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Abstract: Various external forces influences water movements in an homogenous sea. The topographic
equations governing the topographic waves in an homogenous sea have been elaborated in this study. The
computational analysis pertinent to delineating the topographic waves in the homogenous sea has been
emphasized. The bottom slope and friction factor determines the variation trend of the resultant ocean velocity
and the surface ocean depth and generated results for this have been presented in this study. Interestingly, a
cubic polynomial fit expression has been made available expressing the relationship between the ocean wave
velocity and the ocean depth.
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INTRODUCTION

The ocean surface is an example of a complex wave
motion formed by the action of wind. The displacement of
a fluid particle from equilibrium position and action of a
restoring (gravitational) force on the particle produces a
wave like motion in the ocean called an internal wave.

The motion of ocean water is strongly influenced by
the spatial variation in homogeneity of the wind field over
the ocean surface and the topography of the ocean bottom.
Topographic waves are modeled using a primitive-
equation ocean model.

Various external forces influence water movements
in an homogenous sea. These comprises major forces that
maintain the ocean currents including air currents, the
changes in atmosphere pressure at the surface of the sea
and the periodic tide-generating astronomic forces. The
changes in atmospheric pressure are transmitted through
the entire mass of water down to the ocean bottom and
this give rise to horizontal pressure differences and the
formation gradient currents. The air currents result to two
fold effects consisting of the tangential force of the
ocean(wind stress) which produces a surface current
transmitted by the effect of viscosity (turbulence) to the
water layers waves also constitute water movements in
the direction of the wind.

Internal forces arise from the vertical and horizontal
disturbances of mass within the ocean. These differences
in the mass distribution both in the horizontal and vertical
directions are the consequences of changes in the heat
content(temperature) and in the salinity.

The ocean is obviously driven by several forces
comprising the internally generated ocean forces and

externally generated forces originating from gravity,
frictional and Coriolis effects and subsequently
transmitted viz the ocean layers. The Coriolis force cannot
be excluded resulting externally from the rotating effects
due to an inertia frame of refence.

A denizen of a rotating frame, such as an astronaut in
a rotating space station, very probably will find the
interpretation of everyday life in terms of the Coriolis
force accords more simply with intuition and experience
than a cerebral reinterpretation of events from an inertial
standpoint. For example, nausea due to an experienced
push may be more instinctively explained by Coriolis
force than by the law of inertia. In meteorology, a rotating
frame (the Earth) with its Coriolis force proves a more
natural framework for explanation of air movements than
a hypothetical, non-rotating, inertial frame without
Coriolis forces (Graney, 2011). In long-range gunnery,
sight corrections for the Earth's rotation are based upon
Coriolis force. These examples are described in more
detail below.

Couple of dynamic events happen in the ocean
environment emanating from diverse effects of internally
and externally generated forces been highlighted
previously. It becomes imperative to explore the
dynamics of the ocean and this investigation gave an
explicit delineation with presentation of a suitable
polynomial fit expression highly useful in calculating the
ocean surface wave velocity with depth.

Equations of motion: The product of mass and
acceleration equals the vector sum of forces as asserted by
Newton’s second law of motion. This statement is
invariably called the equation of motion.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357375343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Res. J. Environ. Earth. Sci., 4(4): 376-380, 2012

377

The important forces which drive the large-scale
motion are the force of gravity, the Coriolis force,
pressure gradient force and frictional forces. The
centrifugal force of earth’s rotation is usually included in
gravity. The three dimensional acceleration of a particle
is described by the vector equation of motion, which
contains the following terms:

Particle acceleration = Coriolis term + Presure gradient
term + Gravity trems + frictional term and expressed as:
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where dc/dt is the acceleration of a unit mass due to
accumulated effects per unit mass of the Coriolis force
!2u × c,  the pressure gradient force -1/D  P, the force of
gravity g and F, the generalized force due to frictional
effects.
The above equation can be written as:
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In the absence of sources or sinks of mass within the
fluid, the condition of mass conservation is expressed by
the Coriolis equation (Pond and Pickard, 1983; Kowalik
and Murty, 1993; Vallis, 2006; McWiliams, 2006; Donald
and Sidney, 2007; David, 2008).

The Coriolis effect exists only when one uses a
rotating reference frame. In the rotating frame it behaves
exactly like a real force (that is to say, it causes
acceleration and has real effects). However, Coriolis force
is a consequence of inertia and is not attributable to an
identifiable originating body, as is the case for
electromagnetic or nuclear forces, for example. From an
analytical viewpoint, to use Newton's second law in a
rotating system, Coriolis force is mathematically
necessary, but it disappears in a non-accelerating, inertial
frame of reference. For example, consider two children on
opposite sides of a spinning roundabout (carousel), who
are throwing a ball to each other. From the children's
point of view, this ball's path is curved sideways by the
Coriolis effect. Suppose the roundabout spins counter-
clockwise when viewed from above. From the thrower's

perspective, the deflection is to the right (Stephanyants
and Yeoh, 2008).  From the non-thrower's perspective,
deflection is to left. 

METHODOLOGY

The governing equations of the topographic waves in
an homogenous sea have been vividly delineated in this
investigation. The computational analysis of the
governing equations was treated by deriving the pertinent
analytic expressions.

The salient features of the pertinent equations were
unveiled and the input parameters requisite for the
computational task were stated.

A cubic polynomial fit expression has been deduced
showing the variation trend between the ocean wave
velocity and the ocean depth. The cubic polynomial fit
expression is expressed as follows:

C = !0.0152n3+0.4273n2!2.2504n+6.0856 

where C represents the ocean wave velocity and n
denoting eta represents the ocean depth.

DISCUSSION

Many types of waves involving different physical
factors exist in the ocean. An analogy could be made to an
elementary spring-mass system, thus all waves must be
associated with some kind of restoring force equivalent to
an elementary spring-mass system or simple pendulum, as
a result it is convenient to make a crude classification of
ocean waves.

Topographic waves and dynamics of ocean bottom:
Small bottom irregularities can turn an otherwise steady
geostrophic flow into slow moving waves. The dynamics
of an ocean with bottom slope is elaborated here.

For simplicity an homogenous ocean is considered in
a domain with periodic boundaries in y and a weak
uniform bottom slope in the x direction as delineated by
pertinent equations:

Emphasizing the vertically integrated continuity equation:
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By substituting  h (x, y, z) = H0 ! " x + (x, y, t) into Eq. (5)
gives:
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By substituting Eq. (6) into Eq. (5) yields:

(11)










 







t

u
h

x y
H x

u

x y
u 







      ( )( )0 0 0

From linear theory and requirement of a gentle slope,
the continuity equation is  written as follows:
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The corresponding linear vertically integrated
momentum equations are:
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The extra term "0u in the continuity equation, related
to the bottom slope will allow the existence of slow waves
similar to the planetary waves due to the variation of the
Coriolis parameter. This system contains both small and
large terms. The large ones(terms including f,g and H0)
comprise the otherwise steady geostrophic dynamics. In
the presence of the small term "0u, the time derivatives
come into play, but are still expected to be small. Thus
based on this smallness, we can take as a small
approximation, the geostrophic balance:
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By substituting Eq. (15) in the small time derivatives
of Eq. (13) and (14), we obtain:
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By  replacement  of  the  component  in  the continuity
Eq. (12) yields a single equation for as follows:
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By substituting Eq. (28), (27) and (20) into Eq. (12)
yields:

(31)







 

t
R

t

g

f y
  2 2 0

where . This is the Rossby radius. The solutionR
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of Eq. (31) gives:
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Substitution of Eq. (33) to (38) into Eq. (31) gives the
dispersion relation expressed as:
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These waves exist on their own due to the existence
of the bottom slope "0 , hence they are called topographic
waves. Without the presence of the bottom slope "0, the
flow would be steady and geostrophic.

Computational analysis: Having delineated the
governing equations of the topographic waves in an
homogenous ocean previously, the computational
procedure required to in solving the differential equations
are listed subsequently.
The linear, vertical integrated momentum equations are:
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These equations would be solved numerically by adopting
a numerical scheme (leap frog) in time placed in a 2-D
staggered grid (Arakawa Grid) whose complete scheme is
listed as follows:
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for the u equation centered at ujk:
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for the v equation centered at vjk .
For the (0) equation centered atjk, the boundary

conditions are periodic at y = 0 and y = Ly and no slip
condition at the walls x = 0 and x = Ly. This subsequent
expression is implemented by updating at every time step
the t tangential velocities inside the boundaries to a value
equal to the negative of the velocity at the point
immediately outside the boundary.

The shuffling of the time levels is done by changing
the indices and not the variables it solves, i.e.,
0save =  0+1, 0 +1= 0 +2, 0+2 = 0save, respectively. A
forcing term (wind) is included in the program to start the
currents, the wind is shut down after one day.

Input:The input parameters required to run the program
in the model are as follows:

)t = 305
Kmax = 40
Jmax = 20
)x/2 = )y/2 =5 km
Ly = 400 km, Lx = 200 km
H0 =  100 m
Ix = 0
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" = 0

The values of the bottom slope " and bottom friction
factor can be obtained, the results for " = 0, r = 0 and n =
180 are listed in the Table 1 generated based on a
polynomial fit expression.
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Table 1: Results obtained for "=o, r = o, n = 180 based on a pdynomial
fit expression

C (m/s) (0)(m)
1.00 0.00
4.28 1.00
3.31 2.00
3.59 3.00
4.89 4.00
7.42 5.00
11.25 6.00
16.48 7.00
23.21 8.00
C: the resultant ocean wave velocity; (0) : the surface ocean depth

CONCLUSION

The resultant ocean velocities and corresponding
surface ocean depths based on a polynomial fit expression
are presented in Table 1 and obviously gives a pertinent
model for deducing the variational relationship between
the ocean wave velocity and the surface ocean depth
from this investigation. 

The values of " and r are zero respectively in this
investigation, which determine the variation trend of the
ocean wave velocity with the surface ocean depth.
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