2010).

2.3. Error calculation of diameters predicted by the MLP

In order to verify the behavior of the MLP in the prediction of all
diameters of each tree, Root Mean Square Error ðRMSE%Þ and linear
correlation (R) were used, as shown in Eqs. (6) and (7) (Özçelik
et al., 2010), respectively.

RMSE ¼
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i � ye
i
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s
ð5Þ

RMSE% ¼
RMSE

�ya

� �
100 ð6Þ

R ¼
Pn

i¼1 ya
i � �ya

� �
ye

i � �ye
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ya

i � �ya
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ye

i � �ye
� �2

q ð7Þ

where ya and ye are the vectors of actual diameters and estimated,
respectively, �ya and �ye are the averages of the actual and estimated
diameters values, respectively, and n is the number of diameter
measures between input measures and the total height.

2.4. Tree volume calculation from estimated diameters and using
volumetric equations

The volumes of all trees are calculated using the Smalian meth-
od, according to Eqs. (8) and (9), in order to verify the efficiency of
the MLP network model proposed. These volumes are compared
with volumes calculated with actual diameters using Smalian
Method and obtained through the Schumacher and Hall (log)
method.

The Schumacher and Hall (log) model is a volumetric equation
that estimates tree volume from the DBH and total height ðHtÞ,
according to Eq. (10). This model is adjusted using parameters ob-
tained from accurately measured trees (Cabacinha, 2003).

gi ¼
di=2ð Þ2p
10;000

ð8Þ

v ¼
Xn�1

i¼1

gi þ giþ1

2
li þ

gnln

3
ð9Þ

where v is the total tree volume, gi is the basal area of the ith
position, li is the section length of the ith position, gn is the basal
area of the cone (tree tip), ln is the length of the cone and di is
the diameter of the ith position. In Eq. (8) the area of each gi is di-
vided by 10;000 to convert from cm2 to m2.

log v ¼ b0 þ b1 log DBHþ b2 log Ht þ e ð10Þ
where v is the volume, DBH is the diameter at breast height and Ht

is the total height. The tree volume is obtained using the exponen-
tial of the result of Eq. (10).
2.5. Error calculation of predicted volumes

In order to verify the accuracy of the volumes calculated from
the diameters predicted by the MLP, the following percentage er-
rors were calculated: mean deviation Precision ðP%Þ(Freese,
1960), ðMD%Þ, Bias ðBias%Þ(Leite and Andrade, 2002), Root Mean
Square Error ðRMSE%Þ and linear correlation (R) Özçelik et al.,
2010), according to Eqs. (11), (12), (13), (6) and (7), respectively.

P% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:962

v2
n

Xn

i¼1

ya
i � ye

i

ya
i

� �vuut 100 ð11Þ

MD% ¼
1
n

Xn

i¼1

ye
i � ya

i

ya
i

� �
100 ð12Þ

Bias% ¼
Pn

i¼1ye
i �

Pn
i¼1ya

iPn
i¼1ya

i

100 ð13Þ

where ya and ye are the actual and estimated volumes, respectively,
n is the number of ya and ye pairs, �ya and �ye are the averages of ac-
tual and estimated volumes, respectively; 1.96 is the value of the
normal standard deviation for a bilateral probability of 0:05; v2

n is
the chi-square value for n degrees of freedom.

All statistics data calculated for the volumes obtained using
Smalian formula with the diameters estimated by MLP were also
calculated for the volumes obtained using the Schumacher and
Hall (log) method.

The statistics were summed to assess the performance of the
MLP in comparison with the Schumacher and Hall method (log).
We performed the difference ð1� RÞ to show how the data are
uncorrelated, and this difference value was added to the sum of
statistics multiplied by 100. Since the goal of this sum is to show
each method’s error in relation to the actual volumes, the smaller
this result, the better the performance of the method being ana-
lyzed (Andrade, 2001). The sum of statistics is calculated as shown
in Eq. (14).

Total% ¼ MD% þ Bias% þ 100 � ð1� RÞ þ P% þ RMSE% ð14Þ

where Total% is the sum of statistics, MD% is the mean deviation,
Bias% is the bias, R is the linear correlation, P% is the precision,
and RMSE% is the Root Mean Square Error. All of these statistics
are percentages.

In order to check whether there are statistical accuracy differ-
ences between the MLP and the Schumacher and Hall model
(log), a two-way analysis of variance (ANOVA) was performed.

To check whether the data met the assumptions for performing
the ANOVA we performed the Lilliefors test to ensure normality
and the Cochran test to check homogeneity of variances. These
tests were performed considering a significance level of 5%.

The parameters considered for the ANOVA were the volumes
calculated using actual tree diameters (measured in the field),
the volumes predicted by the MLP and the volumes calculated by
the Schumacher and Hall model (log). This analysis was performed
for each data separately (training and test) and jointly
ðtrainþ testÞ. In calculating the ANOVA, the diameter classes were
used as control.

In ANOVA, the null hypothesis ðH0Þ considers that the methods
being analyzed are statistically equivalent. If the probability (p) is
smaller than 0.05 the ANOVA’s null hypothesis ðH0Þ can be dis-
carded, otherwise there are no statistical differences between the
methods.
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3. Results and discussion

Several tests were carried to determine which MLP structure
was the most adequate for predicting tree diameters. At the begin-
ning, we adopted the amount of five neurons in the hidden layer.
Then, this value was increased in each test until there were no sig-
nificant improvement in the values of RMSE% and R. The stabiliza-
tion of these values was reached for 20 neurons in the hidden layer.
Besides this value, the most adequate structure for the MLP net-
work obtained by us took into account an input layer with three
variables representing three diameter measures and an output
layer with one neuron which yields an estimated diameter value.

3.1. Data

The data used in this study were acquired from a stand in the
city of Aracruz, in the state of Espírito Santo, Brazil. A total of
615 trees of the genus Eucalyptus were used, obtained from the
same clonal genetic material. All the trees were the same age (six
years and six-months-old), planted with spacing 3�3 m, distrib-
uted in 16 circular plots of 360 m2. These trees were felled and
scaled rigorously by the Smalian method (Cabacinha, 2003). Diam-
eters were measured with a caliper, at heights: 0.30; 0.70; 1.30;
2.00 m from the ground, then at regular intervals of 1 m. The diam-
eter at the tip of the tree is considered to be zero. The diameters at
heights h0:3 and h1:3 are known as the stump diameter and the
Diameter at Breast Height (DBH), respectively. Fig. 2 ilustrates
how the trees were measured.

Several characteristics of the trees vary according to the DBH.
Because of this, several papers in the literature have separated
trees in diameter classes of amplitudes 4 and 5 cm based on the
DBH (Schneider et al., 1996; Pires and Calegario, 2007). In this
work, trees were separated in five classes at intervals of 3 cm
according to the DBH values, and for each of these classes an
MLP network was used for training and prediction. Class 5 was
the only one that was extended in order to include a single tree
that was isolated. Table 1 shows, for each diameter class, the num-
ber of trees and statistical data for DBH and total tree height.

The MLP model proposed in this paper was based on the rela-
tionship between the three neighboring diameters used as input,
and the next diameter that is predicted as the output of the net-
work. In order to verify the relationship of one diameter measure
Fig. 2. Heights measured and their diameters.
with their neighboring diameters, the autocorrelation coefficient
was calculated using the linear correlation Equation (Eq. (7)). In
autocorrelation ya is the vector of actual diameter and ye is the
same vector shifted, �ya and �ye are the averages of the actual diam-
eters and n is the number of diameter measures between input
measures and the total height. Autocorrelation coefficients were
calculated for each tree with 1–3 shifts. Table 1 shows the lowest
and highest autocorrelation coefficients for one shift in each class.

Results from autocorrelation tests with one shift showed large
values. It can be observed in Table 1 that the lowest and highest
autocorrelation for one interval were 0.63 and 0.90, respectively.
Whereas for tests with three intervals, the lowest and the highest
autocorrelation values were 0.55 and 0.81. Therefore the tests
proved that there is a strong relationship between the three neigh-
boring diameters and the next predicted diameter.

For greater reliability and speed when training the MLP, tree
diameter data were normalized within the range [�1,1], using
Eq. (15). In this range, �1 represents a diameter of 0,1 represents
the largest diameter, and all the other diameters lie within these
values (Zanchettin and Ludermir, 2005). Normalization was done
for all trees regardless of their class.

XNORM ¼ ðb� aÞ � X �minðXÞ
maxðXÞ �minðXÞ

� �
þ a ð15Þ

where XNORM is the value of the normalized diameter, X is the tree
diameter, min(X) is the smallest tree diameter, max(X) is the largest
tree diameter, a = �1 and b = 1 define the normalization range.

After the MLP predicted the diameters, diameter values were
denormalized using the min(X) and max(X) values, which were
previously used for normalization.

The algorithm used for training the MLP was the Levenberg–
Marquardt (Marquardt, 1963) with 1.000 epochs. Training of the
MLP was performed with random initial weights, and no adaptive
learning rate and momentum parameters were used.

In order to avoid overfitting, we used an heuristic that was to
establish the mean square error (MSE) as 1� 10�10 and train the
MLP until there no exists any significant reduction or increase in
the five consecutive epochs. In the tests, MLP converged before
150 epochs.

Table 2 shows MSE values and the average number of epochs
until convergence for each tree class.

For training the MLP, 10% of trees or at least 10 trees were ran-
domly selected from each class, to collect input and output sample
sets. Each of the selected trees produces input samples ½di�2; di�1; di�
and output sample ½diþ1. For example, for training the network, the
input-output pair was ½d0:3; d0:7; d1:3� and ½d2:0�, where d0:3; d0:7; d1:3

and d2:0 represent distances 0.3, 0.7, 1.3 and 2.0, measured from
the ground up, in meters. The next input-output pair was
½d0:7; d1:3; d2:0� and ½d3:0�, where d3:0 is the distance of 3.0 meters
measured from the ground up, and so on.

In the testing phase of the MLP, only initial diameter measures
d0:3; d0:7 and d1:3 are used to predict the remaining diameter mea-
sures of each tree. This phase is performed for each tree individu-
ally, according to the recursive prediction procedure described by
Eq. (3). Therefore, these initial measures are used to predict diam-
eter d2:0. Then, measures d0:7, d1:3 and the predicted measure d2:0

are used to predict measure d3:0, and so on. This procedure is de-
scribed in Tables 3 and 4 shows the definitions used in this
algorithm.
3.2. Diameter Prediction

Due to the large number of trees involved in the study, Table 5
outlines RMSE% and Correlation% (R) values produced by the
testing phase of the tree diameter prediction.



Table 1
Descriptive statistics of eucalyptus trees and autocorrelation.

Class n Autocorr DBH (cm) Total height ðHtÞ (m)

Min Max Mean Var SD Min Max Mean Var SD Min Max

1 14 0.63 0.84 8.68 0.95 0.97 7.15 10.10 17.60 3.49 1.87 14.20 19.70
2 106 0.77 0.87 12.01 0.54 0.73 10.32 13.14 22.83 2.75 1.66 18.00 26.70
3 302 0.78 0.89 14.62 0.68 0.82 13.15 16.14 25.74 1.57 1.25 18.40 29.40
4 178 0.83 0.90 17.23 0.64 0.80 16.15 19.14 27.52 1.39 1.18 24.20 30.10
5 15 0.82 0.90 20.21 1.70 1.31 19.31 24.55 29.23 1.06 1.03 27.20 30.60

Table 2
Training phase samples and parameters.

Class Total Samples Train

Trees Sets Trees Sets Epochs MSE

1 14 231 10 155 35 3:0� 10�4

2 106 2405 11 239 45 3:0� 10�4

3 302 8025 31 792 120 3:5� 10�4

4 178 5105 18 498 110 3:5� 10�4

5 15 462 10 298 130 5:0� 10�4

Total 615 16228 80 1982 – –

Table 5
Diameter prediction error per class – RMSE% (largest, smallest, average and standard
deviation) and correlation (smallest, largest).

Class Trees RMSE% Correlation (R)

Min Max Avg SD Min Max

1 4 3.05 9.98 6.21 3.40 0.98 0.99
2 95 1.83 22.94 7.31 4.20 0.98 0.99
3 271 1.69 21.37 6.68 3.70 0.97 0.99
4 160 1.67 22.83 7.41 4.43 0.99 0.99
5 5 2.07 6.21 4.35 1.65 0.99 0.99
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As shown in Table 5, for tree classes 1 and 5, which contain a
small number of trees, the largest RMSE% value is less than 10%.
And for classes 2, 3 and 4, which contain a much larger number
of trees than classes 1 and 5, the highest value of RMSE% is around
22%. Although the latter figure is large, the average of RMSE% (er-
rors) for classes 2, 3 and 4 was around 7%, which shows that the
diameters predicted by the MLP are very close to the actual diam-
eters measured in the trees. This table also shows the lowest and
highest linear correlation coefficients between predicted and mea-
sured diameters. Virtually all of these coefficients are within the
range from 0.97% to 0.99%. This indicates that there is a very strong
Table 3
Formal statement of the prediction algorithm.

X Vector of inputs of MLP
X1 Input 1 of MLP
X2 Input 2 of MLP
X3 Input 3 of MLP
i The height that is being predicted
d0:3 Diameter at the height 0.3 m (stump diameter)
d0:7 Diameter at the height 0.7 m
d1:3 Diameter at the height 1.3 m (diameter at breast height – DBH)
D Set of predicted diameters

The diameter at the tip of the tree is considered to be zero
Di Diameter at the height i
Ht Total tree height

Table 4
Tree prediction algorithm.

function PredictTreeðd0:3; d0:7;d1:3;HtÞ
X  ½d0:3; d0:7;d1:3�
D ½ �
i 2:0
WHILE i < Ht do

Di  Net:PredictDiameterðXÞ
X1  X2

X2  X3

X3  Di

i iþ 1:0
end while
return D
end function
linear correlation between the actual measured diameters and the
ones predicted by the MLP.

Fig. 3a, b, d, e, g, h, j, k, m and n shows with solid and dotted
lines, respectively, the values of actual diameters and the diame-
ters predicted by the MLP. And Fig. 3c, f, i, l and o illustrates the his-
tograms of the RMSE% calculated for each tree in each class.

Fig. 3a, d, g, j and m shows the lowest RMSE% for each class. It
can be observed in these figures that the values of the actual diam-
eters and those predicted by the MLP are considerably coincident
with each other. It also shows that the MLP have a high approxima-
tion for cases in which the trees have a linear profile, and even
when the tree profile is nonlinear the MLP satisfactorily tracked
abrupt changes in diameter.

The largest RMSE% are shown in Fig. 3b, e, h, k and n. These fig-
ures show that the MLP have underestimated the actual diameter
values for all classes except for class 5, where there was a slight
overestimation of the diameters.

Although Fig. 3 illustrates the predicted and actual diameters of
a few trees, the behavior of all the trees used for testing showed
that the MLP had difficulty in predicting diameters closer to the
treetops. This was expected since the model proposed in this paper
performs recursive predictions and the error in a given diameter
will be passed on to the next predicted diameter. Therefore, the
more recursive predictions are made, the higher the difference be-
tween actual and predicted diameters will be. However, this differ-
ence has a very small influence on the calculation of each tree
volume.

Fig. 3c, f, i, l and o, shows the histograms of RMSE% for each
class. These figures show that most RMSE% values are below 10%
for classes 2, 3 and 4, which is a very good result. As the amount
of test trees in classes 1 and 5 is very small, there is no accumula-
tion of RMSE% around the mean, but all RMSE% values are below
10% and 6.3% for classes 1 and 5, respectively, which are also very
suitable values.
3.3. Comparison between tree volumes calculated using actual and
predicted diameters and volumes estimated using the Schumacher and
Hall method (log)

The Smalian equation (Eq. (9)) is used to calculate tree volumes
based on both actual diameters and those predicted by the MLP,
and the Schumacher and Hall model (log) estimates these volumes
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Fig. 3. Prediction example curves (best and worst case) and RMSE% histogram per class.
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with Eq. (10). To obtain the volume from Eq. (10) it is necessary to
apply the exponential on both sides of it.
The values used for the b’s and the e for calculating tree volume
using the Schumacher and Hall model (log) (Eq. (9)) are



Table 6
Calculated volumes using actual diameters, diameters predicted by the MLP and predicted by the Schumacher and Hall method (log).

Class Real MLP Schumacher and Hall (log)

(a) Volumes of trees used in the training phase of the MLP
1 0.4268 0.4265 0.4318
2 1.2513 1.2551 1.2464
3 6.6344 6.6348 6.5809
4 5.3274 5.3347 5.3945
5 4.2240 4.3165 4.4264

Total 17,8639 17.9676 18.0800

(b) Volumes of trees used in the testing phase of the MLP
1 0.2293 0.2321 0.2319
2 11.5382 11.3273 11.4700
3 55.2320 54.2328 54.6750
4 47.7756 48.0092 48.3938
5 2.2226 2.2007 2.2382

Total 116.9977 116.0021 117.0089

(c) Total volumes of trees used in the training and in the testing phase of the MLP
1 0.6561 0.6585 0.6636
2 12.7896 12.5823 12.7164
3 61.8663 60.8675 61.2559
4 53.1030 53.3438 53.7882
5 6.4466 6.5172 6.6646
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b0 ¼ �10:79449927, b1 ¼ 1:942384069; b2 ¼ 1:226015699 and
e = 0. Parameters (R2

%) = 99.44, residual standard error ðSyxÞ ¼
0:011993, and ðSyx%Þ ¼ 5:81 confirm that in fact these values of
b and e are appropriate to estimate the volumes of the trees exam-
ined in this paper (Cabacinha, 2003).

Table 6 shows tree volumes aggregated by classes. These are
volumes that were either calculated using actual diameters and
diameters predicted by the MLP, or estimated by the Schumacher
and Hall model (log). This table is divided into Table 6a–c. Each
of these tables contains volumes that were obtained from actual
diameters, volumes that were obtained from diameters predicted
by the MLP, and volumes that were estimated by the Schumacher
and Hall method (log). The calculation of the volumes in Table 6a
was done with the trees used in the training phase of the MLP. Ta-
ble 6b shows the volumes calculated with the trees used in the
testing phase of the MLP. Table 6c shows the sum of the volumes
of Tables 6a and b.

Tables 6a–c shows that there is a very small difference between
the volumes calculated using actual diameters, the volumes calcu-
lated using diameters predicted by the MLP, and the volumes esti-
mated by the Schumacher and Hall method (log). In some cases
these differences are within the first, second and third decimal
places. In a few cases these differences were within the integer part
of the volume value, and when these occurred the difference was
no greater than one.

As seen in Table 6c, the percentage difference between total vol-
umes calculated using actual diameters and diameters predicted
the MLP was 0.66%; and the difference between volumes calcu-
lated using actual diameters and volumes estimated by the Schum-
acher and Hall method (log) was 0.17%. Therefore, the percentage
difference between actual data and values predicted by the MLP
and values estimated by the Schumacher method is less than 1%.

Table 7 shows volume estimation error statistics per class.
As seen in Table 7 the sums of the statistics ðTotal%Þ of volumes

estimated using the MLP were better for classes 1 and 5 and were
worse for classes 2, 3 and 4 in comparison to the Schumacher and
Hall method (log). The main reason these results are worse was
due to a smaller linear correlation. This shows that volumes esti-
mated with the MLP have a slightly larger range than the volumes
estimated by the Schumacher and Hall method (log). These
variations can be observed in Fig. 4, where volume results esti-
mated by the MLP are slightly more scattered than the volumes
estimated by the Schumacher and Hall method (log) for classes
2, 3 and 4.

Fig. 4 shows the scatter plots by class between actual volumes
and volumes estimated by the MLP and estimated by the Schum-
acher and Hall method (log). Fig. 4 a, c, e, g and i shows the scatter
plots between the actual volumes and volumes estimated by the
MLP, for classes 1 through 5, respectively. Fig. 4b, d, f, h and j shows
the scatter plots between the actual volumes and the volumes esti-
mated by the Schumacher and Hall method (log), for classes 1
through 5, respectively.

By comparing the scatter plots per class between actual vol-
umes and volumes estimated by the MLP and volumes estimated
by the Schumacher and Hall method (log), it can be observed that
data from both estimation methods are not very scattered. Data
relative to the Schumacher and Hall method (log) are slightly less
scattered for classes 2, 3 and 4, in comparison with the MLP; how-
ever, this scatter difference between these methods is not signifi-
cant when calculating total volume for the forest inventory.

The Lilliefors and Cochran test revealed normality and homoge-
neity of variances ðp < 0:05Þ, so the ANOVA could be used in data
analysis.

The 2-way ANOVAs performed for data sets train, test and
train + test yielded results of values p = 0.5568; 0.5575 and
0.5362, respectively. Because these three values were greater than
0.05 then the null hypothesis (H0) cannot be rejected, i.e. there are
no statistical differences between results from the MLP and from
the Schumacher and Hall method (log).

4. Conclusions

In order to predict tree diameters using MLP network, only
three measures of actual diameters are required to be taken for
each tree at its base. Tree scaling data from approximately 10% of
trees selected from the population are required for the training
phase of the MLP; total training time for the established MSEs
was 30 s on average, and total time for prediction was 15 min.
For conducting forest inventory using traditional volumetric equa-
tions, many trees from the stand must be felled and scaled, and the
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Fig. 4. Scatter plot: ANN and Schumacher and Hall (log) per classes.
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time taken until such task is completed is much longer than the
time taken by the MLP model.
Two-way ANOVA between volumes calculated from actual
diameters, volumes calculated from diameters predicted by the



Table 7
Comparison between actual and estimated tree volumes. (a) volumes predicted by the MLP. (b) volumes predicted by the Schumacher and Hall method (log).

Class MD% Bias% 100 � ð1� RÞ P% RMSE% Total%

(a)
1 3.9894 1.2144 4.1807 2.3409 5.8582 17.5836
2 6.6449 1.8284 8.3449 4.8106 8.0537 29.6825
3 6.1972 1.8091 11.2285 6.3584 7.8044 33.3976
4 6.3542 0.4888 17.9737 7.2854 7.6585 39.7606
5 2.7671 0.9884 28.8029 5.2218 3.4181 41.1983

(b)
1 6.3031 1.1362 2.6441 1.8626 6.7277 18.6737
2 4.8995 0.5910 4.2317 3.4372 5.6565 18.8159
3 4.5143 1.0083 5.9751 4.6406 5.6960 21.8343
4 4.3388 1.2938 8.9151 5.2019 5.2948 25.0444
5 3.3728 0.6981 31.5281 3.1508 3.8846 42.6344
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MLP and volumes estimated by volumetric equations showed that
there is no statistical difference between these volumes.

Results obtained with MLP were quite satisfactory for predict-
ing tree diameter. Thus, use of this model can be recommended
to aid automating the forest inventory process, as it significantly
reduces cost and time for completing the inventory. Moreover, this
approach is less susceptible to human error during the forest
inventory process.
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