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In this paper, we present a growth mixture model for cartilage. The main features o
model are illustrated in a simple equilibrium boundary-value problem that is chose
illustrate how a mechanical theory of cartilage growth may be applied to growth-rela
experiments on cartilage explants. The cartilage growth mixture model describe
independent growth of the proteoglycan and collagen constituents due to volumetric
deposition, which leads to the remodeling of the composition and the mechanical
erties of the solid matrix. The model developed here also describes how the ma
constants of the collagen constituent depend on a scalar parameter that may chang
time (e.g., crosslink density); this leads to a remodeling of the structural and mecha
properties of the collagen constituent. The equilibrium boundary-value problem tha
scribes the changes observed in cartilage explants harvested at different stages
growth or a degenerative process is formulated. This boundary-value problem is s
using existing experimental data for developing bovine cartilage explants harvest
three developmental stages. The solution of the boundary-value problem in conjun
with existing experimental data suggest the types of experimental studies that need
conducted in the future to determine model parameters and to further refine
model. @DOI: 10.1115/1.1560144#
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Introduction
Articular cartilage functions as a low friction, wear-resista

load-bearing material@1,2#. Adult cartilage is composed of a rela
tively small fraction of cells, called chondrocytes, within a flui
filled extracellular matrix. Chondrocytes are responsible for
turnover of matrix molecules, both in growth and in resorptio
Two of the molecular components of the solid extracellular ma
~Fig. 1!, proteoglycan and collagen, appear to be predomina
responsible for the functional mechanical properties of the tiss
The sulfated proteoglycan, aggrecan, consists of a protein
with attached glycosaminoglycan~GAG! chains. The GAG pro-
vides the tissue with a fixed negative charge that enhances
tissue’s propensity to swell and to resist compressive load
@3,4#. The collagen is mostly present as fibrils immobilized in t
tissue matrix by crosslinks@5,6#, forming a collagen network. The
cross-linked collagen network resists the swelling tendency of
proteoglycan, and provides the tissue with tensile and shear
ness and strength@1,7,8#.

Numerous studies have shown that the mechanical propertie
cartilage are dependent on its composition. The aggregate m
lus of adult cartilage has been positively correlated with GA
content@1# and, to a lesser extent, with collagen content@9,10#.
The permeability of adult articular cartilage has been invers
related to GAG content measured as fixed charge density@11#.
During fetal and postnatal development of bovine cartilage, th
is little change in the GAG content@12–14# but there is an in-
crease in both the collagen content and crosslink density@15,16#.
These biochemical changes from fetal to adult cartilage are
companied by an increase in the compressive and tensile mo
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and each of these mechanical properties are significantly co
lated with the GAG and/or the collagen content@16,17#.

Growth, resorption, and remodeling are fundamental proce
that influence the size, shape, and properties of biological org
and tissues. Growth is ‘‘a normal process of increase in size o
organism as a result of accretion of tissue similar to that origina
present@18#.’’ Here, volumetric growth of a constituent is inter
preted as the deposition of constituent mass that has the s
mechanical properties as the existing material. Volumetric grow
at either the constituent or at the tissue level, may change
residual stress field~i.e., the stress field in the tissue or orga
when all external loads have been removed! @19–21#. Since
changes in the residual stress will alter the tissue’s respons
mechanical loads@22#, volumetric growth leads to a change in th
overall mechanical properties of the tissue. Resorption, ‘‘the l
of substance through physiologic or pathologic means@18#’’ is,
roughly, the opposite of growth. On the other hand, to remode
‘‘to alter the structure of; remake@23#.’’ Here, constituent remod-
eling is interpreted as a change in the structure of the constit
that alters the constituent’s mechanical properties. Of course,
a change would have an impact on the overall mechanical p
erties of the tissue.

The cartilage growth mixture model developed here descri
how the solid matrix remodels during cartilage growth due to t
biological mechanisms: volumetric growth and remodeling of
proteoglycan and collagen constituents. When the constitu
grow without remodeling, the composition of the solid matrix m
evolve over time. Alternatively, when either constituent expe
ences remodeling without mass deposition or resorption, the p
erties of the solid matrix may evolve over time. The cartila
growth mixture model can describe how the change in comp
tion caused by volumetric growth or, alternatively, the change
constituent remodeling causes the mechanical properties of s
matrix to evolve during a continuous growth process.

Due to the numerous parameters that influence the growth
mechanical properties of cartilage and the relative lack of exp
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mental data to determine these parameters at the present time
necessary to develop a model that, with several simplifying
sumptions, can be used with existing data. In this paper, a c
tinuum mechanics approach is used to develop a phenomolo
model of cartilage growth that may describe several of the sal
features of cartilage growth. In the continuum approach,
primitive elements in the theory such as constituent densities,
placements, and stresses must be averaged over some refe
volume. Thus, the continuum model of cartilage growth is
tended to describe how these variables change in a volu
averaged sense.

Continuum mixture theories@24–27# have been used to de
scribe the mechanical behavior of articular cartilage@28,29#.
However, none of these theories has been used to describ
tissue’s evolving composition and mechanical properties du
growth and remodeling. Recently, a mixture theory of an arbitr
number of growing elastic materials and a fluid was derived, fr
which a general cartilage growth mixture model was propo
@30,31#. That growth mixture theory extended a series of theo
ical studies of the growth of elastic biological materials@32–34#.
In those theories, the deformation gradient due to growth w
decomposed into two parts: a growth tensor that describes
amount and orientation of mass deposition, and an elastic acc
modation tensor that ensures continuity of the tissue. Two con
tutive equations must be specified for each tissue; one for the
rate of change of the growth tensor and one for the stress.
cifically, the introduction of the growth tensor required a grow
law that describes how tissue deposition is regulated by mech
cal stimuli such as stress, strain, strain energy, interstitial fl
velocity, etc. Furthermore, the stress depended on only the el
component of the total deformation gradient tensor. Related th
ries of volumetric growth have also been recently proposed
thermoelastic materials@35# and for mixtures@36#.

The general objectives of the study presented in this pa
were: ~1! to present a cartilage growth mixture model and~2! to
use this model to solve an equilibrium boundary-value problem
illustrate the main features of the model. The specific bounda
value problem was chosen to illustrate how a mechanical the
of cartilage growth may be used in practice so it is constructe
mirror current experimental protocol. Currently available expe
mental data are not sufficient to determine all of the model’s
rameters and constitutive equations, so the example prese
here requires a number of simplifying assumptions that are
intrinsic to the model. Consequently, the results presented are
intended as either a validation study or as a comprehensive
scription of the biomechanics of growth of developing cartilag
However, this paper does outline a quantitative method that m

Fig. 1 Schematic of the major components of the solid extra-
cellular matrix of articular cartilage.
170 Õ Vol. 125, APRIL 2003
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be used to interpret existing experimental data and suggests
types of experimental studies that are needed to further refine
model.

Methods

Cartilage Growth Mixture Model. The general theory of
growth for a mixture of an arbitrary number of growing the
moelastic materials and a single fluid derived in@30,31# is sum-
marized in the Appendix. The structure of that theory was mo
vated by how it will most readily be applied in practice
Specifically, tissue specimens are typically harvested at diffe
stages of anin vivo or an in vitro growth process, and the tissue
compositional, geometric, and material properties can be exp
mentally characterized. In order to characterize how these pro
ties evolve, all of the experimental data must be defined relativ
a single reference configuration. Therefore, we introduce a fi
reference configuration that can be identified with one experim
tal configuration of the material, and can be used as a refere
configuration for the growth boundary-value problem. In th
model, the fixed reference configuration must represent some
of the growing tissue in which a proteoglycan-collagen matrix h
formed.1

The cartilage growth mixture model presented here is obtai
from the general theory@30,31# by introducing several simplifying
assumptions. First, the cartilage is modeled as a mixture of th
constituents. An inviscid fluid constituent represents the water~in-
cluding dissolved molecules! and two growing elastic constituent
represent the proteoglycan and collagen~including non-
collagenous proteins! constituents of a saturated solid matrix.

Second, two types of internal constraints that are relevan
cartilage are used. The internal constraint of solid-fluid intrin
incompressibility, first derived in@38#, is assumed. This constrain
is often used in cartilage mechanics@28,39# has been demon
strated experimentally for physiological load levels@40#. The sec-
ond constraint follows from the assumption that all of the in
vidual proteoglycan and collagen molecules are bound to
extracellular solid matrix, so that their displacements and, con
quently, their total deformations are equal. This is a limitation
the model, as 20–40% of the proteoglycans are soluble and
bile in the tissue matrix@41,42#; however, this feature can b
added to model as the growth mixture theory presented in
appendix is sufficiently general to allow for the specification
additional mobile constituents.

Third, it is assumed that the proteoglycan constituent does
make a direct contribution to the solid matrix shear modulus; c
sequently, the proteoglycan stress tensor is assumed to be sp
cal. In particular, other authors have hypothesized that an incr
in swelling pressure due to a change in proteoglycan mass
duces a greater tensile stress in the collagen fibers, allowing
cross-linked collagen network to better resist shear loading~see,
for example,@43#!. As discussed below, the model presented
this paper does allow the proteoglycan to indirectly contribute
the solid matrix shear modulus in this manner.

Also, the model allows intrinsic remodeling of the collage
constituent. This is accomplished by including a scalar remode
variable that may quantify an evolving microstructural proper
such as collagen crosslink density, that affects the material p
erties that appear in the constitutive equation for the colla
stress.

To simplify the presentation, only equilibrium configuration
before and after a continuous growth process are considered

1The theory does not require the reference configuration to be physically at
able, but only that a local mapping of material points is known. The theory is gen
enough to allow for the stress constitutive equations for the growing materials t
defined by considering an evolving stress-free configuration by using constitu
equations for residually stressed elastic materials@37# and the growth theory for an
elastic material with a residual stress field@34#.
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only the mechanical aspects of growth are discussed. The su
scripts p, c, and w refer to the proteoglycan, collagen, and w
constituents, respectively.

Kinematics. Let kR(B) be a fixed reference configuration an
k~B! a time-dependent loaded configuration of a growing mixt
B during a continuous growth process. The deformation gradie
Fa describe the overall deformations for the growing solid co
stituents relative to a fixed reference configuration and are dec
posed as~see A.1!

Fp5Me
pMg

p , Fc5Me
cMg

c . (1)

The tensorMe
aMg

a describes the total deformation due to grow
relative to kR(B), where the amount and orientation of ma
deposition are described byMg

a . The tensorMe
a describes an

elastic tensor that ensures continuity of the growing body,
may include a contribution arising from a superposed elastic
formation. In this theory, the tensorsMe

a andMg
a are introduced

relative to a fixed reference configuration and, consequently,
a clear physical interpretation. However, when the current c
figuration is chosen as the reference configuration for a sm
increment of growth, these tensors have clear physical mean
as shown in@34#.

As discussed above, two internal constraints are used. The
constraint is solid-fluid intrinsic incompressibility@38#:

~rp/rpT!1~rc/rcT!1~rw/rwT!51, (2)

wherera is the apparent density~per tissue volume! and raT is
the true density~per constituent volume!. The second constraint i
derived by assuming that all of the proteoglycan and colla
molecules are bound to the extracellular solid matrix, so that t
total deformations are equal:2

Fp5Fc⇒Me
pMg

p5Me
cMg

c . (3)

Balance Equations. For the proteoglycan and collagen co
stituents, the reduced continuity equations are~seeA6!3

rp detMe
p5rR

p , rc detMe
c5rR

c . (4)

Here, rR
a is the apparent density in the reference configurati

Also, the growth continuity equations are~seeA7!

detMg
p5expbE

t5t0

t

cpdt c, detMg
c5expbE

t5t0

t

ccdt c, (5)

where ca is the mass growth function~the rate of mass depositio
per unit current mass!. At equilibrium, it is assumed that the dif
fusive forces vanish. Neglecting body forces, the equilibriu
equations become~seeA3!

div Tp50, div Tc50, div Tw50. (6)

The additional balance equations that appear in the general th
are listed in the Appendix.

Stress Constitutive Equations.Constitutive equations are re
quired for the determinate parts of the proteoglycan and colla
stresses that appear in~6!. In general, the constituent stresses a
the tissue’s material properties will change during growth due
changes in both the composition of the tissue and the structur
the individual constituents. As in any continuum theory of grow
these constitutive equations can be defined relative to an evol
virtual configuration using the methods outlined in@34# and the
constitutive equations for residually stressed elastic materials
veloped in@37#. Specific forms of the stress constitutive equatio
are postulated below for the boundary-value problem that is s

2The constraints~2–3! lead to the indeterminate stress and diffusive forces
sponses~A12–A13!.

3Also, a continuity equation for the fluid constituent is required~seeA2!.
Journal of Biomechanical Engineering
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ied. It should be emphasized that the specific constitutive eq
tions used here are not intrinsic to the cartilage growth model,
that different equations will generally be required for solving d
ferent problems. For example, the stress constitutive equations
vary with anatomical location and also with the stage of devel
ment, ageing, or degeneration.

In the mixture theory formulation, the solid matrix stressTs is
the sum of the proteoglycan and collagen stresses:

Ts5Tp1Tc. (7)

Consequently, the proteoglycan and collagen stress response
tions can be used to construct the stress constitutive equatio
the solid matrix. Due to the internal constraints, the indetermin
parts of the proteoglycan and collagen stresses are~seeA12 and
A13!

T̃p5l̃1p
rp

rpT 1, T̃c52l̃1p
rc

rcT 1, (8)

respectively.4 At equilibrium, it is assumed that the indetermina
second-order tensorl̃ vanishes. However, the tensorsl̃ that ap-
pear in ~8! can be seen to have an important implication. No
that, when adding the proteoglycan and collagen stresses to
the solid matrix stress, the tensorsl̃ and 2l̃ cancel. Conse-
quently, the governing equations can be satisfied by ensuring
the equilibrium equations for the solid matrix

div Ts50 (9)

are satisfied while the arbitrariness of the tensorl̃ ensures that the
equilibrium equations (6)1,2 can be satisfied individually.5

The Growth Tensor and the Growth Law.To obtain a com-
plete theory, growth laws that describe the time-rate of chang
the growth tensorsMg

a for both the proteoglycan and collage
constituents must be specified~seeA10!. The growth law provides
a description of the rate at which material is deposited~or re-
sorbed! at a point, the orientation in which material depositio
occurs, and the way in which mechanical factors influence m
deposition. For soft biological tissues, Taber and colleagues~e.g.,
see@21#! and Van Dyke and Hoger@33# have implemented growth
laws that depend on stress, with the possibility of including
homeostatic stress. However, it is possible that the growth
should depend on other mechanical stimuli, such as the st
strain energy, the rate of strain, and interstitial fluid velocity. Co
structing complete growth laws of the form~A10! for cartilage
would require substantially more information than that which
currently available. In this paper, experimental data is used
calculate the ratio of the determinants of the growth tensors
different developmental stages.

Qualitative Example. Before solving a specific boundary
value problem in the next section, here we present a simple qu
tative example in order to illustrate how the cartilage growth m
ture model can describe the remodeling of the composition
the mechanical properties of cartilage due to mass depositio
the solid matrix constituents. This example is physically unrea
tic, but is intended to illustrate the main features of the mode

Consider a special case of growth of an unloaded, homo
neous spherical element of cartilage for which only proteoglyc
molecules are deposited~Fig. 2!. When uniform proteoglycan
mass deposition occurs, the stress supported by the proteog
constituent becomes more compressive due to the increas
fixed charge density. In order to achieve a new, unloaded equ
rium state for which there is a balance of stresses, the stress
ported by the collagen network must become more tensile a
consequently, a local tissue expansion will occur. This phys
description is outlined schematically in Fig. 2A. To describe t
growth process mathematically, the cartilage growth mixtu

e- 4Also, the diffusive forces have indeterminate terms as discussed in the Appe
5This observation extends to non-equilibrium conditions and was also sugge

in the constrained growth mixture theory developed in@36#.
APRIL 2003, Vol. 125 Õ 171
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model introduces intermediate configurations for the individ
constituents. These intermediate configurations describe
amount and orientation of mass deposition for the individual c
stituents in which the constituent densities remain unchanged
this special example, proteoglycan growth leads to the interm
ate configuration defined by the growth tensorMg

p ~Fig. 2B!. The
tensorMg

c is equal to the identity tensor since no collagen grow
occurs. These intermediate configurations clearly do not repre
a continuous solid matrix; consequently, in the mathematical
scription of growth elastic tensorsMe

p andMe
c are introduced that

must satisfy the constraint~3! and the equilibrium equations fo
the solid matrix~9!. In order to solve this simple boundary-valu
problem, stress constitutive equations for the proteoglycan
collagen constituents must be specified. OnceMe

p andMe
c are de-

termined, the proteoglycan and collagen densities can be d
mined from the continuity equations~4! and the apparent fluid
density can be determined from the intrinsic incompressibi
constraint~2!. When nonlinear constitutive equations are used,
solid matrix stress response function relative to the growth c
figuration will, in general, change. In this simple example, t
tensile collagen strain produced by the growth process may lea
higher tensile and shear moduli as measured by conducting
periments on the grown configuration. Thus, this mathemat
description of growth reveals how the cartilage growth model
describe the evolution of the tissue’s compositional and mech
cal properties during growth.

The Equilibrium Boundary-Value Problem. Here, an equi-
librium boundary-value problem that describes cartilage growt
formulated. The specific boundary-value problem that is solve
chosen due to its simplicity in order to illustrate how the gove
ing equations can be used together to describe growth-related
periments on cartilage explants. Typically, the biomechanical
biochemical changes during anin vivo growth process are quan

Fig. 2 Physical and mathematical descriptions of cartilage
growth for the special case when only proteoglycan molecules
are deposited. See accompanying text for a full description.
172 Õ Vol. 125, APRIL 2003
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tified by harvesting tissue samples of the same size and sha
different developmental or degeneration stages and conducting
periments on the tissue. Since many of the model parameters
constitutive equations that describe anin vivo growth process are
presently unknown, the boundary-value problem that is prese
here only indirectly reflects thein vivo growth process. Specifi-
cally, it is aimed at quantifying the evolution of the biochemic
and biomechanical properties of unloaded tissue explants tha
harvested at different developmental stages of a continuousin vivo
growth process.

Formulation. Since the purpose of this example is to illustra
how the theory may be applied in practice and since only limi
experimental data for the mechanical properties were availa
simple constitutive equations for the proteoglycan and colla
constituents were used for which the material properties are
sumed to be uniform and isotropic. In addition, it is assumed t
the growth tensors are uniform and isotropic. The boundary-va
problem developed here describes the initial and grown confi
rations of the cartilage explant in equilibrium in the absence
external loads.6 If the tissue explants are small enough, then t
solid matrix stress and the fluid pore pressure for an unloa
configuration will be close to zero; consequently, this study
scribes how the stress-free configuration of the tissue chan
during developmental growth.

Since experiments have not been conducted that follow
same control volume of growing cartilage, it is not possible
completely characterize the growth tensors of the individual c
stituents. However, it is possible to estimate the magnitude of
elastic accommodation tensors and the growth ratio as follo
The elastic accommodation tensors are uniform and isotro
they are assumed to be of the form

Me
p5le

p1, Me
c5le

c1, (10)

where le
a are called theelastic stretches. Using experimentally

measured densitiesra and rR
a , the determinants of the elasti

accommodation tensors and, consequently, the elastic stretche
calculated from~4! as

detMe
p5~le

p!35rR
p/rp, detMe

c5~le
c!35rR

c /rc. (11)

Then, the growth ratio Gp/c is calculated from~3! and ~11!:

Gp/c5detMg
p/detMg

c5detMe
c/detMe

p . (12)

The fluid stress is assumed to be zero at equilibrium. Given
assumptions that the material properties are uniform, the gro
and elastic tensors are uniform and isotropic, and that the tis
explant has a no-load boundary condition, the equilibrium eq
tion for the solid constituent~9! requires that the total solid matrix
stress vanishes everywhere:

Ts5Tp1Tc50. (13)

To determine the proteoglycan and collagen stresses that appe
~13!, specific constitutive equations must be used~the indetermi-
nate stress terms are assumed to vanish at equilibrium!. Since the
in vivo growth process potentially corresponds to finite grow
and elastic strains, nonlinear constitutive equations are used. T
cally, experiments that apply a known deformation to the tiss
explant and measure the stress response may be used to dete
the mechanical properties for finite deformations of the solid m
trix. Currently, a stress constitutive equation for the solid mat
of articular cartilage validated for general finite deformations
lacking. Therefore, only the linear elastic response of the s
matrix relative to an equilibrium configuration is used to det
mine the material constants in the collagen stress constitu
equations that are assumed in this paper to hold for the continu
growth process. In particular, two linear elastic material consta
for the solid matrix are used: the aggregate modulus determ

6Due to these assumptions, the growth, elastic, and stress tensors are all sph
Transactions of the ASME
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from a confined compression experiment and the Poisson’s
determined from an unconfined compression experiment.

For the proteoglycan constituent, it is assumed that the st
response function depends on the changes in the constituent
sities during the growth process. As discussed above, it is assu
that the proteoglycan constituent does not have a direct contr
tion to the solid matrix shear modulus; consequently, the p
teoglycan stress tensor is assumed to be spherical. Generall
proteoglycan stress constitutive equation relative to any confi
ration k~B! is assumed to be of the form

Tp5T̂k
p5T̂k

p~rp,rc,rw!1. (14)

An explicit formula of the form~14! that holds during the con
tinuous growth process is not proposed; instead, the proteogl
stress and aggregate modulus for a superposed confined com
sion experiment for each tissue explant are derived using
model of@4#. For each explant, the constituent densities and s
matrix aggregate modulusH̄A

s are used to calculate the proteogl
can stress component Tk

p and aggregate modulusH̄A
p .7 Thus, at

each stage of a continuous growth process for which the cons
ent densities andH̄A

s can be experimentally determined, using t
model of@4# we can construct a linear elastic constitutive equat
relative to the grown configuration of the form:

Tp5T̄k
p~rp,rc,rw!15H̄A

p ~ tre!11Tk
p1 (15)

wheree is the solid matrix infinitesimal elastic strain tensor re
tive to the grown configurationk~B!,8 Tk

p is the proteoglycan
stress in the configurationk~B!, and H̄A

p is the proteoglycan ag
gregate modulus.

As in previous descriptions of volumetric growth of elastic m
terials, we take the collagen stress constitutive equation to dep
on the elastic part of the deformation gradient,Me

c @20,21,32,34#.
Here, however, we allow the material properties of the collag
constituent to change during the growth process through the
lution of a remodeling variablegc. In this study, this remodeling
variable represents the change in crosslink density. Because
goal of this study is to illustrate how the growth model may
used in practice, the constitutive equations used in this study w
chosen for their simplicity. To accurately reflect the growth
cartilage, better constitutive equations will have to be develop
Furthermore, we considered two nonlinear stress constitu
equations to explore the sensitivity of the model to the choice
constitutive equation. Because the experimental data that
available was limited, the number of material constants was k
to a minimum.

CASE A: The first collagen stress constitutive equation is
Saint-Venant Kirchhoff material defined in terms of the Biot stra
tensor with an initial spherical stress. This equation was cho
because it is the most simple equation that can be used for l
deformations of an elastic material; in particular, the stress is fi
order in the right stretch tensor. This equation is obtained by
glecting the second-order terms in the corresponding equation
rived in @44#:

Tc5T̂kR

c 5Re
c$lc~ trEB

c !112mcEB
c 1Gc1%Re

cT
, (16)

where (lc,mc,Gc) are collagen material constants,Re
c is the rota-

tion tensor associated withMe
c , andEB

c is the Biot strain tensor

EB
c 5Ue

c21, (17)

where Ue
c is the right stretch tensor associated withMe

c . In the
reference configuration whereUe

c51, EB
c 50, and Re

c51, the
valueT̂kR

c 5Gc1 is the initial collagen stress. The collagen mater

7Quantities with a superposed bar indicate either material constants or stre
sponse functions measured relative to the present configuration of the growing t

8For a superimposed infinitesimal elastic strain, the proteoglycan and coll
elastic strains are equal toe.
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constants may depend explicitly on collagen crosslink densitygc,
so that both the collagen material properties and the colla
stress will change as the collagen remodels. Note that if remo
ing occurs while the collagen elastic strain is held fixed, then~16!
suggests that the parameterGc should be allowed to change so th
the collagen stress may change. Since we are also interest
studying the linear elastic response of the solid matrix relative
the grown configuration, a ‘‘small on large’’ approach was used
obtain the required constitutive equation following a finite grow
For a material that is either residually or initially stressed, t
general approach is outlined in@22#. The required constitutive
equation for a solid matrix infinitesimal elastic straine superim-
posed on an isotropic growthMe

c5le
c1 can be expressed as

Tc5T̄k
c5l̄c~ tre!112m̄ce1Ḡc1 (18)

where the material constants (l̄c,m̄c,Ḡc) defined relative to the
grown configuration are functions of the initial material consta
(lc,mc,Gc) and the elastic stretch due to growth,le

c :

l̄c5~le
c!lc, m̄c5~le

c!mc,

Ḡc53~le
c21!lc12~le

c21!mc1Gc. (19)

CASE B: The second constitutive equation was chosen du
its familiarity in the mechanics literature; it is the classical Sai
Venant Kirchhoff material that is generalized to include an init
spherical stress@45#:

Tc5T̂kR

c 5
rc

rR
c Me

c$lc~ trEc!112mcEc1Gc1%Me
cT

, (20)

where (lc,mc,Gc) are collagen material constants andEc is the
Lagrangean strain tensor derived from

Ec5
1

2
~Me

cT
Me

c21!. (21)

Although the constitutive equations~16! and ~20! appear to be
similar, we will see that they do provide quite different results.
a reference configuration whereMe

c51, Ec50, andrc5rR
c , the

value T̂kR

c 5Gc1 is the initial collagen stress. As before, the co
lagen material constants may depend explicitly on collag
crosslink densitygc. Also, the required constitutive equation fo
an infinitesimal elastic strain of the solid matrixe superimposed
on an isotropic growthMe

c5le
c1 has the same form as~18!; how-

ever, the material constants (l̄c,m̄c,Ḡc) are defined as differen
functions of the initial material constants (lc,mc,Gc) and the elas-
tic stretch due to growth,le

c :

l̄c5
1

le
c @~1.520.5le

c2
!lc2~le

c2
21!mc2Gc#,

m̄c5
1

le
c @1.5~le

c2
21!lc1~2le

c2
21!mc1Gc#, (22)

Gc5
1

le
c @1.5~le

c2
21!lc1~le

c2
21!mc1Gc#.

Comparison of~22! with ~19! reveals an important difference i
the two constitutive equations that were chosen. In particular,
dependence of the material constants (l̄c,m̄c,Ḡc) defined relative
to the grown configuration on the collagen elastic stretch is lin
for CASE A and nonlinear for CASE B.

Use of Experimental Data and Solution of the Boundary-
Value Problem. Constituent densities, solid matrix aggrega
modulus, and crosslink density from third trimester fetal (F
56), 1–3 week old newborn (N,n58), and 1.5–2 year old adul
(A,n57) bovine articular cartilage specimens~1 mm thick with
intact articular surfaces! harvested from the patellofemoral groov

s re-
ssue.
gen
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were available@15,46# ~Table 1!. Collagen crosslink density dat
was converted into units of moles pyridinoline per mole collag
and then normalized by the average value for fetal specimens.
reference configuration for all specimens was defined by the ‘
erage’’ fetal specimen. In particular, the reference densitiesrR

a are
equal to the average density values from the fetal specimen
the reference configuration, the elastic and growth tensors
equal to the identity tensors. For each explant, the elastic stret
and the growth ratio were calculated using the density data
~11–12!.

Then, the constituent densitiesra and solid matrix aggregate
modulus H̄A

s were used to calculate the proteoglycan stress c
ponent Tk

p and aggregate modulus HĀ
p using the model of@4# for

each explant. The three collagen material constants (lc,mc,Gc)
were determined from solving three equations simultaneou
The first equation was obtained by equating the collagen st
Tc5Tk

c15Ḡc1 determined from~18! and (19)3 ~CASE A! or
(22)3 ~CASE B! and the collagen stress determined from~13!
using Tk

p . The second equation corresponded to the solid ma
aggregate modulus HĀ

s ; in this model, H̄A
s is equal to the sum of

the proteoglycan and collagen aggregate moduli:

H̄A
s 5H̄A

p 1H̄A
c , (23)

where the relationship HĀ
c 5l̄c12m̄c can be derived easily from

~18! and was calculated using the values ofl̄c andm̄c from (19)1,2
~CASE A! or (22)1,2 ~CASE B!. The third equation was obtaine
by assuming values for the solid matrix Poisson’s ration̄s, which
using ~15! and ~18! may be calculated as

n̄s5
l̄c1H̄A

p

2~ l̄c1H̄A
p 1m̄c!

(24)

using the values ofl̄c and m̄c from (19)1,2 ~CASE A! or (22)1,2
~CASE B!. Since the tissue Poisson’s ratio was not measure
the experimental study, values ofn̄s equal to 0.09, 0.11, and 0.2

Table 2 MeanÁS.D. values for the stress components T k
p and

Tk
c and aggregate moduli H ¯

A
p and H̄A

c for the fetal „F, nÄ6…, new-
born „N, nÄ8…, and adult „A, nÄ7… specimens. These values
were calculated using the model of †4‡.

Group
Tk

p

~MPa!
Tk

c

~MPa!
H̄A

p

~MPa!
H̄A

c

~MPa!

F 20.055 0.055 0.09 0.001
~0.010! ~0.010! ~0.03! ~0.010!

N 20.074 0.074 0.13 0.149
~0.015! ~0.015! ~0.02! ~0.067!

A 20.078 0.078 0.17 0.139
~0.022! ~0.022! ~0.06! ~0.149!

Table 1 MeanÁS.D. values for the proteoglycan density rp,
collagen density rc, water density rw, normalized crosslink
density gc, and solid matrix aggregate modulus H ¯

A
s and for the

fetal „F, nÄ6…, newborn, „N, nÄ8…, and adult „A, nÄ7… speci-
mens. Crosslink density values were normalized by dividing
each value by the average of the F group. This data was avail-
able from †15,46‡.

Group
rp

~mg/cm3!
rc

~mg/cm3!
rw

~mg/cm3! gc
H̄A

s

~MPa!

F 22.2 87.6 963 1.0 0.09
~2.1! ~19.6! ~18.2! ~0.5! ~0.03!

N 26.0 141 942 2.1 0.28
~4.3! ~18.4! ~9.4! ~0.6! ~0.05!

A 23.3 183 902 2.3 0.31
~3.6! ~28.8! ~22.8! ~1.1! ~0.19!
174 Õ Vol. 125, APRIL 2003
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were assumed for the F, N, and A specimens, respectively, b
on data reported from unconfined compression experiments@16#.

After determining the collagen material constants (lc,mc,Gc) in
this manner, the collagen material constants (l̄c,m̄c,Ḡc) defined
relative to the grown configuration were determined from~19!
~CASE A! and ~22! ~CASE B!. Finally, the solid matrix shear
modulus Ḡs, bulk modulus k̄s, and Young’s modulus Es̄ were cal-
culated by solving the appropriate boundary-value problems u
the linear elastic solid matrix constitutive equation obtained up
adding~15! and ~18!:

Ḡs52m̄c, k̄s5l̄c1
2

3
m̄c1H̄A

p , Ēs5
m̄c~3l̄c13H̄A

p 12m̄c!

l̄c1H̄A
p 1m̄c

.

(25)

To ensure that these material constants for the solid matrix sa
stability constraints for linear elastic materials, we verified that
shear modulus Ḡs and bulk modulus k̄s were positive:9

Statistical Analysis. The effect of developmental stage on th
model parameters was analyzed by multi-way ANOVA and po
hoc Tukey test~Systat!. Data are shown as mean6standard error
of the mean. The dependence of the collagen and solid ma
material constants ongc was analyzed by linear regression.

Results
The calculated values for the proteoglycan and collagen st

components Tk
p and Tk

c and aggregate moduli HĀ
p and H̄A

c are
shown in Table 2. The collagen elastic stretchle

c ~Fig. 3B! and the
growth ratio Gp/c ~Fig. 3C! changed significantly during develop
ment (p,0.05).

CASE A. The results for the collagen material consta
(lc,mc,Gc) calculated for each developmental stage are show
Fig 4; only the parametermc ~Fig. 4B! changed significantly dur-
ing development (p,0.05). The collagen material constants f
the linearized constitutive equation~18! were calculated; only the
parametersm̄c and H̄A

c 5l̄c12m̄c changed significantly during de
velopment (p,0.05) ~Figure 5!. Since these results suggest th
the collagen remodels during development, the existence of
nificant linear correlations were investigated. Linear regress
analysis revealed that the collagen material constantsmc (p
,0.01), m̄c (p,0.01), and H̄A

c (p,0.05; data not shown! were
positively correlated with collagen crosslink densitygc ~Fig. 6!.

CASE B. When using the collagen stress constitutive equa
~20!, the only model parameters that are different than those
tained for case A are the material constants (lc,mc,Gc) ~Table 3!.
The parametermc changed significantly between the fetal an
newborn stages (p,0.05) and the parameterlc changed signifi-
cantly between the newborn and adult stages (p,0.05).

For both Cases A and B, the predicted solid matrix mate
constants (Ḡs,k̄s,Ēs) are the same; these parameters changed
nificantly during development (p,0.05) and were positively cor-
related with collagen crosslink density (p,0.01; Fig. 7!.

Discussion
This work illustrates how a mechanical theory of cartila

growth may be used to describe the complex relationship betw
the evolving compositional and mechanical properties of p
teoglycans, collagens, and collagen crosslinks during articular
tilage development. Although the limitations discussed below p
vent the current study from quantitatively describing t
biomechanics of developmental growth of articular cartilage,

9Inequalities for the material constants of the individual constituents are not u
because there is no corresponding uniqueness or stability theorem for this ma
There is a small-strain uniqueness theorem for a mixture of two elastic solids@47#,
but here there are constraint responses in the partial stresses and diffusive forc
make that theorem inappropriate.
Transactions of the ASME
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Fig. 3 Model results that describe the kinematics of growth for developing
bovine cartilage specimens. Mean ÁS.E.M. results for fetal „F,nÄ6…, newborn
„N,nÄ8…, and adult „A,nÄ7… groups. „¿… indicates a significant difference be-
tween either N or A groups and the F group, „¿¿… indicates a significant differ-
ence between N and A groups „ANOVA, Tukey post-hoc, p Ë0.05….
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results do offer a qualitative description that may be used to gu
future studies. Since different results were obtained for the
assumed collagen stress constitutive equations, it is clear tha
use of accurate constitutive equations will be crucial for both v
dating the model and for using the model to make predicti
concerning the biomechanics of cartilage growth. The results
consistent with the experimental observation that the intrin
properties of the collagen network change during developme
growth to produce a stiffer collagen network@15–17#. The signifi-
cant correlations between the collagen and solid matrix mate
constants and the collagen crosslink density suggest as in@15,17#
that these changes are partly explained by the increasing cros
density during development; and indicate that other collagen
modeling parameters~such as collagen content, fiber diamet
and orientation! may be influencing the mechanical properties
the collagen network. Thus, a suggestion for future studies i
obtain additional measures of the collagen microstructure
may evolve during developmental growth.

A limitation of the example presented here is the accuracy
the stress-strain constitutive equations. The development of c
prehensive and accurate constitutive equations for use in
tinuum models of cartilage mechanics has proven to be a fo
dable challenge for many years. For the cartilage growth mixt
model presented here, separate constitutive equations are n
for the proteoglycan and the collagen constituents. In this pa
two simple nonlinear constitutive equations for the collagen str
were used that have not been validated by experimental dat
the cartilage growth example presented in@31#, nonlinear stress-
strain equations were used for the proteoglycan and collagen
al Engineering
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stituents; in that paper, an exponential collagen stress equa
was used that also has not been validated to multiple sets of
perimental data. Since the elastic deformations due to growth
dicted in the current study are large, it is clear that an immed
aim of future experimental studies should be to develop m
accurate nonlinear stress-strain constitutive equations.

One advantage to using a growth theory for large~as opposed to
infinitesimal! deformations is that the material properties in t
stress constitutive equations, when defined relative to the gr
configuration, may evolve during the growth process as the tis
composition changes. To be more specific, when the tissue gr
from a reference configuration to a grown configuration, the c
lagen density may change, which also means that the colla
elastic accommodation tensor will change. When the colla
stress depends on the collagen elastic accommodation tensor
linearly, the stress response function relative to the grown c
figuration will be different than that relative to the reference co
figuration. In this paper, the manner in which the collagen mate
constants relative to the grown configuration evolve during iso
pic growth were calculated for two assumed collagen stress e
tions; see Eqs.~19,22!. Thus, the cartilage growth mixture mode
can predict how the solid matrix material constants evolve due
the elastic deformations that are developed to maintain a com
ible solid matrix during a growth process. In addition, the mod
presented here provides a quantitative method for describing
the material constants change due to a remodeling of the colla
constituent.

Several experimental studies have quantified the nonlinear
nonhomogeneous properties of the stress constitutive equa
Fig. 4 CASE A model results that describe the evolution of the collagen material constants
„lc,mc,Gc

… for developing bovine cartilage specimens using the collagen stress equation „16….
Mean ÁS.E.M. results for fetal „F,nÄ6…, newborn „N,nÄ8…, and adult „A,nÄ7… groups. „¿…

indicates a significant difference between either N or A groups and the F group „ANOVA, Tukey
post-hoc, p Ë0.05….
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for the cartilage solid matrix. Recently, a model for the solid m
trix of cartilage has been proposed@48# that is capable of model-
ing the tension-compression asymmetry that has been observ
developing cartilage, mature cartilage, and tissue-engineered
structs; and this model was validated for multiple experimen
protocols. Also, many studies@49–51# have quantified the depth
dependent mechanical properties of bovine and human artic
cartilage. However, these nonlinear@48# and nonhomogeneou
@49–51# models have only been postulated for infinitesim
strains. In order to develop constitutive equations that may
used accurately during a growth process, they must be valid
for multiple experimental protocols and finite strains. Specifica
it will be necessary to conduct multiple mechanical tests such
confined compression, unconfined compression, simple ten
and shear in a region-specific manner to more accurately de
the evolving mechanical properties of cartilage between deve
mental stages. It is emphasized that accurate constitutive e
tions are necessary in order to predict the evolution of the gro
tensors and, consequently, the growth law in the cartilage gro
mixture model. In the meantime, the type of study presented
this paper can only be expected to give a qualitative descriptio
the biomechanics of cartilage growth.

Another limiting assumption of the present paper is that
cartilage explants were homogeneous and free of residual st
In agreement with these assumptions, the growth and elastic
commodation deformations were assumed to be isotropic ten

Fig. 5 CASE A model results that describe the evolution of the
collagen material constants „m̄c,H̄A

c
… for developing bovine car-

tilage specimens using the collagen stress equation „18…. Mean
Á S.E.M. results for fetal „F,nÄ6…, newborn „N,nÄ8…, and adult
„A,nÄ7… groups. „¿… indicates a significant difference between
either N or A groups and the F group „ANOVA, Tukey post-hoc,
pË0.05….
176 Õ Vol. 125, APRIL 2003
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in the present study. However, there does exist experimental
dence that the deposition of proteoglycan molecules in the ex
cellular matrix is anisotropic@52# and that the solid matrix may be
residually stressed@53#. Thus, another suggestion for future stu
ies will be to conduct experiments that are aimed at quantify
both the orientation of mass deposition and the residual stress
in cartilage explants. It is emphasized that the limitations d
cussed above are limitations of the assumptions used to obta
solution for the boundary-value problem; they are not limitatio
of the cartilage growth mixture model nor the more gene
growth mixture theory derived in@30,31#.

A key feature of cartilage growth is a dependence on mech
cal and biochemical stimuli. For example, alterations to the n
mal in vivo mechanical loading may cause growth abnormalit
in conditions such as hip dysplasia@54#. In vivo models such as
experimental arthritis and joint immobilization indicate that a
tered mechanical loads cause remodeling of the compositional
mechanical properties of the solid matrix@55#. In vitro experi-
ments have quantified the solid matrix metabolic response to
chanical stimuli such as hydrostatic pressure, dynamic comp
sive stress, and fluid diffusion@55#. In thesein vitro experiments,
the metabolic activity related to proteoglycan and collagen de
sition has been measured. The results suggest that the prote
can and collagen constituents can grow and remodel inde
dently of each other. Also, the results of numerous studies sug
that biochemical factors influence chondrocyte metabolism. A
bolic agents, such as insulin-like growth factor-1~IGF-1!, trans-
forming growth factor-b ~TGF-b!, and basic fibroblast growth
factor ~bFGF! stimulate the biosynthesis of proteoglycans and
collagens@56#.

Since the proteoglycan and collagen constituents serve dis

Table 3 CASE B mean ÁS.D. values for the collagen material
constants „lc,mc,Gc

… for the fetal „F, nÄ6…, newborn „N, nÄ8…,
and adult „A, nÄ7… specimens. „¿… indicates a significant dif-
ference between either N or A groups and the F group. „¿¿…

indicates a significant difference between N and A groups
„ANOVA, Tukey post-hoc, p Ë0.05….

Group
lc

~MPa!
mc

~MPa!
Gc

~MPa!

F 20.027 20.013 20.053
~0.020! ~0.006! ~0.007!

N 20.025 0.057 0.070
~0.016! ~0.042!1 ~0.012!

A 0.025 0.028 0.088
~0.061!11 ~0.058! ~0.063!
Fig. 6 CASE A linear regression curves for the collagen material constants
„mc,m̄c

… for the F ÕNÕA groups, respectively. Both collagen material parameters
were positively correlated „pË0.01… with collagen crosslink density gc

„nor-
malized by the average for the F group ….
Transactions of the ASME
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Fig. 7 Linear regression curves for the predicted solid matrix material constants „Ḡs,k̄ s,Ēs
… for the F ÕNÕA

groups, respectively. All three solid matrix material parameters were positively correlated „pË0.01… with
collagen crosslink density gc

„normalized by the average for the F group ….
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mechanical roles, a cartilage growth model should allow for in
pendent constituent growth in order to predict how the mechan
properties of the tissue evolve during growth and degeneration
a mechanical model of cartilage growth, growth laws such as
(A10)1 are needed to quantify how the growth of the collagen a
proteoglycan constituents depend on mechanical and o
stimuli. As a precursor to establishing the forms of these gro
laws, in this paper the growth ratio was calculated from meas
ments of the tissue’s change in composition. In order to determ
realistic growth laws, the individual components of the grow
tensors need to be determined. Experimental data that quan
the changes in both the geometry of a growing tissue explan
well as the constituent densities would allow one to calculate
determinants of each growth tensor. The type of experiment
was conducted in@52# that quantified the spatial location of mo
lecular deposition in the extracellular matrix could be used to fu
characterize each growth tensor. Furthermore, the effect of var
biochemical regulators on the growth law may be studied.

The cartilage growth model presented here can be used to
sign experiments that would lead to the refinement of the mo
Specifically, we suggest that experimental studies are needed
apply multiple finite deformations to determine accurate nonlin
stress-strain equations, that measure the amount and orientat
mass deposition in response to mechanical stimuli to determ
the growth law, and that better characterize microstructural par
eters that may influence these constitutive equations as
evolve during thein vivo growth process. Ultimately, one hope
that these efforts may lead to a model that can be used in a n
ber of ways to develop a better understanding of the key feat
and mechanisms of cartilage growth. For example, a cartil
growth mixture model may be used to predict the manner
which cartilage constructs may be stimulatedin vitro for the fab-
rication of better implants. Also, it may describe and predict
outcome of therapies aimed at the successful repair of growth
degenerative abnormalities. This can be accomplished by appl
the model with simple geometries, such as those correspondin
an in vitro specimen, or with complex geometries, such as th
corresponding to a joint’s articular surface. In either case, com
tational models of thein vivo and in vitro growth, degeneration
and repair processes will have to be developed as the gover
system of equations are both nonlinear and coupled.
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Appendix
In this appendix, the governing equations in the theory

growth for a mixture of an arbitrary number of thermoelastic m
terials and a single fluid are recalled from@30,31,34#.

A.i Kinematics.

Consider a mixtureB of n constituents:n21 growing elastic
materialsCa(aP@1,n21#) and an inviscid fluidCn. Let kR(B) be
a fixed reference configuration andk~B! a time-dependent loade
configuration ofB during a continuous growth process. The kin
matics for each growing elastic constituentCa is the same as tha
adopted for a growing elastic material in@34#. In particular, the
deformation gradient tensor for each growing elastic mate
obeys the decomposition

Fa5Me
aMg

a , aP@1,n21#. (A1)

The tensorMe
aMg

a describes the total deformation due to grow
relative tokR(B), whereMe

a may include a contribution from a
superposed elastic deformation. The amount and orientatio
mass deposition are described byMg

a . Furthermore, the mass den
sity, the free energy density, and the stress functions are inde
dent ofMg

a .

A.ii Balance Laws.

In @30,31#, the classical balance laws for a mixture were mo
fied to include variables associated with mass deposition
growth energy supply for each growing elastic material. The
scalar variables were the mass growth function ca ~i.e., the rate of
mass deposition per unit current mass! and the growth energy
termba ~i.e., the rate of growth energy per unit current mass t
is required in addition to that needed to create material with
same internal and kinetic energy as the existing material!. The
balance equations for mass, linear momentum, angular mom
tum, and energy onk~B! are

dara

dt
1ra div va5raca, ~aP@1,n21# !;

dnrn

dt
1rn div vn50,

(A2)

ra
dava

dt
5div Ta1pa1raba, (A3)

Ta2TaT
5La, (A4)
APRIL 2003, Vol. 125 Õ 177
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ra
da«a

dt
5rara2div qa1ga1Ta"Da1raba, ~aP@1,n21# !;

rn
dn«n

dt
5rnrn2div qn1gn1Tn"Dn, (A5)

where ra is the apparent density,va is the velocity,Ta is the
partial Cauchy stress tensor,pa is the diffusive force,ba is the
partial external body force,La is the internal body couple,«a is
the partial internal energy, ra is the partial external heat supply,qa

is the partial heat flux vector,ga is the internal energy supply,Da

is the rate of deformation tensor, div~•! is the divergence operato
and each of the material time derivatives that appear~A2–A5) are
defined by following a material point of the corresponding co
stituent. Assuming that the change in density of each grow
elastic materialCa is due only to the elastic part of the total d
formation ofCa, the reduced continuity equation forCa takes the
form

ra detMe
a5rR

a , ~aP@1,n21# !, (A6)

where rR
a is the apparent density in the reference configurat

and det~•! is the determinant. Integrating~A2)1 and using~A6!
leads to the growth continuity equation

detMg
a5expbEt5t0

t

cadt c. (A7)

The balance of mass, linear momentum, and angular mom
tum equations for the mixture require that

(
a51

n21

raca5rc, (
a51

n

pa50, (
a51

n

La50, (A8)

where c is the mass growth function for the mixture. The bala
of energy equation for the mixture becomes

(
a51

n Fra
da«a

dt
2rara1div qa1pa"va2Ta

•LaG2(
a51

n21

raba50.

(A9)

A.iii Growth Response Functions.

To complete the field equations, growth response functions
describe the time-rate of change ofMg

a andba for each growing
elastic constituentCa must be specified. Since the relationsh
between growth and mechanical stimuli is poorly understood, h
growth response functions with the general forms

daMg
a

dt
5Ĝa~Ma!, ba5b̂a~Ma! (A10)

are considered, whereMa represents the thermomechanic
stimuli that drive the growth process for eachCa.

A.iv Restrictions Imposed by the Second Law of Thermo-
dynamics.

Constitutive equations are needed for several variables tha
pear in the theory, including the partial stresses and diffus
forces. In @30,31#, this was accomplished by introducing parti
free energy and entropy functions and considering restrictions
posed by the Second Law of Thermodynamics after assumin
entropy inequality for the mixtures. The reader is referred
@30,31# for the complete set of constitutive restrictions.

A.v Internal Constraints. Two special types of mechanica
constraints that are relevant to cartilage are assumed for the
tilage growth mixture model. One constraint states that the de
mation gradient tensorsFa of the growing proteoglycan and co
lagen constituents are equal. Another constraint is the inte
constraint of intrinsic incompressibility@38#. In @30,31#, a proce-
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dure first introduced by Adkins@57# for introducing internal con-
straints in finite elasticity was used. For a growing mixture subj
to a mechanical constraint, the partial stresses and diffusive fo
were assumed to obey the additive decompositions

Ta5T̃a1T̂a, pa5p̃a1p̂a, (A11)

where (T̃a,p̃a) are indeterminate partial stresses and diffus
forces called the constraint responses, and (T̂a,p̂a) are determi-
nate partial stresses and diffusive forces. Furthermore, the w
done by the constraint response functions was assumed to e
zero.

The requirement that the overall deformation gradient tens
of two growing elastic materials p and c be identical leads to
results.

T̃p52T̃c5l̃, p̃p52p̃c5p̃, (A12)

where l̃ and p̃ are an arbitrary second-order tensor and vec
respectively.

For intrinsic incompressibility, each constituentCa is assumed
to be separable from the others with constant~true! densityraT

defined as the mass ofCa per unit volume ofCa. It is assumed that
the volume of the mixture is equal to the sum of the volumes
eachCa. In @30,31#, the following results for the indeterminat
partial stresses and diffusive forces were obtained:

T̃a5p
ra

raT 1, p̃a52p
gradra

raT , (A13)

where p is an arbitrary scalar.

Nomenclature

a 5 p, c, w: superscript denoting the proteoglycan
collagen, and water constituents

kR(B) 5 fixed reference configuration
k~B! 5 grown configuration

Fa 5 deformation gradient tensor
Me

a 5 elastic accommodation tensor
Mg

a 5 growth tensor
ra 5 apparent density~mass per tissue volume!
rT

a 5 true density~mass per constituent volume!
det ~.! 5 determinant of a tensor

rR
a 5 apparent density in reference configuration

ca 5 mass growth function.
div ~.! 5 divergence of a tensor

Ta 5 stress tensor
0 5 zero tensor

Ts 5 solid matrix stress tensor
T̃a 5 indeterminate part of the stress tensor

l̃ 5 arbitrary second-order tensor
p 5 arbitrary scalar Lagrange multiplier~pore fluid

pressure!
1 5 identity tensor

le
a 5 elastic stretch

Gp/c 5 growth ratio
T̂a 5 determinate part of the stress tensor
T̂k

a 5 stress constitutive equation relative to the
grown configuration

H̄A
a 5 aggregate modulus relative to grown configur

tion
T̄k

a 5 stress constitutive equation for infinitesimal
elastic strains relative to the grown configura-
tion

tr ~.! 5 trace of a tensor
e 5 infinitesimal solid matrix elastic strain tensor

superimposed on the grown configuration
gc 5 normalized collagen crosslink density
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T̂kR

a
5 stress constitutive equation relative to the ref

erence configuration
(lc,mc,Gc) 5 collagen material constants relative to refer-

ence configuration
Re

c
5 rotation tensor associated withMe

c

EB
c 5 Biot strain tensor

Ue
c

5 right stretch tensor associated withMe
c

(l̄c,m̄c,Ḡc) 5 collagen material constants relative to grown
configuration

Ec 5 Lagrangean strain tensor
( n̄s,Ḡs,k̄s,Ēs) 5 solid matrix material constants relative to

grown configuration
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