Block composite likelihood models for analysis
of large spatial datasets
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Abstract Large spatial datasets become more common as a result ohaitito
sensors, remote sensing and the increase in data storagetgaput large spa-
tial datasets are hard to analyse. Even in the simplest Gausituation, parameter
estimation and prediction are troublesome because on&esquatrix factorization
of a large covariance matrix. We consider a composite like&ld construction built
on the joint densities of subsets of variables. This compasiodel thus splits a
datasets in many smaller datasets, each of which can beatsdlseparately. These
subsets of data are combined through a summation givingtalkciomposite likeli-
hood. Massive datasets can be handled with this approaphrticular, we consider
a block composite likelihood model, constructed over pafrspatial blocks. The
blocks can be disjoint, overlapping or at various resotutibhe main idea is that
the spatial blocking should capture the important coriategffects in the data. Esti-
mates for unknown parameters as well as optimal spatialgiie@as under the block
composite model are obtained. Asymptotic variances foln parameter estimates
and predictions are computed using Godambe sandwich mesitiitie procedure is
demonstrated on 2D and 3D datasets with regular and irregatapling of data.
For smaller data size we compare with optimal predictons|diger data size we
discuss and compare various blocking schemes.
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1 Introduction

In recent years there has been a tremendous increase in gmétnae of massive
geocoded scientific datasets. These developments hagertidemand for more
sophisticated statistical modeling and methodology fohsiata. The computations
required for inference and prediction in spatial Gaussiaggss models, the central
construct in spatial statistics, are challenging for latgtasets because they require
manipulations of large covariance matrices. In particwdaaluation of the likeli-
hood function necessitates performing inverse and detexmbioperations, both of
which are computationally intractable for large matrices.

In this paper we implement a unified framework for paramestinetion and
prediction based on the composite likelihood (Lindsay,8)98he composite like-
lihood (CL) is a product of several joint likelihoods of sels of the data. One
important special case is the pairwise likelihood, whicthis product of all bivari-
ate marginal likelihoods. Here, we use a form of the CL funttilefined as the
product of joint density functions of pairs of spatial blsckhe motivation behind
the spatial blocking strategy is that it captures much osghaial dependence, while
still providing the divide and conquer aspect of the CL.

The block CL model reduces the computational burde®(to), wheren is the
number of data, and the hidden constant depends on the bimsk Moreover, the
usual memory restrictions for large datasets are avoidwe $he blocks of data can
be loaded into memory separately.

The asymptotic covariance for maximum CL estimates is glwem sandwich
matrix (Godambe, 1960) rather than the usual Fisher infaomanatrix for max-
imum likelihood estimates (MLESs). We show how to use the Cttfe crucial
complementary problem of spatial prediction, which haspretiously been con-
sidered. We demonstrate how to construct predictions advsereed sites that are
optimal under the block CL, the composite analogue to Kggirhis prediction ap-
proach allows fast computing and we derive asymptotic ptixnhi variances under
the CL model, which have the familiar sandwich form.

The earliest use of the CL for spatial data seems to be Caraied Lele (1999),
who used the pairwise form of the CL to estimate covariancarpaters. The main
contribution of the current work is to utilize blocking ana provide predictions
under the CL model. See also Eidsvik et al. (2011).

2 Compositelikelihood

We consider a Gaussian response variglig along with ap x 1 vector of spatially-
referenced explanatory variabbgs) which are associated through a spatial regres-
sion model

Y (s) =X (s) B+w(s) +£(s), 1)
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where the spatial locatios € 2 is in 2, 3 or 4 dimensions. Moreovef§ =
(B1,...,Bp) is the regression parameter, as) ~ N(0,72) is independent er-
ror. The spatial residual(s) provides structural dependence, capturing the effect
of unobserved covariates with spatial pattern. The comaéatructure of the Gaus-
sian processv(s) is typically characterised by a small number of parameifes.
denote the collection of all covariance paramet@rsvhich includes the nugget
effect 72. One common model is the exponential Qe(s),w(s)) = C(s,s) =
o2exp(—@|s — s|), with variances? and spatial decay parametgr

e assume data are available&cations{ss, ..., s}, and denote the collection of
dataY = (Y(s1),...,Y(s1))". ThenY ~ N(XB, %), whereZ = (8) = C+ 12, with
C(i, j) = Cov(w(s),w(s;j)). Moreover, rowi of matrix X contains the explanatory
variables</(s)). The log likelihood is

((Y;B,6) = —n/2log2m) ~ S10g|=| (Y ~XBYZ MY -XB).  (2)

Noting that> is n x n, the difficulty with the usual maximum likelihood methods is
apparent; evaluating the log-likelihood requires commyitt | and a quadratic form
that includesZ 1, both of which are computationally intractable for large

2.1 Theblock composite model

Instead, we next present a block CL, where we partition tg@mneD into M blocks
D1,...,Dnm, with UyDx = D, DN D, = 0, for all pairs of blocks,|. Denote the
response in block = 1,...,M asYx = {Y(s);s € Dx}. The number of sites in
blockkis n, ynk = n. Let furtherYy = (Y,Y/)’ be the collection of data in block
k andl. We define the block composite log likelihood as

M-1
leL(Y;B,6) = ((Yq:B,0
c(Y;B,0) 1<Z1|;<(klﬁ )
M1 1 1
= kzl Z k[7§|Og|Zkl|*§(Ykl*XKIB)/Zle(YkI*Xk|[3) .(3)
=1 leNg,|>

where the second sum goes over all blocks a neighborhood\y of block k, and
I > k. Here,Xq = (X, X/)" is the collection of all covariates in blodkandl, and
2y is the(ng+ny) x (ng+ ny) covariance matrix

] 2l 2a(1,2)
2u = {Zkl(zv 1) (2 | @)

This covariance matrix is thus partitioned into four pamdere 2 (1) is the
Nk X Nk covariance matrix o¥y, 2 (2) is then; x n; covariance matrix o¥, and
>0(1,2) = 5,(2,1) is theny x n; cross-covariance betwedf andY. The block
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CL approach is a natural compromise for spatial models, asitimber of blocks
M represents a trade-off between computational and statigfficiency. Figure 1
illustrates blocking schemes over a two dimensional region

The maximum CL estimates éfandf3 are given by

(BoL, BcL) = argma g [oL (Y; B, 6)]. (5)

In general, the maximum CL estimators are known to be cargisind asymptoti-
cally normal under the same conditions as MLEs (Lindsay8)198/% compute the
maximum CL estimates by a Fisher-scoring algorithm. Theimarn is attained in
about 5 iterations. The computer cost is small, since onlgllsmatrices are factor-
ized.

The asymptotic covariance 6¢, has a sandwich form (Godambe, 19@1 ~
N(6,G~1), where

G=G(6) = H(6)I (8)H(0),
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Fig. 1 Observation sites illustrated by .’ and predictions shigsx’. A block CL splits the spatial

domain, hereZ = (0,1)x(0,1), into blocks. Each block communicates pairwise with eachisof
neighbours. An interior block has eight neighbours. Theklo= 12 has four neighbours with
larger indeces$ > k (black edges).
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We note that in the case of the full likelihood functi¢t(8)J=1(8) =1, soG(8) is
just the Fisher information.

2.2 Prediction

Consider the task of making predictionsmg > 1 unobserved sites, all situated
within blockk. To get the best linear unbiased predictor (BLUP) or krigingface,
we must invert a larga x n matrix. Instead, we next present predictions derived
from the CL model. The first step is to augment the data veatoh shatY2 =
(Yeo, Ye)'- By includingYyo as unobserved data in the CL and setting the derivative
of /L equal to 0, we obtain the composite predictidjgs

The contribution of the unobserved dafg to the CL is given by block terms
(k,1), 1 € Nx. We organise these pairs such that bleé& always at the top in every
(k,I) block-pair, so that thény + N+ ny) x (Nko + Nk + Ny) precision matrix for
(Y2, Y/ s

Qoki (0) Qoki (0,1) Qow (0,2)
5t =Qou = | Qua(1,0) Qou(1) Qow(1,2) |. (6)
Qoki (2,0) Qoki(2,1) Qowi(2)

The block CL at the unobserved locations is thus

leL(Yeo) = % [constf %(Yko — XoB)'Qok (0)(Yio — XkoB)

€Nk
— (Yo — %k0B)' Qo (0, 1) (Yi — XB)
~ (Yio— XoB)'Qou (0,2)(Y — XB) . )

now regarded as a function of the unobserved Wgtaand where they, x p matrix
Xko collects the explanatory variables at prediction sitedaclok.

The first and second derivatives € (Yxo) are obtained by differentiating the
quadratic form. The first derivative is

dleL (Y
fetlo) 5 [Qua(0) (o~ XoB)+ Qua (0.1 (Y XeB) + Quu 0.2/ ~X,B)]-
€Ny
(8)
Setting the derivative equal to 0 gives the block compositeligtion:

Yio = XkoB + Ay 1o,
Ao= Y Quu(0),

€N
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bo = — 5" [ Qua (0,2) (Y~ XB) + Qua (0,2) (i — %) . (©)

€Nk

The asymptotic variance of the block composite predict®déscribed by a Go-
dambe sandwich.

2.3 Extensions

The model described above can be extended in various dinsctMany applica-
tions include multivariate responses at each spatialilmealf the locationwise co-
variances are stationary, this is included by a Kroneckedyct in the covariance
structure. One could also imagine non-stationarity in tloeleh, where uni- or mul-
tivariate variables have block-dependent covariancenpaters.

The framework also allows certain hierarchical models.hie éxample below
with seismic data, the goal is to predict the latent varigdgven indirect seismic
observations. One could use the same approach for spatmstal models that de-
velop over space and time coordinates.

The main requirement of the CL construction is a joint moadeldairs of vari-
ables. In our context this is given by the multivariate Garssgensity, but the pair-
wise joint models can also be constructed in other situatibor instance, they are
directly available in skew-Normal models or for special\hetailed distributions.
For complex hierarchical models one can approximate th# jobdel of data by
using numerical integration schemes.

3 Numeric example

Several examples of block composite likelihood was preskir Eidsvik et al
(2011). Here, we present a seismic example on a regular 2Dagd a joint fre-
quency dataset in 3D with irregular sampling. We use the @kaento compare
blocking strategies and to discuss the computational adgas with the CL ap-
proach.

3.1 Time lapse seismic

The current example is created to mimic the situation wittetlapse seismic am-
plitude data, where two seismic surveys collected befodedaming production are
compared to map the fluid and pressure changes in petroleaarvoirs. The reser-
voir variable of interest here is the time-lapse differengiP-wave impedance. The
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depth contrasts of P-impedance are related to the respamisdlie of time-lapse
stacked seismic amplitude data.

Focusis on estimating the model parameters and to preditztnt P-impedance
variables. The prediction is done by augmenting the dateitetthe missing latent
variables, solving for the distinction of interest, and gurting the associated Go-
dambe sandwich matrices to assess the uncertainties.

In order to compare the results with full likelihood modefinve use a 2D model
(northing and depth) of size= 30- 100= 3000. We try different blocking schemes
and compare the results with the optimal ones using theikgllihood model and
the associated prediction (BLUP). We use the model withrpniean O for the time-
lapse reservoir properties. The spatial correlation fioncis of the Matern type
with smoothness parametef2 The correlation range is about 10 cells. We set the
standard error of the reservoir changes to be twice as lamedservoir zone, which
is specified to be within the stratigraphic zone betweentdeptex 30 and 50. The
response variable is convolved in the depth direction witeiamic wavelet of a
Mexican hat type, with bandwidth 40 cells. Because of thidi#& smoothing in
the likelihood, we use a CL blocking scheme which is alway&ubflength in the
vertical direction, while it covers sub-blocks in the latiedimension.

Figure 2 shows one realization of the reservoir propertas, (eft) and the syn-
thetic seismic reflection data (top, right). Note the larpanges in the reservoir
zone, with only small contrasts below and above this zone.

The middle and bottom rows of Figure 2 show the predictiorss prediction
errors, conditional on the time-lapse seismic data. Welalysihe optimal solutions
using the full likelihood model to the left, while the CL stibns with 3 blocks is
to the right. For predictions there is hardly any differelbedween the two solu-
tions. For the CL results, the prediction variances arétiiigncreased at the block
boundaries. This is natural, since the Godambe informatiwrects for the model
simplification.

We note that the computationally aspects are much betteh&€L approach.
For this model that is stationary in the lateral directidre CL is here based on
matrix computions for only a pair of blocks, and then usingsth results for all
other blocks.

We next compare parameter estimation and prediction mesnse@rrors (MSE)
and coverage probabilities compared over 1000 replicdt®gdhetic data, all gen-
erated with the same model. Table 1 shows the MSE and coverapabilities
(0.90 nominal level) of parameter estimates and predictiohg. dolumns corre-
spond to different number of blocks for the CL model. The figbst column repre-
sents the full size model with optimal solutions. We noté firadiction covarages
and mean square errors are very similar for the CL and thexfadlels. In partic-
ular when we use 3 or more blocks in the CL expression. Thenpetex estimates
clearly have larger uncertainty for the CL,1 model. Thisuwwsdecause important
aspects of the correlation structure is missing from thel®@hodel, looking only at
pairs of traces.
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Table 1 Simulation study showing mean square error and coveradeapildies for 5 models
over 1000 replicates. Full refers to the optimal solutiomhiis case. CLk refers to a blocksizé&
composite likelihood model.

CL,1 CL,3 CL5 CL,10 Full

MSE (o) 0.0104 0.0099 0.0099 0.0098 0.0091
MSE (¢) 0.0067 0.0033 0.0033 0.0032 0.0030
MSE (1) 0.00084 0.00084 0.00084 0.00085 0.00083

Coverage ¢) 078 086 089 091 0091
Coverage ¢) 0.86 0.89 0.90 0.90 0.91
Coverage 1) 092 092 092 090 0.92
MSPE 0.0366 0.0357 0.0356 0.0355 0.0335
Prediction coverage 0.90 0.90 0.90 0.90 0.90
Computer time (se¢) 0.6 3.2 9.8 59 140

3.2 Joint frequency data

We study a joint frequency dataset acquired in an iron mirédrway. The size is
n= 11107, see Ellefmo and Eidsvik (2009) for more details.

We use the block CL model with different block sizes. The k#oare constructed
by a Voronoi / Delaunay tessellation adapted to the (naast)ecoordinates of the
data, with cells extending for all depths. The tessellaiiomade by random sam-
pling, without replacement, among all data sites, which werage gives smaller
area blocks where sampling locations are dense. We contpasomposite likeli-
hood results with the predictive process model (Banerjeé¢ €008), a dimension-
reduction technique using a fixed set of knots.

Table 2 shows the parameter estimates, the average meaadquediction error
and coverage probabilities for a hold-out set of 1000 ptemticsites. We compare
three common covariance functions: the exponential mogetied by (h) =
o2exp(—gh) + 121 (h = 0), Cauchy(3) which i (h) = 02(1+ ¢h) 3+ 121 (h=0),
and Matérn(3/2) with= (h) = 0?(1+ gh)exp(—@h) 4 12 (h = 0). The parameter

Table2 Joint frequency data: Parameter estimates, mean squalietime error (MSPE) and cov-
erage probabilities for prediction distributions. Theeliént columns correspond to different num-
ber of blocks for the composite likelihood (CL) model andfetiént knot sizes for the predictive
process (PP) models.

CL, 200 CL, 40 CL, 10 PP, 1000 PP, 1500
0.42 042 042 044 0.45
0.031 0.030 0.028 0.013 0.015
030 030 030 0.32 0.31

MSPE 145 144 144 182 171

Pred cov (0.95) 095 095 0.95 0.94 0.94

Exponential

-S> Q)

estimates are very similar for all three CL models, but défe between the CL and
predictive process models. In particular, the range patengeis smaller for pre-
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dictive process models. This implies a larger effectivaigpaorrelation, imposing
a smoother process. To some extent, the predictive procedsisnccompensate for
this with larger estimated variance terms.

The mean squared prediction error is clearly smaller folGhenodels than for
the predictive process models. Even with 1500 knots, thenrsgaared prediction
error for the predictive process model is 15% larger. Theecage probabilities
are very good for all models considered. The computatioeginequired is about
10 seconds for CL, 200, while the predictive process withOlki@ots takes a few
minutes.

4 Discussion

In this paper we use a block composite likelihood model faapeeter estimation
and prediction in large Gaussian spatial models. The ptigsenf the composite
likelihood are well-understood in the context of paramettimation. Here we also
present a method for spatial prediction using the block amsite likelihood.

The block composite likelihood performs well for reasoyasized blocks, espe-
cially for spatial prediction. The required computationéiis reduced considerably
relative to likelihood-based calculations using the divithd conquer strategy in-
herent in the composite likelihood. We recommend testisglte with a couple of
choices of block sizes (hundreds to thousands sites pek)dad blocking designs.
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Fig. 2 Synthetic 2D example of size 30100: Simulated reservoir change (top, left) and associated
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errors using the full likelihood model (left) and the comipesdikelihood model with size-3 blocks
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