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In this paper, we present a growth mixture model for cartilage. The main features of this
model are illustrated in a simple equilibrium boundary-value problem that is chosen to
illustrate how a mechanical theory of cartilage growth may be applied to growth-related
experiments on cartilage explants. The cartilage growth mixture model describes the
independent growth of the proteoglycan and collagen constituents due to volumetric mass
deposition, which leads to the remodeling of the composition and the mechanical prop-
erties of the solid matrix. The model developed here also describes how the material
constants of the collagen constituent depend on a scalar parameter that may change over
time (e.g., crosslink density); this leads to a remodeling of the structural and mechanical
properties of the collagen constituent. The equilibrium boundary-value problem that de-

scribes the changes observed in cartilage explants harvested at different stages of a
growth or a degenerative process is formulated. This boundary-value problem is solved
using existing experimental data for developing bovine cartilage explants harvested at
three developmental stages. The solution of the boundary-value problem in conjunction
with existing experimental data suggest the types of experimental studies that need to be
conducted in the future to determine model parameters and to further refine the
model.[DOI: 10.1115/1.1560144

La Jolla, CA

Introduction and each of these mechanical properties are significantly corre-
Articular cartilage functions as a low friction, wear-resistantl,ated with the GAG and/or the colla}gen cont¢6,17).
Growth, resorption, and remodeling are fundamental processes

load-bearing materigll,2]. Adult cartilage is composed of a rela'that influence the size, shape, and properties of biological organs
tively small fraction of cells, called chondrocytes, within a fluid- d tissues. Growth is,“a ngrn,wal r(?cegs of increase i% size ff an
filled extracellular matrix. Chondrocytes are responsible for 1! : P

turnover of matrix molecules, both in growth and in resorptionorganism as a result of accretion of tissue similar to that originally

Two of the molecular components of the solid extracellular matr&resem[ls]. Here, vc_>|_umetr|c grov_vth of a constituent is inter-
(Fig. 1), proteoglycan and collagen, appear to be predominan reted as the deposition of constituent mass that has the same

responsible for the functional mechanical properties of the tiss gchamcal properties as the existing material. Volumetric growth,

The sulfated proteoglycan, aggrecan, consists of a protein c&te?'ther the cor)stlt.uent or at the tllssue. level, may change the
with attached glycosaminoglycalAG) chains. The GAG pro- residual stress fieldi.e., the stress field in the tissue or organ
vides the tissue with a fixed negative charge that enhances Yfi€n all external loads have been remové#9-21. Since
tissue’s propensity to swell and to resist compressive loadifganges n the residual stress will alter the tissue’s response to
[3,4]. The collagen is mostly present as fibrils immobilized in th echanical Ioa(_jB‘ZZ], V°'“m_e”'° grovvt_h leads to a ch_ang? in the
tissue matrix by crosslinks, 6], forming a collagen network. The overall mechanical properties of. the tissue. Resorption, t.he loss
cross-linked collagen network resists the swelling tendency of tR5 Substance through physiologic or pathologic megtgf” is,
proteoglycan, and provides the tissue with tensile and shear stff49nly. the opposite of growth. On the other hand, to remodel is
ness and strengii, 7,8 tq alt_er_the structure of; remak[éZ_B]. Here, constituent remoql-
Numerous studies have shown that the mechanical propertie€Bp9 iS interpreted as a change in the structure of the constituent
cartilage are dependent on its composition. The aggregate mofiift alters the constituent’s mechanical properties. Of course, such
lus of adult cartilage has been positively correlated with GA® change would have an impact on the overall mechanical prop-
content[1] and, to a lesser extent, with collagen conti@yt0]. ~ erties of the tissue. ) _
The permeability of adult articular cartilage has been inversely The cartilage growth mixture model developed here describes
related to GAG content measured as fixed charge defiity How the solid matrix remodels during cartilage growth due to two
During fetal and postnatal development of bovine cartilage, thebéological mechanisms: volumetric growth and remodeling of the
is little change in the GAG conteril2—14 but there is an in- proteoglycan and collagen constituents. When the constituents
crease in both the collagen content and crosslink defsfiylel.  9row without remodeling, the composition of the solid matrix may
These biochemical changes from fetal to adult cartilage are &\olve over time. Alternatively, when either constituent experi-

companied by an increase in the compressive and tensile modtfifes remodeling without mass deposition or resorption, the prop-
erties of the solid matrix may evolve over time. The cartilage
1Address all correspondence to: Stephen M. Klisch, Ph.D., Assistant ProfengF,OWth mixture model C‘?‘n describe how the _Change n composl-
Mechanical Engineering Department, California Polytechnic State University, Si®n caused by volumetric growth or, alternatively, the change in
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be used to interpret existing experimental data and suggests the
types of experimental studies that are needed to further refine the
model.

collagen
network

Methods

proteoglycans Cartilage Growth Mixture Model. The general theory of

growth for a mixture of an arbitrary number of growing ther-
moelastic materials and a single fluid derived 80,31 is sum-
marized in the Appendix. The structure of that theory was moti-
vated by how it will most readily be applied in practice.
Specifically, tissue specimens are typically harvested at different

collagen stages of arin vivo or anin vitro growth process, and the tissue’s

cross-links compositional, geometric, and material properties can be experi-

mentally characterized. In order to characterize how these proper-

Fig. 1 Schematic of the major components of the solid extra- ties evolve, all of the experimental data must be defined relative to
cellular matrix of articular cartilage. a single reference configuration. Therefore, we introduce a fixed

reference configuration that can be identified with one experimen-
tal configuration of the material, and can be used as a reference
configuration for the growth boundary-value problem. In this
model, the fixed reference configuration must represent some state
mental data to determine these parameters at the present time, ¢f ihe growing tissue in which a proteoglycan-collagen matrix has
necessary to develop a model that, with several simplifying afgrmed:
sumptions, can be used with existing data. In this paper, a con-The cartilage growth mixture model presented here is obtained
tinuum mechanics approach is used to develop a phenomologittam the general theory80,31] by introducing several simplifying
model of cartilage growth that may describe several of the saliemgsumptions. First, the cartilage is modeled as a mixture of three
features of cartilage growth. In the continuum approach, tte@nstituents. An inviscid fluid constituent represents the wter
primitive elements in the theory such as constituent densities, digtding dissolved moleculgsind two growing elastic constituents
placements, and stresses must be averaged over some refereg@sent the proteoglycan and collaggmcluding non-
volume. Thus, the continuum model of cartilage growth is incollagenous proteingonstituents of a saturated solid matrix.
tended to describe how these variables change in a volumeSecond, two types of internal constraints that are relevant to
averaged sense. cartilage are used. The internal constraint of solid-fluid intrinsic

Continuum mixture theorie§24—27 have been used to de-incompressibility, first derived if38], is assumed. This constraint
scribe the mechanical behavior of articular cartilg@8,29. is often used in cartilage mechanif28,39 has been demon-
However, none of these theories has been used to describe stigted experimentally for physiological load levp§)]. The sec-
tissue’s evolving composition and mechanical properties durigid constraint follows from the assumption that all of the indi-
growth and remodeling. Recently, a mixture theory of an arbitramdual proteoglycan and collagen molecules are bound to the
number of growing elastic materials and a fluid was derived, frogxtracellular solid matrix, so that their displacements and, conse-
which a general cartilage growth mixture model was proposétiently, their total deformations are equal. This is a limitation of
[30,31]. That growth mixture theory extended a series of theoreie model, as 20—-40% of the proteoglycans are soluble and mo-
ical studies of the growth of elastic biological materig82—34.  bile in the tissue matri{41,42; however, this feature can be
In those theories, the deformation gradient due to growth wagdded to model as the growth mixture theory presented in the
decomposed into two parts: a growth tensor that describes #gpendix is sufficiently general to allow for the specification of
amount and orientation of mass deposition, and an elastic accadditional mobile constituents.
modation tensor that ensures continuity of the tissue. Two consti-Third, it is assumed that the proteoglycan constituent does not
tutive equations must be specified for each tissue; one for the timeke a direct contribution to the solid matrix shear modulus; con-
rate of change of the growth tensor and one for the stress. Sgequently, the proteoglycan stress tensor is assumed to be spheri-
cifically, the introduction of the growth tensor required a growtigal. In particular, other authors have hypothesized that an increase
law that describes how tissue deposition is regulated by mechaini-swelling pressure due to a change in proteoglycan mass pro-
cal stimuli such as stress, strain, strain energy, interstitial fluitices a greater tensile stress in the collagen fibers, allowing the
velocity, etc. Furthermore, the stress depended on only the elastigss-linked collagen network to better resist shear loaieg,
component of the total deformation gradient tensor. Related thdor example,[43]). As discussed below, the model presented in
ries of volumetric growth have also been recently proposed fttis paper does allow the proteoglycan to indirectly contribute to
thermoelastic material85] and for mixtureq36]. the solid matrix shear modulus in this manner.

The general objectives of the study presented in this paperAlso, the model allows intrinsic remodeling of the collagen
were: (1) to present a cartilage growth mixture model gBfito  constituent. This is accomplished by including a scalar remodeling
use this model to solve an equilibrium boundary-value problem wariable that may quantify an evolving microstructural property,
illustrate the main features of the model. The specific boundarguch as collagen crosslink density, that affects the material prop-
value problem was chosen to illustrate how a mechanical thedgties that appear in the constitutive equation for the collagen
of cartilage growth may be used in practice so it is constructed $&ess.
mirror current experimental protocol. Currently available experi- To simplify the presentation, only equilibrium configurations
mental data are not sufficient to determine all of the model's phefore and after a continuous growth process are considered and
rameters and constitutive equations, so the example presented
here requires a number of simplifying assumptions that are not'The theory does not require the reference configuration to be physically attain-
intrinsic to the model. Consequently, the results presented are Agle, but only that a local mapping of material points is known. The theory is general

; ; ; : ; ough to allow for the stress constitutive equations for the growing materials to be
intended as either a validation StUdy oras a comprehenswe ge ined by considering an evolving stress-free configuration by using constitutive

scription of the biomechanics of growth of developing cartilag&quations for residually stressed elastic matefia§ and the growth theory for an
However, this paper does outline a quantitative method that melystic material with a residual stress figg#].
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only the mechanical aspects of growth are discussed. The suped- It should be emphasized that the specific constitutive equa-
scripts p, ¢, and w refer to the proteoglycan, collagen, and wat@ns used here are not intrinsic to the cartilage growth model, and
constituents, respectively. that different equations will generally be required for solving dif-

erent problems. For example, the stress constitutive equations can

Kinematics. Let kg(B) be a fixed reference configu[’ation.anc{/ary with anatomical location and also with the stage of develop-
k(B) a time-dependent loaded configuration of a growing MIXtULR ot ageing, or degeneration.

B during a continuous growth process. The deformation gradlentsIn the mixture theory formulation, the solid matrix stré&Sis

F« describe the overall deformations for the growing solid CONkhe sum of the proteoglycan and collagen stresses:
stituents relative to a fixed reference configuration and are decom- '

posed agsee A.1) TS=TP+TC. ©)

FP=MPMP.  E°=MSMC. 1) (_Zonsequently, the proteoglycan and collagen stress response func-
e e tions can be used to construct the stress constitutive equation for

The tensoM ¢M g describes the total deformation due to growtfthe solid matrix. Due to the internal constraints, the indeterminate

relative to xg(53), where the amount and orientation of mas@arts of the proteoglycan and collagen stressegs#eA12 and

deposition are described yly. The tensorM¢ describes an AL3) 0 .

elastic tensor that ensures continuity of the growing body, and fp:XerP_l Foo —X+pp—1 @)

may include a contribution arising from a superposed elastic de- pPT pet

formation. In this theory, the tensoh¢ andMg are introduced regpectively: At equilibrium, it is assumed that the indeterminate
relative to a fixed reference configuration and, consequently, lagk-qnd-order tensdc vanishes. However. the tensdksthat ap-
a clear physical interpretation. However, when the current cogg,; in(8) can be seen to have an important implication. Note

figuration is chosen as the reference configuration for a smglh; \yhen adding the proteoglycan and collagen stresses to form
increment of growth, these tensors have clear physical meanings <.jid matrix stress. the tensoksand —k cancel. Conse-

as shown i 34]. . . N ;
. . . uently, the governing equations can be satisfied by ensuring that
As discussed above, two internal constraints are used. The f L equilibrium equations for the solid matrix

constraint is solid-fluid intrinsic incompressibilif38]:
divT®=0 9)

p/ PT c/ .CT wy wTy
(PHTp")+(pTp™)+ (p P ™) =1, @) are satisfied while the arbitrariness of the tefs@nsures that the
wherep® is the apparent densitjper tissue volumeand p*™ is  equilibrium equations (6), can be satisfied individualf.
the true densityper constituent volumeThe second constraint is .
derived by assuming that all of the proteoglycan and collagenThe Growth Tensor and the Growth LawTo obtain a com-
molecules are bound to the extracellular solid matrix, so that théiiete theory, growth laws that describe the time-rate of change of

total deformations are equal: the growth tensorsg for both the proteoglycan and collagen
. - constituents must be specifieskeA10). The growth law provides
FP=F’=MiMg=MMg. (3) a description of the rate at which material is deposited re-

sorbed at a point, the orientation in which material deposition
‘occurs, and the way in which mechanical factors influence mass
deposition. For soft biological tissues, Taber and colleagees,
pPdetMb=pPR, pCdetM¢=pg. (4) see[21]) and Van Dyke and Hog¢B3] have implemented growth
laws that depend on stress, with the possibility of including a
Here, pg is the apparent density in the reference configuratiohomeostatic stress. However, it is possible that the growth law
Also, the growth continuity equations afgeeA7) should depend on other mechanical stimuli, such as the strain,
strain energy, the rate of strain, and interstitial fluid velocity. Con-
structing complete growth laws of the for(d10) for cartilage

t t
P— P C— ¢ . . X ; SO
detMg EXFUT_t cfdr|,  detM, ex;{Jf_t cdr). () \would require substantially more information than that which is
0 0 currently available. In this paper, experimental data is used to

where ¢ is the mass growth functiofihe rate of mass deposition calculate the ratio of the determinants of the growth tensors at
per unit current magsAt equilibrium, it is assumed that the dif- different developmental stages.

fusive forces vanish. Neglecting body forces, the equilibrium
equations becomeseeA3)

Balance Equations. For the proteoglycan and collagen con
stituents, the reduced continuity equations @eeA6)®

Qualitative Example. Before solving a specific boundary-
value problem in the next section, here we present a simple quali-
divTP=0, divT¢=0, divT¥=0. (6) tative example in order to illustrate how the cartilage growth mix-
= . ) ture model can describe the remodeling of the composition and
The additional balance equations that appear in the general thegy mechanical properties of cartilage due to mass deposition of
are listed in the Appendix. the solid matrix constituents. This example is physically unrealis-

Stress Constitutive EquationsConstitutive equations are re-tic'cbUt '3 intended @olillustratef the mtain Featuresl of;hg rplodel.
quired for the determinate parts of the proteoglycan and collagen~CNS!C€r & Special case ot growih of an unioaded, homoge-
ngeous spherical element of cartilage for which only proteoglycan
{Bolecules are deposite@Fig. 2. When uniform proteoglycan

changes in both the composition of the tissue and the structuren&@ss_deposi)tion occurs, the stress suppor(tjed by thhe proteoglycan
the individual constituents. As in any continuum theory of growt ,ongtltlﬁent éscon_]esl morg comprre]_sswe ue to T edln;reas_?bln
these constitutive equations can be defined relative to an evolvingd charge density. In order to achieve a new, unloaded equilib-

virtual configuration using the methods outlined[B#] and the ridm state for which there is a balance of stresses, the stress sup-

constitutive equations for residually stressed elastic materials @2rt€d by the collagen network must become more tensile and,

veloped in[37]. Specific forms of the stress constitutive equaﬁoﬁznsequently, a local tissue expansion will occur. This physical

are postulated below for the boundary-value problem that is stUgEScription is outlined schematically in Fig. 2A. To describe this
growth process mathematically, the cartilage growth mixture

°The constraintg2—3) lead to the indeterminate stress and diffusive forces re- “Also, the diffusive forces have indeterminate terms as discussed in the Appendix.

sponsegA12-A13). 5This observation extends to non-equilibrium conditions and was also suggested
3Also, a continuity equation for the fluid constituent is requitedeA2). in the constrained growth mixture theory developedi3f].
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A: Physical description of growth

proteoglycan growth

new equilibrium state -

equilibrium state -
balance of stresses

balance of stresses

B: Mathematical description of growth

p constituent

MP
d
B —— o
P tant
pP constan p
Me

elastic
compression

tified by harvesting tissue samples of the same size and shape at
different developmental or degeneration stages and conducting ex-
periments on the tissue. Since many of the model parameters and
constitutive equations that describe iarvivo growth process are
presently unknown, the boundary-value problem that is presented
here only indirectly reflects tha vivo growth process. Specifi-
cally, it is aimed at quantifying the evolution of the biochemical
and biomechanical properties of unloaded tissue explants that are
harvested at different developmental stages of a contininotigo
growth process.

Formulation. Since the purpose of this example is to illustrate
how the theory may be applied in practice and since only limited
experimental data for the mechanical properties were available,
simple constitutive equations for the proteoglycan and collagen
constituents were used for which the material properties are as-
sumed to be uniform and isotropic. In addition, it is assumed that
the growth tensors are uniform and isotropic. The boundary-value

problem developed here describes the initial and grown configu-
rations of the cartilage explant in equilibrium in the absence of
external load$. If the tissue explants are small enough, then the
solid matrix stress and the fluid pore pressure for an unloaded
configuration will be close to zero; consequently, this study de-
balance of stresses new equilibrium state - scribes how the stress-free configuration of the tissue changes
i balance of stresses during developmental growth.
M Since experiments have not been conducted that follow the

PP _ € paC
F=MoM = MM

equilibrium state -

Mg =1 glastic same control volume of growing cartilage, it is not possible to
S completely characterize the growth tensors of the individual con-
pe constant stituents. However, it is possible to estimate the magnitude of the

elastic accommodation tensors and the growth ratio as follows.
The elastic accommodation tensors are uniform and isotropic;
they are assumed to be of the form

MP=APL, MCS=\Y1,

¢ constituent

Fig. 2 Physical and mathematical descriptions of cartilage
growth for the special case when only proteoglycan molecules
are deposited. See accompanying text for a full description. (10)
where\¢ are called theelastic stretchesUsing experimentally
measured densitieg® and pg, the determinants of the elastic

mode'l introduces |ntermed|ate_conﬂgura_tlons'for the |nd_|V|du Iccommodation tensors and, consequently, the elastic stretches are
constituents. These intermediate configurations describe

h . s A culated from(4) as
amount and orientation of mass deposition for the individual con- m4)

stituents in which the constituent densities remain unchanged. In detMP=(A\B)3=pR/pP, detMi=(\)3=p&/pc.  (11)
this special example, proteoglycan growth leads to the intermedi- . )

ate configuration defined by the growth tenM)g (Fig. 2B). The Then, the growth ratio & is calculated from(3) and (11):
tensong is equal to the identity tensor since no collagen growth GP°=detM g/detMg:detM JdetM?. 12)

occurs. These intermediate configurations clearly do not represent . . I .
a continuous solid matrix; consequently, in the mathematical de-'"€ ﬂ?_'d St;ﬁsf ;f] assu?wgdlto be z?_ro . equlll_?rlum.thleen a/ltjrrn
scription of growth elastic tensoM®? andM¢ are introduced that 3SSUMPUONS that the material properties are uniform, e gro

must satisfy the constrairi8) and the equilibrium equations for 2>r2dl :A?Sggstgnﬁgf%:éebgzmgr acnodnclisit(i):)rr?ptlﬁéaenduitlri]t?rtiut:l]qe etlsus :_e
the solid matrix(9). In order to solve this simple boundary-value P Y ! q 9

s - tion for the solid constituen®) requires that the total solid matrix
problem, stress constitutive equations for the proteoglycan an@ . ;
. o . stiess vanishes everywhere:
collagen constituents must be specified. OntiandM¢ are de-
termined, the proteoglycan and collagen densities can be deter- (23)

mined from the continuity equation@) and the apparent fluid . .
density can be determined from the intrinsic incompressibilitTo determine the proteoglycan and collagen stresses that appear in

constraint(2). When nonlinear constitutive equations are used, tfé3)’ specific constitutive equations ml.“'St be u$&_rda_ mc_ieterml-
ate stress terms are assumed to vanish at equilibri@imce the

solid matrix stress response function relative to the growth con- . -
figuration will, in general, change. In this simple example, thﬁ] vivo growth process potentially corresponds to finite growth

tensile collagen strain produced by the growth process may lea d elastic strains, nonlinear constitutive equations are used. Typi-

. . . . ly, experiments that apply a known deformation to the tissue
higher tensile and shear moduli as measured by conducting é)%'plant and measure the stress response may be used to determine

8222:,%? gnoor} g,?gwgﬁgvgce;%nﬂgw?ﬁ'grlalnggsé gﬁgﬁamgﬁ?gctﬁe mechanical properties for finite deformations of the solid ma-
describe the evolution of the tissue’s compositional and mechal i Qurrently, a stress constitutive equation for the solld_matr!x
of articular cartilage validated for general finite deformations is

cal properties during growth. lacking. Therefore, only the linear elastic response of the solid
The Equilibrium Boundary-Value Problem. Here, an equi- matrix relative to an equilibrium configuration is used to deter-

librium boundary-value problem that describes cartilage growth igine the material constants in the collagen stress constitutive
formulated. The specific boundary-value problem that is solvedégjuations that are assumed in this paper to hold for the continuous
chosen due to its simplicity in order to illustrate how the goverrgrowth process. In particular, two linear elastic material constants
ing equations can be used together to describe growth-related #t-the solid matrix are used: the aggregate modulus determined
periments on cartilage explants. Typically, the biomechanical and

biochemical changes during am vivo growth process are quan- °Due to these assumptions, the growth, elastic, and stress tensors are all spherical.

TS=TP+T°=0.
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from a confined compression experiment and the Poisson’s ragignstants may depend explicitly on collagen crosslink dengity
determined from an unconfined compression experiment. so that both the collagen material properties and the collagen
For the proteoglycan constituent, it is assumed that the stresgess will change as the collagen remodels. Note that if remodel-
response function depends on the changes in the constituent deg-occurs while the collagen elastic strain is held fixed, tid)
sities during the growth process. As discussed above, it is assursadgests that the paramel&rshould be allowed to change so that
that the proteoglycan constituent does not have a direct contrilthe collagen stress may change. Since we are also interested in
tion to the solid matrix shear modulus; consequently, the pretudying the linear elastic response of the solid matrix relative to
teoglycan stress tensor is assumed to be spherical. Generally, thegrown configuration, a “small on large” approach was used to

proteoglycan stress constitutive equation relative to any configgtain the required constitutive equation following a finite growth.
ration «(B) is assumed to be of the form For a material that is either residually or initially stressed, the

general approach is outlined {22]. The required constitutive
Tp:-lA—p:-'l‘—p(pp p% ") 1. (14) equation for a solid matrix infinitesimal elastic strarsuperim-
o oer ) posed on an isotropic growtd ;=\:1 can be expressed as
An explicit formula of the form(14) that holds during the con- o _
tinuous growth process is not proposed; instead, the proteoglycan Te=TS=\%tre)1+2u%e+T°1 (18)
stress and aggregate modulus for a superposed confined compres- ) — ] )
sion experiment for each tissue explant are derived using thé@ere the material constanta {u%1') defined relative to the
model of[4]. For each explant, the constituent densities and sol@fown configuration are functions of the initial material constants
matrix aggregate modulus$ are used to calculate the proteogly{A‘,4%I"%) and the elastic stretch due to growf:
can stress componenf Tand aggregate modulus? .” Thus, at A= (NSNS o= (A9 u’
each stage of a continuous growth process for which the constitu- Jh M s
ent densities antl; can be expe_rimentally _determi_neql, using the Te= 3(NE—1)AS+2(NS— 1) uC+TC, (19)
model of[4] we can construct a linear elastic constitutive equation o ]
relative to the grown configuration of the form: CASE B: The second constitutive equation was chosen due to
. o its familiarity in the mechanics literature; it is the classical Saint-
TP=TP(pP,p% p")1=HR(tre)1+ TP1 (15) Venant Kirchhoff material that is generalized to include an initial

. . . . . herical str :
wheree is the solid matrix infinitesimal elastic strain tensor rela-Sp erical strespt]

tive to the grown configuratiom(B)_,8 TP is the proteoglycan

stress in the configuratior(B), andH?, is the proteoglycan ag-
regate modulus. . .

’ Ags in previous descriptions of volumetric growth of elastic maWhere &u*1) are collagen material constants aBlis the

terials, we take the collagen stress constitutive equation to depért@rangean strain tensor derived from

on the elastic part of the deformation gradievf [20,21,32,34 1 T

Here, however, we allow the material properties of the collagen ECZE(ME Me—1). (21)

constituent to change during the growth process through the evo-

lution of a remodeling variable®. In this study, this remodeling Although the constitutive equationd6) and (20) appear to be

variable represents the change in crosslink density. Because $Hgilar, we will see that they do provide quite different results. In

goal of this study is to illustrate how the growth model may be reference configuration wheh=1, E°=0, and p®=pg, the

used in practice, the constitutive equations used in this study wetgue 'T’i =TI"C1 is the initial collagen stress. As before, the col-

cho'_sen for their simp_lici;y. To acc_:uratel_y reflect the growth Olfagen rr?aterial constants may depend explicitly on collagen
cartilage, better constitutive equations will have to be develope(qoss”nk densityy®. Also, the required constitutive equation for

Furthgrmore, we conS|dered. two nonlinear stress COﬂSt.Itutlgﬁ infinitesimal elastic strain of the solid matexsuperimposed
equations to explore the sensitivity of the model to the choice g : . M= 1 has th f h
J.an isotropic growt o=\l has the same form &48); how-

constitutive equation. Because the experimental data that W X & e ) .

available was limited, the number of material constants was kef)er, the material constanta {x",I') are defined as different

to a minimum. functions of the initial material constants{ «¢,I') and the elas-
CASE A: The first collagen stress constitutive equation is tc stretch due to growthyg:

Saint-Venant Kirchhoff material defined in terms of the Biot strain 1

tensor WiFh.an initial spherical stress. This equation was chosen F=—C[(1.5—0.5>\gz))\°—()\22—1),u°—l“c],

because it is the most simple equation that can be used for large Ne

deformations of an elastic material; in particular, the stress is first-

Cc
Te=fe = % MYNSHES) 1+ 20 ES+ TYME,  (20)
R

order in the right stretch tensor. This equation is obtained by ne- —c:i 1EAC— 1IN+ (2AF — 1) uC+T°C 22
glecting the second-order terms in the corresponding equation de- K )\g[ e —1) (2he ~Lu 1 (22)
rived in [44]:
- d o= 150 F— DA+ (\F— 1) s+ T
Te=T; =RENAUER) 1+ 2uEG+TLRE,, (16) ~hethARe e~ Du .
where (S uS T are collagen material constanis; is the rota-  Comparison of22) with (19) reveals an important difference in

tion tensor associated witli, andES, is the Biot strain tensor the two constitutive equations that were chosen. In particular, the

dependence of the material constanﬁ, ,I'% defined relative
C Cc p
Eg=U.—1, (17)  to the grown configuration on the collagen elastic stretch is linear

where Ug is the right stretch tensor associated witf. In the for CASE A and nonlinear for CASE B.

reference configuration whergli=1, E§=0, and Ri=1, the

£ . - . Use of Experin ental Data and Solution of the Bou dary-
c _1°¢
value KR_I 1is the initial collagenstress. he collagen laterla\ll | Probl _ Constituent nsities, solid matrix aggregate

modulus, and crosslink density from third trimester fetal (F,n

"Quantities with a superposed bar indicate either material constants or streSS£96) 1-3 week old newborn (N:n8), and 1.5—2 year old adult
sponse functions measured relative to the present configuration of the growing tis: ! ! ! ’ Y

8For a superimposed infinitesimal elastic strain, the proteoglycan and collag.élﬁ:n= 7). bovine articular cartilage specimefts mm thick with
elastic strains are equal & intact articular surfacesarvested from the patellofemoral groove
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Table 1 Mean =S.D. values for the proteoglycan density PP,
collagen density p€, water density p", normalized crosslink
density v°, and solid matrix aggregate modulus H 2 and for the
fetal (F, n=6), newborn, (N, n=8), and adult (A, n=7) speci-
mens. Crosslink density values were normalized by dividing
each value by the average of the F group. This data was avail-
able from [15,46].

o’ p° p" HA
Group  (mglen?)  (mglent)  (mglen) y° (MPa)
F 22.2 87.6 963 1.0 0.09
2.1 (19.6 (182 (05  (0.03
N 26.0 141 942 2.1 0.28
4.3 (18.49 9.9 (0.6) (0.05
A 23.3 183 902 2.3 0.31
3.6 (28.9 (22.9 (1) (019

were assumed for the F, N, and A specimens, respectively, based
on data reported from unconfined compression experinjébis

After determining the collagen material constark$, £,1"°) in
this manner, the collagen material constant§, £°,I'°) defined
relative to the grown configuration were determined fré9)
(CASE A) and (22) (CASE B). Finally, the solid matrix shear
modulus G, bulk modulus R and Young's modulus Ewere cal-
culated by solving the appropriate boundary-value problems using
the linear elastic solid matrix constitutive equation obtained upon
adding(15) and(198):

_ 2 _ uG\+3HR+2uY
G=2u% K=\+-—p*+H), B=r—— " :
3 NS+ HR+u®
(25)
To ensure that these material constants for the solid matrix satisfy
stability constraints for linear elastic materials, we verified that the

were availablg 15,46 (Table 1. Collagen crosslink density datashear modulus Eand bulk modulus kwere positive’®

was converted into units of moles pyridinoline per mole collagen,
and then normalized by the average value for fetal specimens. Trn
“al

reference configuration for all specimens was defined by the

erage” fetal specimen. In particular, the reference densitfeare
equal to the average density values from the fetal specimens.nl&
the reference configuration, the elastic and growth tensors are
equal to the identity tensors. For each explant, the elastic stretc!

Statistical Analysis. The effect of developmental stage on the
Sdel parameters was analyzed by multi-way ANOVA and post-
Hoc Tukey testSysta}. Data are shown as mearstandard error

of the mean. The dependence of the collagen and solid matrix
erial constants on® was analyzed by linear regression.

and the growth ratio were calculated using the density data aIE? sults

(11-12.

The calculated values for the proteoglycan and collagen stress

Then, the constituent densitigs and solid matrix aggregate components ff and T, and aggregate moduli }Hand H, are
modulus B, were used to calculate the proteoglycan stress corshown in Table 2. The collagen elastic strex¢h(Fig. 3B) and the

ponent T and aggregate moduluEQ\HJsing the model of4] for
each explant. The three collagen material constantsu(,I"®)

growth ratio @& (Fig. 30 changed significantly during develop-
ment (p<0.05).

were determined from solving three equations simultaneously.CASE A. The results for the collagen material constants
The first equation was obtained by equating the collagen strdss, 1 '°) calculated for each developmental stage are shown in

T¢=T%1=T"*1 determined from(18) and (19} (CASE A) or
(22); (CASE B) and the collagen stress determined froh3)

using .. The second equation corresponded to the solid matth
aggregate modulus3H in this model, H is equal to the sum of

the proteoglycan and collagen aggregate moduli:

H3=HR+HS,, (23)

where the relationship H=\°+2° can be derived easily from

(18) and was calculated using the values\6fndz* from (19)2

(CASE A) or (22), , (CASE B). The third equation was obtained

by assuming values for the solid matrix Poisson’s rafiowhich
using (15) and (18) may be calculated as
NS+HR
;S:T (24)
2N+ HR+ 1)

using the values ok and . from (19), , (CASE A) or (22), ,

Fig 4; only the parametew® (Fig. 4B) changed significantly dur-
ing development (§.0.05). The collagen material constants for
he linearized constitutive equati¢h8) were calculated; only the
parameterg.® and H; = \°+ 24" changed significantly during de-
velopment (p<0.05) (Figure 5. Since these results suggest that
the collagen remodels during development, the existence of sig-
nificant linear correlations were investigated. Linear regression
analysis revealed that the collagen material constarfts(p
<0.01), u® (p<0.01), and K (p<0.05; data not shownwere
positively correlated with collagen crosslink density (Fig. 6).

CASE B. When using the collagen stress constitutive equation
(20), the only model parameters that are different than those ob-
tained for case A are the material constamk§ £°1'°) (Table 3.
The paramete® changed significantly between the fetal and
newborn stages §0.05) and the parametar changed signifi-
cantly between the newborn and adult stages @5).

For both Cases A and B, the predicted solid matrix material

constants (&k° E°) are the same; these parameters changed sig-

(CASE B)_. Since the tissue Poisson’s ratio was not measured ifficantly during development 0.05) and were positively cor-
the experimental study, values of equal to 0.09, 0.11, and 0.26 related with collagen crosslink density<®.01; Fig. 7.

Table 2 Mean £S.D. values for the stress components T % and
T¢ and aggregate moduli H R and H§, for the fetal (F, n=6), new-
born (N, n=8), and adult (A, n=7) specimens. These values

were calculated using the model of  [4].
T T Hy Hy

Group (MP3a) (MPa) (MPa) (MPa)

F —0.055 0.055 0.09 0.001
(0.010 (0.010 (0.03 (0.010

N -0.074 0.074 0.13 0.149
(0.015 (0.015 (0.02 (0.067

A —0.078 0.078 0.17 0.139
(0.022 (0.022 (0.0 (0.149
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Discussion

This work illustrates how a mechanical theory of cartilage
growth may be used to describe the complex relationship between
the evolving compositional and mechanical properties of pro-
teoglycans, collagens, and collagen crosslinks during articular car-
tilage development. Although the limitations discussed below pre-
vent the current study from quantitatively describing the
biomechanics of developmental growth of articular cartilage, the

Inequalities for the material constants of the individual constituents are not used
because there is no corresponding uniqueness or stability theorem for this material.
There is a small-strain uniqueness theorem for a mixture of two elastic $dlitls
but here there are constraint responses in the partial stresses and diffusive forces that
make that theorem inappropriate.
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Fig. 3 Model results that describe the kinematics of growth for developing
bovine cartilage specimens. Mean  *S.E.M. results for fetal (F,n=6), newborn
(N,n=8), and adult (A,n=7) groups. (+) indicates a significant difference be-
tween either N or A groups and the F group,  (++) indicates a significant differ-
ence between N and A groups (ANOVA, Tukey post-hoc, p <0.05).

results do offer a qualitative description that may be used to guidtuents; in that paper, an exponential collagen stress equation
future studies. Since different results were obtained for the tweas used that also has not been validated to multiple sets of ex-
assumed collagen stress constitutive equations, it is clear that pegimental data. Since the elastic deformations due to growth pre-
use of accurate constitutive equations will be crucial for both valécted in the current study are large, it is clear that an immediate
dating the model and for using the model to make predictiomm of future experimental studies should be to develop more
concerning the biomechanics of cartilage growth. The results aecurate nonlinear stress-strain constitutive equations.
consistent with the experimental observation that the intrinsic One advantage to using a growth theory for laf@&opposed to
properties of the collagen network change during developmeniafinitesima) deformations is that the material properties in the
growth to produce a stiffer collagen netwdiis—17. The signifi- stress constitutive equations, when defined relative to the grown
cant correlations between the collagen and solid matrix mater@nfiguration, may evolve during the growth process as the tissue
constants and the collagen crosslink density suggest [d$ijf7 composition changes. To be more specific, when the tissue grows
that these changes are partly explained by the increasing crossfirm a reference configuration to a grown configuration, the col-
density during development; and indicate that other collagen dagen density may change, which also means that the collagen
modeling parametergsuch as collagen content, fiber diameterlastic accommodation tensor will change. When the collagen
and orientationmay be influencing the mechanical properties aftress depends on the collagen elastic accommodation tensor non-
the collagen network. Thus, a suggestion for future studies is linearly, the stress response function relative to the grown con-
obtain additional measures of the collagen microstructure thajuration will be different than that relative to the reference con-
may evolve during developmental growth. figuration. In this paper, the manner in which the collagen material
A limitation of the example presented here is the accuracy obnstants relative to the grown configuration evolve during isotro-
the stress-strain constitutive equations. The development of copie growth were calculated for two assumed collagen stress equa-
prehensive and accurate constitutive equations for use in cdions; see Eqs19,22. Thus, the cartilage growth mixture model
tinuum models of cartilage mechanics has proven to be a fornsian predict how the solid matrix material constants evolve due to
dable challenge for many years. For the cartilage growth mixtutiee elastic deformations that are developed to maintain a compat-
model presented here, separate constitutive equations are neebledsolid matrix during a growth process. In addition, the model
for the proteoglycan and the collagen constituents. In this pappresented here provides a quantitative method for describing how
two simple nonlinear constitutive equations for the collagen stredge material constants change due to a remodeling of the collagen
were used that have not been validated by experimental datactmstituent.
the cartilage growth example presented 3i], nonlinear stress-  Several experimental studies have quantified the nonlinear and
strain equations were used for the proteoglycan and collagen caonhomogeneous properties of the stress constitutive equations

0.05
A

0-

~0.05-

7S (MPa)

-0.1+

-0.15

F NA F NA F NA

Fig. 4 CASE A model results that describe the evolution of the collagen material constants

(NS, u®,I'°) for developing bovine cartilage specimens using the collagen stress equation (16).
Mean =S.E.M. results for fetal (F,n=6), newborn (N,n=8), and adult (A,n=7) groups. (+)
indicates a significant difference between either N or A groups and the F group (ANOVA, Tukey
post-hoc, p <0.05).
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Table 3 CASE B mean *=S.D. values for the collagen material

constants (A%, ut,I'°) for the fetal (F, n=6), newborn (N, n=38),
+ and adult (A, n=7) specimens. (+) indicates a significant dif-

+ ference between either N or A groups and the F group. (++)

indicates a significant difference between N and A groups

(ANOVA, Tukey post-hoc, p <0.05).

AC :U'C re
Group (MPa) (MPa) (MPa)
F -0.027 —0.013 —0.053
(0.020 (0.008 (0.007
N —0.025 0.057 0.070
(0.016 (0.042+ (0.012
FNA F NA A 0.025 0.028 0.088
(0.06)++ (0.058 (0.063
Fig. 5 CASE A model results that describe the evolution of the
collagen material constants  (u®, Hy) for developing bovine car-
tilage specimens using the collagen stress equation (18). Mean
+ S.E.M. results for fetal (F,n=6), newborn (N,n=8), and adult
(A,n=7) groups. (+) indicates a significant difference between in the present study. However, there does exist experimental evi-
either N or A groups and the F group  (ANOVA, Tukey post-hoc, dence that the deposition of proteoglycan molecules in the extra-
p<0.05). cellular matrix is anisotropif52] and that the solid matrix may be

residually stressefb3]. Thus, another suggestion for future stud-

ies will be to conduct experiments that are aimed at quantifying
for the cartilage solid matrix. Recently, a model for the solid maoth the orientation of mass deposition and the residual stress field
trix of cartilage has been proposgtB] that is capable of model- in cartilage explants. It is emphasized that the limitations dis-
ing the tension-compression asymmetry that has been observedussed above are limitations of the assumptions used to obtain a
developing cartilage, mature cartilage, and tissue-engineered csolution for the boundary-value problem; they are not limitations
structs; and this model was validated for multiple experimentaf the cartilage growth mixture model nor the more general
protocols. Also, many studigd9—-51] have quantified the depth- growth mixture theory derived if30,31].
dependent mechanical properties of bovine and human articulaA key feature of cartilage growth is a dependence on mechani-
cartilage. However, these nonlinept8] and nonhomogeneous cal and biochemical stimuli. For example, alterations to the nor-
[49-51] models have only been postulated for infinitesimainal in vivo mechanical loading may cause growth abnormalities
strains. In order to develop constitutive equations that may lboe conditions such as hip dyspladia4]. In vivo models such as
used accurately during a growth process, they must be validagdgerimental arthritis and joint immobilization indicate that al-
for multiple experimental protocols and finite strains. Specificallyered mechanical loads cause remodeling of the compositional and
it will be necessary to conduct multiple mechanical tests such amechanical properties of the solid matfi%5]. In vitro experi-
confined compression, unconfined compression, simple tensioents have quantified the solid matrix metabolic response to me-
and shear in a region-specific manner to more accurately depibenical stimuli such as hydrostatic pressure, dynamic compres-
the evolving mechanical properties of cartilage between develapve stress, and fluid diffusiorb5]. In thesein vitro experiments,
mental stages. It is emphasized that accurate constitutive eqte metabolic activity related to proteoglycan and collagen depo-
tions are necessary in order to predict the evolution of the growsition has been measured. The results suggest that the proteogly-
tensors and, consequently, the growth law in the cartilage growtan and collagen constituents can grow and remodel indepen-
mixture model. In the meantime, the type of study presented dently of each other. Also, the results of numerous studies suggest
this paper can only be expected to give a qualitative descriptiontbit biochemical factors influence chondrocyte metabolism. Ana-
the biomechanics of cartilage growth. bolic agents, such as insulin-like growth factofiGF-1), trans-

Another limiting assumption of the present paper is that tHerming growth factor8 (TGF-B), and basic fibroblast growth

cartilage explants were homogeneous and free of residual stréastor (0FGP stimulate the biosynthesis of proteoglycans and/or
In agreement with these assumptions, the growth and elastic acHageng56)].
commodation deformations were assumed to be isotropic tensor§ince the proteoglycan and collagen constituents serve distinct

0.3 0.25

o
y=0.043x+0.029

0.2- R2=0.39 °

y=0.030x+0.035
0.24 p-0.32

Fig. 6 CASE A linear regression curves for the collagen material constants

(u€, w®) for the F/N/A groups, respectively. Both collagen material parameters
were positively correlated (p<0.01) with collagen crosslink density ¥° (nor-
malized by the average for the F group ).
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Fig. 7 Linear regression curves for the predicted solid matrix material constants (G®, k%, E®) for the F/N/A
groups, respectively. All three solid matrix material parameters were positively correlated (p<0.01) with

collagen crosslink density  y° (normalized by the average for the F group ).

mechanical roles, a cartilage growth model should allow for indgsppendix
pendent constituent growth in order to predict how the mechanical . . . . .
properties of the tissue evolve during growth and degeneration. lnclJr\}/vtm‘sor?ﬁﬁQtle ?(e ct)??angzca);/tfitrrna{?gnﬁ?nu;e“rogfs trigrrt:gegsii%r)r/ng
a mechanical model of cartilage growth, growth laws such as fials and a single fluid are recall):ad frd80.31,34
(A10), are needed to quantify how the growth of the collagen an e
proteoglycan constituents depend on mechanical and othen.i Kinematics.
stimuli. As a precursor to establishing the forms of these growth
laws, in this paper the growth ratio was calculated from measure-
ments of the tissue’s change in composition. In order to determi
realistic growth laws, the individual components of the growtﬁ‘
tensors need to be determined. Experimental data that quantiﬁg
the changes in both the geometry of a growing tissue explant &
well as the constituent densities would allow one to calculate t ; g ; . .
determinants of each growth tensor. The type of experiment t formation gradlent. tensor for each growing elastic material
was conducted ifi52] that quantified the spatial location of mo-CPeys the decomposition
lecular deposition in the extracellular matrix could be used to fully
characterize each growth tensor. Furthermore, the effect of various F*=MiMg, ac[lp—1]. (A1)
biochemical regulators on the growth law may be studied.

The cartilage growth model presented here can be used to de- ) )
sign experiments that would lead to the refinement of the moddihe tensoM¢Mg describes the total deformation due to growth
Specifically, we suggest that experimental studies are needed tigdative to xg(5), whereM¢ may include a contribution from a
apply multiple finite deformations to determine accurate nonlineauperposed elastic deformation. The amount and orientation of
stress-strain equations, that measure the amount and orientatiomabs deposition are describedMy} . Furthermore, the mass den-
mass deposition in response to mechanical stimuli to determisigy, the free energy density, and the stress functions are indepen-
the growth law, and that better characterize microstructural paragent ofM
eters that may influence these constitutive equations as they
evolve during then vivo growth process. Ultimately, one hopes A.ii  Balance Laws.
that these efforts may lead to a model that can be used in a numi [30,31], the classical balance laws for a mixture were modi-
ber of ways to develop a better understanding of the key featuigsy to include variables associated with mass deposition and
and mechanisms of cartilage growth. For example, a cartilageowth energy supply for each growing elastic material. These
growth mixture model may be used to predict the manner &qiar variables were the mass growth functiéiie., the rate of

which cartilage constructs may be stimulateditro for the fab-  maq5 deposition per unit current massid the growth energy
rication of better implants. Also, it may describe and predict th[%

: . X rm B¢ (i.e., the rate of growth energy per unit current mass that
outcome of therapies aimed at the successful repair of growth a}gd:gquired in addition to that needed to create material with the
degenerative abnormalities. This can be accomplished by applylighne internal and kinetic energy as the existing majerfie
the model with simple geometries, such as those corresponding)ig, e equations for mass, linear momentum, angular momen-
anin vitro specimen, or with complex geometries, such as tho and energy or(B) are ' '
corresponding to a joint’s articular surface. In either case, compu- '
tational models of thén vivo andin vitro growth, degeneration,
and repair processes will have to be developed as the governiditp®

Consider a mixture3 of v constituentsiw—1 growing elastic
terialsC*(a e[1,»—1]) and an inviscid fluidC”. Let kg(B) be
ixed reference configuration ar¢53) a time-dependent loaded
inguration ofB3 during a continuous growth process. The kine-
tics for each growing elastic constituglitis the same as that
opted for a growing elastic material i@4]. In particular, the

a
g-

v v

system of equations are both nonlinear and coupled. g TP° divve=pc?, (ae[lpy—1]); ot +p?divv’=0,
(A2)
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dure first introduced by Adkins7] for introducing internal con-
straints in finite elasticity was used. For a growing mixture subject
to a mechanical constraint, the partial stresses and diffusive forces
were assumed to obey the additive decompositions

(AS)

d*e®

dt

pe =pr*—divg*+ y*+T*D*+p*B%, (ae[ly—1));
dVSV .

p" ot =p'r'—divq"+y"+T"-D",
where p® is the apparent density” is the velocity, T is the
partial Cauchy stress tensat is the diffusive forcep® is the
partial external body forceA® is the internal body couple;® is
the partial internal energy; iis the partial external heat suppty;
is the partial heat flux vector® is the internal energy supplR®  zero.
is the rate of deformation tensor, div) is the divergence operator, The requirement that the overall deformation gradient tensors
and each of the material time derivatives that apg@arAS) are  of two growing elastic materials p and ¢ be identical leads to the
defined by following a material point of the corresponding conresults.
stituent. Assuming that the change in density of each growing - o
elastic materiaC® is due only to the elastic part of the total de- TP=—T°=N\, @=-7°=D, (A12)
formation ofC*, the reduced continuity equation fGf takes the \yhereX andp are an arbitrary second-order tensor and vector,
form respectively.

For intrinsic incompressibility, each constituesft is assumed
to be separable from the others with consténie) density p®"
where pg is the apparent density in the reference configuratiqfefined as the mass 6f per unit volume of®. It is assumed that
and det(-) is the determinant. Integratingh2); and using(A6)  the volume of the mixture is equal to the sum of the volumes of
leads to the growth continuity equation eachC®. In [30,31], the following results for the indeterminate

Te=To+ T, a*=7"+4a", (A11)
where (T*, %) are indeterminate partial stresses and diffusive
forces called the constraint responses, antl, &) are determi-
nate partial stresses and diffusive forces. Furthermore, the work

done by the constraint response functions was assumed to equal

p®detMi=pR, (ae[lr—1]), (A6)

partial stresses and diffusive forces were obtained:

(A7)

t
detM;‘:ex;{f c“er.
=1y

The balance of mass, linear momentum, and angular momen-
tum equations for the mixture require that

v—1 v v
> pct=pc, D @¥=0, D, A®=0, (A8)
a=1 a=1 a=1

T":pﬁ 1,

Nomenclature

p“ s gradp“
T="P— %Gt

. (A13)

where p is an arbitrary scalar.

where ¢ is the mass growth function for the mixture. The balance @ = p, ¢, w: superscript denoting the proteoglycan,
of energy equation for the mixture becomes collagen, and water constituents
kr(B) = fixed reference configuration
Y g _ vl «(B) = grown configuration
21 pigr P HdiveTh At T LS _21 p*pe=0. Fo = deformation gradient tensor
“ “ (9) M¢ = elastic accommodation tensor
_ Mg = growth tensor
To complete the field equations, growth response functions that pT = true density(mass per constituent volume
describe the time-rate of change Mfj and 3“ for each growing det(.) = determinant of a tensor
elastic constituen® must be specified. Since the relationship pr = apparent density in reference configuration
between growth and mechanical stimuli is poorly understood, here c* = mass growth function.
growth response functions with the general forms div () = divergence of a tensor
g T¢ = stress tensor
9 _ Bag Aqa a_ pag pqa 0 = zero tensor
dt GAMD, BT=BAMD (A10) ~'I's = solid matrix stress tensor
are considered, whereM® represents the thermomechanical T = indeterminate part of the stress tensor
stimuli that drive the growth process for eaéh A = arbitrary second-order tensor _
p = arbitrary scalar Lagrange multipli€épore fluid
. - pressurg
A.iv  Restrictions Imposed by the Second Law of Thermo- 1 = identity tensor
dynamics. A& = elastic stretch
Constitutive equations are needed for several variables that ap- GP = growth ratio
pear in the theory, including the partial stresses and diffusive Te = determinate part of the stress tensor
forces. In[30,31], this was accomplished by introducing partial T¢ = stress constitutive equation relative to the
free energy and entropy functions and consujenng restrictions im- grown configuration
posed by the Sgcond Law of _Thermodynamlcs aftt_er assuming an HZ = aggregate modulus relative to grown configura-
entropy inequality for the mixtures. The reader is referred to tion
[30,31 for the complete set of constitutive restrictions. — N . e
T, = stress constitutive equation for infinitesimal
A.v Internal Constraints. Two special types of mechanical elastic strains relative to the grown configura-
constraints that are relevant to cartilage are assumed for the car- tion
tilage growth mixture model. One constraint states that the defor- tr (.) = trace of a tensor
mation gradient tensonis® of the growing proteoglycan and col- e = infinitesimal solid matrix elastic strain tensor
lagen constituents are equal. Another constraint is the internal superimposed on the grown configuration
constraint of intrinsic incompressibility38]. In [30,31], a proce- v¢ = normalized collagen crosslink density
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TﬁR = stress constitutive equation relative to the ref-
erence configuration
(ASubT9 = collagen material constants relative to refer-
ence configuration
Re = rotation tensor associated wilhS
Eg = Biot strain tensor
_Ué = right stretch tensor associated wi{
(ASut 9 = collagen material constants relative to grown
configuration
___ E® = Lagrangean strain tensor
(v°,G5 k5 E® = solid matrix material constants relative to
grown configuration
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