
Block composite likelihood models for analysis
of large spatial datasets

Jo Eidsvik, Benjamin A. Shaby and Brian J. Reich

Abstract Large spatial datasets become more common as a result of automatic
sensors, remote sensing and the increase in data storage capacity. But large spa-
tial datasets are hard to analyse. Even in the simplest Gaussian situation, parameter
estimation and prediction are troublesome because one requires matrix factorization
of a large covariance matrix. We consider a composite likelihood construction built
on the joint densities of subsets of variables. This composite model thus splits a
datasets in many smaller datasets, each of which can be evaluated separately. These
subsets of data are combined through a summation giving the final composite likeli-
hood. Massive datasets can be handled with this approach. Inparticular, we consider
a block composite likelihood model, constructed over pairsof spatial blocks. The
blocks can be disjoint, overlapping or at various resolution. The main idea is that
the spatial blocking should capture the important correlation effects in the data. Esti-
mates for unknown parameters as well as optimal spatial predictions under the block
composite model are obtained. Asymptotic variances for both parameter estimates
and predictions are computed using Godambe sandwich matrices. The procedure is
demonstrated on 2D and 3D datasets with regular and irregular sampling of data.
For smaller data size we compare with optimal predictors, for larger data size we
discuss and compare various blocking schemes.
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1 Introduction

In recent years there has been a tremendous increase in the magnitude of massive
geocoded scientific datasets. These developments have triggered demand for more
sophisticated statistical modeling and methodology for such data. The computations
required for inference and prediction in spatial Gaussian process models, the central
construct in spatial statistics, are challenging for largedatasets because they require
manipulations of large covariance matrices. In particular, evaluation of the likeli-
hood function necessitates performing inverse and determinant operations, both of
which are computationally intractable for large matrices.

In this paper we implement a unified framework for parameter estimation and
prediction based on the composite likelihood (Lindsay, 1988). The composite like-
lihood (CL) is a product of several joint likelihoods of subsets of the data. One
important special case is the pairwise likelihood, which isthe product of all bivari-
ate marginal likelihoods. Here, we use a form of the CL function defined as the
product of joint density functions of pairs of spatial blocks. The motivation behind
the spatial blocking strategy is that it captures much of thespatial dependence, while
still providing the divide and conquer aspect of the CL.

The block CL model reduces the computational burden toO(n), wheren is the
number of data, and the hidden constant depends on the block sizes. Moreover, the
usual memory restrictions for large datasets are avoided since the blocks of data can
be loaded into memory separately.

The asymptotic covariance for maximum CL estimates is givenby a sandwich
matrix (Godambe, 1960) rather than the usual Fisher information matrix for max-
imum likelihood estimates (MLEs). We show how to use the CL for the crucial
complementary problem of spatial prediction, which has notpreviously been con-
sidered. We demonstrate how to construct predictions at unobserved sites that are
optimal under the block CL, the composite analogue to Kriging. This prediction ap-
proach allows fast computing and we derive asymptotic prediction variances under
the CL model, which have the familiar sandwich form.

The earliest use of the CL for spatial data seems to be Curriero and Lele (1999),
who used the pairwise form of the CL to estimate covariance parameters. The main
contribution of the current work is to utilize blocking and to provide predictions
under the CL model. See also Eidsvik et al. (2011).

2 Composite likelihood

We consider a Gaussian response variableY (s) along with ap×1 vector of spatially-
referenced explanatory variablesx(s) which are associated through a spatial regres-
sion model

Y (s) = x′ (s)β +w(s)+ ε(s), (1)
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where the spatial locations ∈ D is in 2, 3 or 4 dimensions. Moreover,β =
(β1, . . . ,βp)

′ is the regression parameter, andε(s) ∼ N(0,τ2) is independent er-
ror. The spatial residualw(s) provides structural dependence, capturing the effect
of unobserved covariates with spatial pattern. The covariance structure of the Gaus-
sian processw(s) is typically characterised by a small number of parameters.We
denote the collection of all covariance parametersθ , which includes the nugget
effect τ2. One common model is the exponential Cov(w(s),w(s′)) = C(s′,s) =
σ2exp(−φ |s′− s|), with varianceσ2 and spatial decay parameterφ .

e assume data are available atn locations{s1, . . . ,sn}, and denote the collection of
dataY = (Y (s1), . . . ,Y (sn))

′. ThenY ∼N(Xβ ,Σ), whereΣ = Σ(θ ) =C+τ2In, with
C(i, j) = Cov(w(si),w(s j)). Moreover, rowi of matrix X contains the explanatory
variablesx′(si). The log likelihood is

ℓ(Y ;β ,θ ) =−n/2log(2π)−
1
2

log|Σ |−
1
2
(Y −Xβ )′Σ−1(Y −Xβ ). (2)

Noting thatΣ is n×n, the difficulty with the usual maximum likelihood methods is
apparent; evaluating the log-likelihood requires computing |Σ | and a quadratic form
that includesΣ−1, both of which are computationally intractable for largen.

2.1 The block composite model

Instead, we next present a block CL, where we partition the regionD into M blocks
D1, . . . ,DM, with ∪kDk = D, Dk ∩Dl = /0, for all pairs of blocksk, l. Denote the
response in blockk = 1, . . . ,M asYk = {Y (si);si ∈ Dk}. The number of sites in
block k is nk, ∑k nk = n. Let furtherYkl = (Y ′

k ,Y
′
l )

′ be the collection of data in block
k andl. We define the block composite log likelihood as

ℓCL(Y ;β ,θ ) =
M−1

∑
k=1

∑
l>k

ℓ(Ykl ;β ,θ )

=
M−1

∑
k=1

∑
l∈Nk ,l>k

[

−
1
2

log|Σkl |−
1
2
(Ykl −Xklβ )′Σ−1

kl (Ykl −Xklβ )
]

. (3)

where the second sum goes over all blocksl in a neighborhoodNk of block k, and
l > k. Here,Xkl = (X ′

k,X
′
l )

′ is the collection of all covariates in blockk andl, and
Σkl is the(nk + nl)× (nk + nl) covariance matrix

Σkl =

[

Σkl(1) Σkl(1,2)
Σkl(2,1) Σkl(2)

]

. (4)

This covariance matrix is thus partitioned into four parts,where Σkl(1) is the
nk × nk covariance matrix ofYk, Σkl(2) is thenl × nl covariance matrix ofYl , and
Σkl(1,2) = Σ ′

kl(2,1) is thenk × nl cross-covariance betweenYk andYl . The block
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CL approach is a natural compromise for spatial models, as the number of blocks
M represents a trade-off between computational and statistical efficiency. Figure 1
illustrates blocking schemes over a two dimensional region.

The maximum CL estimates ofθ andβ are given by

(β̂CL, θ̂CL) = argmaxβ ,θ [ℓCL(Y ;β ,θ )] . (5)

In general, the maximum CL estimators are known to be consistent and asymptoti-
cally normal under the same conditions as MLEs (Lindsay, 1988). We compute the
maximum CL estimates by a Fisher-scoring algorithm. The maximum is attained in
about 5 iterations. The computer cost is small, since only small matrices are factor-
ized.

The asymptotic covariance ofθ̂CL has a sandwich form (Godambe, 1960),θ̂CL ∼
N(θ ,G−1), where

G = G(θ ) = H(θ )J−1(θ )H(θ ),
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Fig. 1 Observation sites illustrated by ’.’ and predictions sitesby ’x’. A block CL splits the spatial
domain, hereD = (0,1)x(0,1), into blocks. Each block communicates pairwise with each ofits
neighbours. An interior block has eight neighbours. The block k = 12 has four neighbours with
larger indecesl > k (black edges).
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H(θ ) = −E

(

∂ 2ℓCL(Y ;θ )
∂θ 2

)

, J(θ ) = Var

(

∂ℓCL(Y ;θ )
∂θ

)

.

We note that in the case of the full likelihood function,H(θ )J−1(θ ) = I, soG(θ ) is
just the Fisher information.

2.2 Prediction

Consider the task of making predictions atnk0 ≥ 1 unobserved sites, all situated
within blockk. To get the best linear unbiased predictor (BLUP) or krigingsurface,
we must invert a largen× n matrix. Instead, we next present predictions derived
from the CL model. The first step is to augment the data vector such thatY a

k =
(Y ′

k0,Y
′
k)

′. By includingYk0 as unobserved data in the CL and setting the derivative
of ℓCL equal to 0, we obtain the composite predictionsŶk0.

The contribution of the unobserved dataYk0 to the CL is given by block terms
(k, l), l ∈ Nk. We organise these pairs such that blockk is always at the top in every
(k, l) block-pair, so that the(nk0 + nk + nl)× (nk0 + nk + nl) precision matrix for
(Y ′a

k ,Y ′
l )

′ is

Σ−1
kl = Q0kl =





Q0kl(0) Q0kl(0,1) Q0kl(0,2)
Q0kl(1,0) Q0kl(1) Q0kl(1,2)
Q0kl(2,0) Q0kl(2,1) Q0kl(2)



 . (6)

The block CL at the unobserved locations is thus

ℓCL(Yk0) = ∑
l∈Nk

[

const−
1
2
(Yk0−Xk0β )′Q0kl(0)(Yk0−Xk0β )

− (Yk0−Xk0β )′Q0kl(0,1)(Yk −Xkβ )

− (Yk0−Xk0β )′Q0kl(0,2)(Yl −Xlβ )
]

, (7)

now regarded as a function of the unobserved dataYk0, and where thenk0× p matrix
Xk0 collects the explanatory variables at prediction sites in block k.

The first and second derivatives ofℓCL(Yk0) are obtained by differentiating the
quadratic form. The first derivative is

dℓCL(Yk0)

dYk0
=− ∑

l∈Nk

[

Q0kl(0)(Yk0−Xk0β )+Q0kl(0,1)(Yk−Xkβ )+Q0kl(0,2)(Yl−Xlβ )
]

.

(8)
Setting the derivative equal to 0 gives the block composite prediction:

Ŷk0 = Xk0β +A−1
0 b0,

A0 = ∑
l∈Nk

Q0kl(0),
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b0 = − ∑
l∈Nk

[

Q0kl(0,1)(Yk −Xkβ )+Q0kl(0,2)(Yl −Xlβ )
]

. (9)

The asymptotic variance of the block composite prediction is described by a Go-
dambe sandwich.

2.3 Extensions

The model described above can be extended in various directions. Many applica-
tions include multivariate responses at each spatial location. If the locationwise co-
variances are stationary, this is included by a Kronecker-product in the covariance
structure. One could also imagine non-stationarity in the model, where uni- or mul-
tivariate variables have block-dependent covariance parameters.

The framework also allows certain hierarchical models. In the example below
with seismic data, the goal is to predict the latent variables, given indirect seismic
observations. One could use the same approach for spatio-temporal models that de-
velop over space and time coordinates.

The main requirement of the CL construction is a joint model for pairs of vari-
ables. In our context this is given by the multivariate Gaussian density, but the pair-
wise joint models can also be constructed in other situations. For instance, they are
directly available in skew-Normal models or for special heavy-tailed distributions.
For complex hierarchical models one can approximate the joint model of data by
using numerical integration schemes.

3 Numeric example

Several examples of block composite likelihood was presented in Eidsvik et al
(2011). Here, we present a seismic example on a regular 2D grid and a joint fre-
quency dataset in 3D with irregular sampling. We use the examplee to compare
blocking strategies and to discuss the computational advantages with the CL ap-
proach.

3.1 Time lapse seismic

The current example is created to mimic the situation with time-lapse seismic am-
plitude data, where two seismic surveys collected before and during production are
compared to map the fluid and pressure changes in petroleum reservoirs. The reser-
voir variable of interest here is the time-lapse differences of P-wave impedance. The
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depth contrasts of P-impedance are related to the response variable of time-lapse
stacked seismic amplitude data.

Focus is on estimating the model parameters and to predict the latent P-impedance
variables. The prediction is done by augmenting the datasetwith the missing latent
variables, solving for the distinction of interest, and computing the associated Go-
dambe sandwich matrices to assess the uncertainties.

In order to compare the results with full likelihood modeling, we use a 2D model
(northing and depth) of sizen = 30·100= 3000. We try different blocking schemes
and compare the results with the optimal ones using the full likelihood model and
the associated prediction (BLUP). We use the model with prior mean 0 for the time-
lapse reservoir properties. The spatial correlation function is of the Matern type
with smoothness parameter 3/2. The correlation range is about 10 cells. We set the
standard error of the reservoir changes to be twice as large in a reservoir zone, which
is specified to be within the stratigraphic zone between depth index 30 and 50. The
response variable is convolved in the depth direction with aseismic wavelet of a
Mexican hat type, with bandwidth 40 cells. Because of this vertical smoothing in
the likelihood, we use a CL blocking scheme which is always offull length in the
vertical direction, while it covers sub-blocks in the lateral dimension.

Figure 2 shows one realization of the reservoir properties (top, left) and the syn-
thetic seismic reflection data (top, right). Note the large changes in the reservoir
zone, with only small contrasts below and above this zone.

The middle and bottom rows of Figure 2 show the predictions and prediction
errors, conditional on the time-lapse seismic data. We display the optimal solutions
using the full likelihood model to the left, while the CL solutions with 3 blocks is
to the right. For predictions there is hardly any differencebetween the two solu-
tions. For the CL results, the prediction variances are slightly increased at the block
boundaries. This is natural, since the Godambe informationcorrects for the model
simplification.

We note that the computationally aspects are much better forthe CL approach.
For this model that is stationary in the lateral direction, the CL is here based on
matrix computions for only a pair of blocks, and then using these results for all
other blocks.

We next compare parameter estimation and prediction mean square errors (MSE)
and coverage probabilities compared over 1000 replicates of synthetic data, all gen-
erated with the same model. Table 1 shows the MSE and coverageprobabilities
(0.90 nominal level) of parameter estimates and predictions. The columns corre-
spond to different number of blocks for the CL model. The rightmost column repre-
sents the full size model with optimal solutions. We note that prediction covarages
and mean square errors are very similar for the CL and the fullmodels. In partic-
ular when we use 3 or more blocks in the CL expression. The parameter estimates
clearly have larger uncertainty for the CL,1 model. This occurs because important
aspects of the correlation structure is missing from the CL,1 model, looking only at
pairs of traces.
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Table 1 Simulation study showing mean square error and coverage probabilities for 5 models
over 1000 replicates. Full refers to the optimal solution inthis case. CL,k refers to a blocksizek
composite likelihood model.

CL, 1 CL, 3 CL, 5 CL, 10 Full
MSE (σ ) 0.0104 0.0099 0.0099 0.0098 0.0091
MSE (φ ) 0.0067 0.0033 0.0033 0.0032 0.0030
MSE (τ) 0.00084 0.00084 0.00084 0.00085 0.00083

Coverage (σ ) 0.78 0.86 0.89 0.91 0.91
Coverage (φ ) 0.86 0.89 0.90 0.90 0.91
Coverage (τ) 0.92 0.92 0.92 0.90 0.92

MSPE 0.0366 0.0357 0.0356 0.0355 0.0355
Prediction coverage 0.90 0.90 0.90 0.90 0.90
Computer time (sec) 0.6 3.2 9.8 59 140

3.2 Joint frequency data

We study a joint frequency dataset acquired in an iron mine inNorway. The size is
n = 11,107, see Ellefmo and Eidsvik (2009) for more details.

We use the block CL model with different block sizes. The blocks are constructed
by a Voronoi / Delaunay tessellation adapted to the (north,east) coordinates of the
data, with cells extending for all depths. The tessellationis made by random sam-
pling, without replacement, among all data sites, which on average gives smaller
area blocks where sampling locations are dense. We compare the composite likeli-
hood results with the predictive process model (Banerjee etal., 2008), a dimension-
reduction technique using a fixed set of knots.

Table 2 shows the parameter estimates, the average mean squared prediction error
and coverage probabilities for a hold-out set of 1000 prediction sites. We compare
three common covariance functions: the exponential model specified byΣ(h) =
σ2exp(−φh)+τ2I(h = 0), Cauchy(3) which isΣ(h) = σ2(1+φh)−3+τ2I(h = 0),
and Matérn(3/2) withΣ(h) = σ2(1+ φh)exp(−φh) + τ2I(h = 0). The parameter

Table 2 Joint frequency data: Parameter estimates, mean square prediction error (MSPE) and cov-
erage probabilities for prediction distributions. The different columns correspond to different num-
ber of blocks for the composite likelihood (CL) model and different knot sizes for the predictive
process (PP) models.

CL, 200 CL, 40 CL, 10 PP, 1000 PP, 1500
σ̂ 0.42 0.42 0.42 0.44 0.45

Exponential φ̂ 0.031 0.030 0.028 0.013 0.015
τ̂ 0.30 0.30 0.30 0.32 0.31

MSPE 145 144 144 182 171
Pred cov (0.95) 0.95 0.95 0.95 0.94 0.94

estimates are very similar for all three CL models, but different between the CL and
predictive process models. In particular, the range parameter φ is smaller for pre-
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dictive process models. This implies a larger effective spatial correlation, imposing
a smoother process. To some extent, the predictive process models compensate for
this with larger estimated variance terms.

The mean squared prediction error is clearly smaller for theCL models than for
the predictive process models. Even with 1500 knots, the mean squared prediction
error for the predictive process model is 15% larger. The coverage probabilities
are very good for all models considered. The computation times required is about
10 seconds for CL, 200, while the predictive process with 1500 knots takes a few
minutes.

4 Discussion

In this paper we use a block composite likelihood model for parameter estimation
and prediction in large Gaussian spatial models. The properties of the composite
likelihood are well-understood in the context of parameterestimation. Here we also
present a method for spatial prediction using the block composite likelihood.

The block composite likelihood performs well for reasonably-sized blocks, espe-
cially for spatial prediction. The required computation time is reduced considerably
relative to likelihood-based calculations using the divide and conquer strategy in-
herent in the composite likelihood. We recommend testing results with a couple of
choices of block sizes (hundreds to thousands sites per block) and blocking designs.
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Fig. 2 Synthetic 2D example of size 30×100: Simulated reservoir change (top, left) and associated
seismic reflections (top, right). Middle: Predicted reservoir changes using full likelihood model
(left) and the composite likelihood model with size-3 blocks (right). Bottom: Prediction standard
errors using the full likelihood model (left) and the composite likelihood model with size-3 blocks
(right).


