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Abstract: This paper presents an application of nonlinear filtering techniques for the tracking control design of tracked
mobile robot under slip condition. The slip is represented only by the longitudinal wheels slip that is described by
just an unknown parameter. The extended Kalman filter (EKF),the unscented Kalman filter (UKF) and the particle
filter (PF) are used to estimate the states of the system, whenmeasurements are assumed all available. Two adaptive
tracking control design for tracked mobile robots are proposed. The first controller is based on the kinematic model
and provides angular velocities as the control input. The second controller, based on the dynamic model, consists in a
feedback control law that provides torque as control input.Numerical results show the performance of the proposed
adaptive control laws using the EKF, UKF and the PF filtering techniques.
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NOMENCLATURE
b= distance between the wheels,m
B= input transformation matrix
ki = controller gains, dimensionless
i = longitudinal slip ratio, dimen-
sionless
J = moment of inertia,kg.m2

m= mass of the robot,kg

M = inertia matrix
n= number of system states
p = relative to slip ratio, dimen-
sionless
r = radius of the robot wheels,m
α = size of the sigma point distri-
bution

β = weighting parameter
γ = auxiliar weighting parameter
κ = secondary scaling parameter
ρ = update law gain, dimensionless
π = posterior probability density,
dimensionless

INTRODUCTION

Autonomous mobile robots has received renewed attention inthe last years because of its increasing use in tasks
as forestry, mining, agriculture, military applications,space exploration, etc (Nourbakhsh and Siegwart, 2004). All of
these applications require an efficient solution to the autonomous navigation problem, which has motivated various works
in the area due to its theoretical challenges. Furthermore,these applications usually require the robot to travel across
unstructured environments, where the precise localization of the robot is an important key for feedback control purposes.

Feedback control for mobile robots need knowledge of the robot’s state vector. In general, the estimation of the
robot’s state vector from measurement system can be obtained using filtering techniques. It is well known that mobile
robots are typical examples of nonlinear systems. In general, two types of filtering approaches for nonlinear systems
can be found (Thrun et al., 2005). The first class, known as Gaussian filters, includes the extended Kalman filter (EKF),
Gauss-Hermite filter (GHF) and unscented Kalman filter (UKF). The other class consists of the nonparametric filters, in
which the main algorithm is the particle filter (PF). Severalworks has been developed in the literature to deal with the
estimation problem applied to mobile robot motion. For instance, Jetto et al. (1999) developed the adaptive EKF for the
localization of mobile robots, Kwon et al. (2005) proposed arobust localization method for mobile robot based on the
combination of Kalman filter and perturbation estimator, and Rigatos (2010) compared the EKF and PF techniques for
sensor fusion in motion control of mobile robots. In the sameline as Rigatos (2010), this paper studies the performance
of the EKF, UKF and PF algorithms applied to the proposed tracking control methods.

Morin and Samson (2006) present a review of the most recents tracking control methods for mobile robots. Other
studies on tracking control designs using Lyapunov analysis can be found in Lee et al. (2009), Wu et al. (2009) and
Ju et al. (2009). All these control design techniques are based on the assumption that the wheels roll without slipping.
However, the slip has a critical influence on the performanceof mobile robots that cannot be neglected. Thus, to attain
higher performance, in addition to estimation of the state vector, the slip parameters is incorporate into the model of the
robot. Many papers have addressed the slip phenomenon in thenavigation of mobile robots (Matyukhin, 2007; Wang and
Low, 2008). However, in such works, the slip parameters are considered as disturbance or noise (Scaglia et al., 2009) or
are estimated using some filtering technique (Zhou et al., 2007). In Iossaqui et al. (2010b,a), an adaptive law is proposed
to estimate the longitudinal slip parameter for two different tracked mobile robot. The first adaptive control design, taken
from Iossaqui et al. (2010b), is based on the kinematic modeland provides angular velocities as the control input. The
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second adaptive control design, taken from Iossaqui et al. (2010a), based on the dynamic model, consists in a feedback
control law that provides torque as control input. Even as inseveral other works in the literature these two control designs
consider the perfect measurement of the states.

The main contribution of this paper is to incorporate the nonlinear filtering techniques to the adaptive control designs
proposed by Iossaqui et al. (2010b,a). To address the nonlinear filtering problem, two group of filtering approaches are
studied and compared: Gaussian approximation and nonparametric simulation. The former group, consisting of the EKF
and UKF algorithms, uses either a single Gaussian distribution to match the first and second-order moments of the required
density to different accuracy levels (Cui et al., 2005). In the EKF algorithm, the state distribution is propagated analytically
through the first-order linearization of the nonlinear system. In the UKF algorithm, the state distribution is represented
using a minimal set of carefully chosen sample points and propagated through the true nonlinear system. The latter group,
represented by the PF algorithm, does not make any assumption on the measurement noise distribution. Instead, the
nonparametric filters approximate posterior probability distribution by finite number of values, each corresponding to a
region in the state space.

The paper is organized as follows. First, the adaptive controllers for a tracked mobile robot under longitudinal slip
condition are reviewed. Next, the nonlinear filtering techniques used to estimate the states of the tracked mobile robotare
presented. Then, the results obtained by numerical simulations of the controlled systems using the filtering techniques are
showed and compared. Concluding remarks follow afterwards.

THE PROPOSED ADAPTIVE TRACKING CONTROLS

In this section, two adaptive control techniques for tracked mobile robots proposed by Iossaqui et al. (2010b,a) are pre-
sented. First, the model of the robot is presented and the equations that characterize the tracking problem are established.
Then, the first adaptive control law that provides velocities as input is described. Finally, the second adaptive control law
that provides torque as input is reviewed.

As presented in (Iossaqui et al., 2010b), the kinematic equation of the tracked robot under slip condition is given by




Ẋ
Ẏ
ψ̇



=





r cosψ/2p rcosψ/2p
r sinψ/2p rsinψ/2p
−r/bp r/bp





(

ωL

ωR

)

⇔ q̇= S(q)ξ (1)

whereq= (X,Y,ψ)T denotes the states of the robot, which is given by the robot position(X,Y) and its orientationψ in an
appropriate inertial frame. The angular velocities of the left and the right wheels are respectivelyωL andωR. The radius
of the robot wheels isr and the distance between the wheels isb. The parameterp is defined as

p=
1

(1− i)

with i, the longitudinal slip ratio of the two wheels, given by

i =
(rωL − vL)

rωL
=

(rωR− vR)

rωR
, 0≤ i < 1

wherevL andvR are the linear velocities of the left and the right wheels with relation to the terrain.

As presented in (Iossaqui et al., 2010b), the dynamic equation of the tracked robot is given by

Mξ̇ = B(q)τ (2)

whereq = (X,Y,ψ)T has been defined before, the input torque in left and right wheels is given byτ = (τL,τR)
T , M =

ST(q)MS(q) andB(q) = ST(q)B(q), with the matricesM andB(q) given by

M =





m 0 0
0 m 0
0 0 J



 , B(q) =
1
r





cosψ cosψ
sinψ sinψ
b/2 b/2





wherem is the total mass of the robot andJ is the moment of inertia about the vertical axis through geometric center of
the robot.

In order to deal with the tracking control problem, we need todefine the reference trajectory,qr = (Xr ,Yr ,ψr)
T , which

is generated using the kinematic model




Ẋr

Ẏr

ψ̇r



=





cosψr 0
sinψr 0

0 1





(

vr

ωr

)

⇔ q̇r = Sr(qr)ηr (3)
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wherevr andωr are constant reference inputs. It is assumed that the signals ηr andη̇r are bounded.

In addition, to analyze the tracking problem, the error is defined as




e1

e2

e3



=





cosψ sinψ 0
−sinψ cosψ 0

0 0 1









Xr −X
Yr −Y
ψr −ψ



 (4)

Adaptive velocity-based control

Figure 1 shows the scheme of the adaptive control used in Iossaqui et al. (2010b). The numbering inside the blocks in
Fig. 1 indicate the corresponding equation number. Note that the state vector is composed of the three statesX, Y, andψ.

Adaptive Controller

(1)

(3) (4)
(6) (5)

(7)

vr

ωr

Xr
Yr
Ψr

e1
e2
e3

v
ω

ωR

ωL

X
Y
Ψ

p̂

R
ef

er
en

ce
T

ra
je

ct
or

y

E
rr

or
s

A
ux

ili
ar

V
el

oc
iti

es

E
ffe

ct
iv

e
V

el
oc

iti
es

U
pd

at
e

L
aw

Robot

Figure 1: Adaptive velocity-based control.

The velocity control inputξ = (ωL,ωR)
T is given by

(

ωL

ωR

)

=
p̂
2r

(

2 −b
2 b

)(

v
ω

)

(5)

with auxiliary velocity
(

v
ω

)

=

(

vr cose3+ k1e1

ωr + vrk2e2+ k3sine3

)

(6)

and update law

˙̂p= ρ
(

ve1+
ωsine3

k2

)

(7)

wherep̂ is the estimation of the parameterp, ki > 0 andρ > 0 are controller gains.

Adaptive torque-based control

Figure 2 shows the scheme of the adaptive control used in Iossaqui et al. (2010a). The numbering inside the blocks in
Fig. 2 indicate the corresponding equation number. Observethat the state vector is composed of the five statesX, Y, ψ,
ωL, andωR.

Adaptive Controller

Kinematic
Controller

Dynamic
Controller

(1)(2)(3) (4) (6) (10) (9) (8)

(7)

vr

ωr

Xr

Yr

Ψr

e1
e2
e3

ω

v ωLd

ωRd

ωL

ωR

τL

τR

u

X

Y
ψ

p̂

R
ef

er
en

ce
T

ra
je

ct
or

y

E
rr

or
s

A
ux

ili
ar

V
el

oc
iti

es

Update
Law

Robot

D
yn

am
ic

K
in

em
at

ic

B
a

ck
st

e
pp

in
g

D
e

si
re

d
V

e
lo

ci
tie

s

To
rq

ue
In

pu
t

Figure 2: Adaptive torque-based control.

The torque control inputτ = (τL,τR)
T is given by

τ = B(q)−1Mu (8)
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with

u= ξ̇d +

(

k4 0
0 k5

)

(ξd − ξ) (9)

and the desired velocitiesξd given by

ξd =

(

ωLd

ωRd

)

=
p̂
2r

(

2 −b
2 b

)(

v
ω

)

(10)

whereki > 0 are given constant and(v,ω)T is given by (6). The update law that provides the estimate ˆp is given by (7).

NONLINEAR FILTERING TECHNIQUES

This section presents the EKF and UKF Gaussians algorithms and the nonparametric PF algorithm (Haykin, 2001).
The basic structure for the EKF, UKF and for the PF involves estimation of the state of a discrete-time nonlinear dynamic
system of the form

xk+1 = f (xk,uk,wk)

yk = h(xk,vk)

wherexk is the state vector of the system,uk is a control input andyk is the measured signal. The process and measurement
noises are respectively given bywk andvk. It is assumed thatwk andvk are independent zero-mean Gaussian random
variables with respectively covariance matricesQ andR. Note that the PF algorithm does not require any assumption on
the measurement noise distribution.

The EKF algorithm

The EKF algorithm (Haykin, 2001) is based on a first order Taylor series expansion of the nonlinear functionsf and
h at the estimate ˆxk|k and the propagation ˆxk+1|k. The EKF algorithm is given below:

Initialize with

x̂0 = E[x0],

P0 = E[(x0− x̂0)(x0− x̂0)
T ].

Fork∈ {1, ...,∞}, the time-update equations are

x̂−k = f (x̂k−1,uk−1, w̄k),

P−
xk
= Ak−1Pxk−1A

T
k−1+BkQkB

T
k ,

and the measurement-update equations are

Kk = P−
xk

CT
k

(

CkP
−
xk

CT
k +DkRkD

T
k

)−1
,

x̂k = x̂−k +Kk
[

yk−h(x̂−k ,vk)
]

,

Pxk = (I −KkCk)P−
xk
,

with

Ak ,
∂ f (x,uk, w̄k)

∂x

∣

∣

∣

∣

∣

x̂k

, Bk ,
∂ f (x̂−,uk,wk)

∂wk

∣

∣

∣

∣

∣

w̄k

, Ck ,
∂h(x, v̄k)

∂x

∣

∣

∣

∣

∣

x̂k

, Dk ,
∂h(x̂−,vk)

∂vk

∣

∣

∣

∣

∣

v̄k

,

with w̄k = E[wk] andv̄k = E[vk], whereE[·] is the expectation. The means ¯wk andv̄k are usually zero.

The EKF can achieve satisfactory results for many applications, but may suffer from large estimate errors when
systems have strong nonlinearities. As stated in Thrun et al. (2005), the EKF is a widely used technique in nonlinear
state estimation and, in spite of its theoretical weakness,i.e., the lack of a formal proof of convergence, a number of
applications exists, giving satisfactory results, in a large broad of technological areas.
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The UKF algorithm

The UKF algorithm (Haykin, 2001) does not approximate the nonlinear process and measurement models. Instead,
it uses the true nonlinear models and approximates the distribution of the state random variable. The UKF, which does
not need to compute the Jacobian, uses the so-called unscented transform (UT) to obtain the sigma points. These sigma
points are propagated through the nonlinear function. The UKF algorithm is given below:

Initialize with

x̂0 =E[x0]

P0 = E[(x0− x̂0)(x0− x̂0)
T ]

Fork∈ {1, ...,∞}
Calculate the sigma points

Xk−1 =
[

x̂k−1 x̂k−1+ γ
√

Pk−1 x̂k−1− γ
√

Pk−1

]

The time-update equations are

X ∗
k|k−1 = f (Xk−1,uk−1)

x̂−k =
2L

∑
i=0

W(m)
i X ∗

i,k|k−1

P−
k =

2n

∑
i=0

W(c)
i

[

X ∗
i,k|k−1− x̂−k

][

X ∗
i,k|k−1− x̂−k

]T
+Qk

Xk|k−1 =
[

X ∗
k|k−1 X ∗

0,k|k−1+ρ
√

Qk X ∗
0,k|k−1−ρ

√

Qk

]

Yk|k−1 = h(Xk|k−1)

ŷ−k =
2n

∑
i=0

W(m)
i Yi,k|k−1

The measurement-update equations are

Pỹkỹk =
2n

∑
i=0

W(c)
i

(

Yi,k|k−1− ŷk
)(

Yi,k|k−1− ŷk
)T

+Rk

Pxkyk =
2n

∑
i=0

W(c)
i

(

Xi,k|k−1− x̂−k
)(

Yi,k|k−1− ŷ−k
)T

Kk = PxkykP
−1
ỹỹ

x̂k = x̂−k +Kk
(

yk− ŷ−k
)

Pk = P−
k −KkPykykK

T
k

with the weights

W(m)
0 = λ/(n+λ),W(c)

0 = λ/(n+λ)+ (1−α2+β)

W(m)
i =W(c)

i = 1/2(n+λ), i = 1,2, ...,n

whereλ = α2(n+κ)−n, γ =
√

n+λ and withκ ≥ 0. The dimension of the state vector isn, the size of the sigma point
distribution is regularized by non-negative weighting termsα andβ, which can be used to compensate for the information
of the higher order moments of the distribution.
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The PF algorithm

The PF algorithm (Haykin, 2001) is based on Monte Carlo simulation with sequential importance sampling. The key
idea is to directly represent the required probability density function as a set of particles. These particles are propagated
and updated from one discrete time to the next to represent the latest posterior density. The PF algorithm is given below:

1. Initializion: k= 0

• For i = 1, ...,N, draw the statesx(i)0 from prior p(x0)

2. Fork= 1,2, ...

(a) Importance sampling step

• For i = 1, ...,N, samplex(i)k ∼ π(xk|x(i)0:k−1,Y
k
0 ), whereπ represents the posterior probability density

• For i = 1, ...,N, evaluate the importance weights up to a normalizing constant:

w(i)
k = w(i)

k−1

p(yk|x(i)k )p(x(i)k |x(i)k−1)

π(x(i)k |x(i)0:k−1,Y
k
0 )

• For i = 1, ...,N, normalize the importance weights:

w̃(i)
k =

w(i)
k

∑N
j=1w(i)

k

(b) Selection step (resampling)

• Multiply/suppress samplesx(i)k with high/low importance weights ˜w(i), respectively, to obtainN random

samplesx(i)k approximately distributed according top(x(i)k |Yk
0 )

• For i = 1, ...,N, setw(i)
k = x̃(i)k = N−1

(c) Output: The output of the algorithm is a set of samples that can be used to approximate the posterior distribu-
tion as follows:

p̂(xk|Yk
0 ) =

1
N

N

∑
i=1

δ(xk− x(i)k )

The optimal MMSE estimator is given as

x̂k = E(xk,Y
k
0 )≈

1
N

N

∑
i=1

x(i)k

In general, the PF algorithm presents better accuracy of theGaussians filters, but this occurs at the cost of greater
computational effort (Thrun et al., 2005).

NUMERICAL RESULTS

Two simulation scenarios are presented in this section using the filtering techniques EKF, UKF and PF together with
the adaptive velocity-based control and the adaptive torque-based control. Figure 3 shows the schematic representation of
the close-loops with controller, filter and noises characterization for the two scenarios studied. Observe that the variables
without subscript, with subscripts “r”, “ m” and “e” describe respectively real, reference, measured and estimated states.

Note that in the first scenario the angular velocities are notused in the feedback control, that is, the velocities do not
need to be measured. The velocities are provided directly bythe control law. In the second scenario, the angular velocities
need to be measured and estimated for control proposes. The velocity motion model that uses robot’s velocity to compute
posterior over poses (position and orientation) is considered in the filtering implementation. The alternative solution is
odometry motion model, commonly obtained by integrating wheel encoder information.

In order to applied the nonlinear filtering techniques, we discretize the continuous time equations (1) and (2) of the
mobile robot with slipping using first-order difference. Then the nonlinear system dynamics at discrete time, for the first
and second scenario, can be described as

xk = f (xk,uk)+wk

wherewk is a zero-mean Gaussian noise vector with covarianceQk. The states vector for the first and second scenarios
are respectivelyxk = (X,Y,Ψ)T and xk = (X,Y,Ψ,ωL,ωR)

T . The input vector for the first and second scenarios are
respectivelyuk = (ωL,ωR)

T anduk = (τL,τR)
T . The state noisewk is considered zero for the two scenarios.
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Figure 3: The representation of the close-loops studied.

For the first scenario, a simplify model used to represent themeasurement model is given by





Xm

Ym

Ψm



=





X
Y
Ψ



+





vXk

vYk

vΨk



⇔ yk = f (xk)+ vk

and for the second scenario by












Xm

Ym

Ψm

ωLm

ωRm













=













X
Y
Ψ
ωL

ωR













+













vXk

vYk

vΨk

vωLk

vωRk













⇔ yk = f (xk)+ vk

wherevk is an additive zero-mean Gaussian noise vector with covarianceRk given respectively by

Rk =





0.1 0 0
0 0.1 0
0 0 0.2



 and Rk =













0.1 0 0 0 0
0 0.1 0 0 0
0 0 0.2 0 0
0 0 0 0.01 0
0 0 0 0 0.01













for the first and second scenarios. To perform comparison between the filtering methods, it is assumed an additive zero-
mean Gaussian noise in all simulations.

The numerical simulations were performed using MATLAB. Thephysical parameters for the model, taken from
Iossaqui et al. (2010a), are given byb= 0.65 m, r = 0.35 m,m= 0.80 kg andI = 0.0608 kg.m2. The total time of the
simulation is chosen ast = 60 s. The control parameters of the controller are chosen ask1 = k3 = 6,k2 = 8 andk4 = k5 = 4.
The parameter of the adaptive rule is chosen asρ = 3. The initial conditions of the equations that generates the reference
trajectory are taken asqr(0) = (0,0,0)T . The initial conditions of the adaptation law is ˆp(0) = 1. The initial conditions of
the robot for the first and second scenario are respectivelyq(0) = (0,−1.5,π/4)T andq(0) = (0,−1,π/6,0,0)T. In order
to demonstrate the tracking performance, the slip parameter changes fromi = 0 to i = 0.25 during the time period 22.5 s
≤ t ≤ 45 s.

The reference inputsvr , wr are chosen as following

0s≤ t < 15s : vr = 0.5m/s and wr = 0rad/s

15s≤ t < 33s : vr = 0.5m/s and wr =−0.4rad/s

33s≤ t < 51s : vr = 0.5m/s and wr = 0.4rad/s

51s≤ t : vr = 0.7m/s and wr = 0rad/s

The three constant parameters used in the UKF are chosen asα = 0.01, β = 2 andκ = 0. The initial state covariance
used in the first and second scenarios are respectivelyP(0) = 10I3×3 andP(0) = 10I5×5, beingI the identity matrix. The
number of particles, necessary in PF method, is chosen asN = 100.
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Scenario 1: Adaptive velocity-based control

In the first scenario, the nonlinear kinematic used in the estimation is given by




x
y
φ





k+1

=





x
y
φ





k

+h





vcosφk

vsinφk

ω





wherexk, yk andφk corresponds to robot pose,v andω are respectively the linear and angular velocities. The sampling
step is taken ash= 0.005.

Figures 4(a), 4(b) and 4(c) show the posture errore= (e1,e2,e3)
T obtained using the EKF, UKF and PF methods. The

reference trajectory and robot trajectory in the inertial frame for each method is depicted in Fig. 4(d). All three filters
methods show consistent and similar results.
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Figure 4: Posture errors (using the filters: (a) EKF; (b) UKF and (c) PF) and (d) Trajectory of the robot for 1st scenario.

Scenario 2: Adaptive torque-based control

The nonlinear kinematic used in the filter is given by
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



wherexk, yk andφk corresponds to robot pose,wL andwR are respectively left and right angulares velocities of thewheels,
v andω are respectively the linear and angular velocities,h is the sampling time. The sampling step is taken ash= 0.005.

Figures 5(a), 5(b) and 5(c) show the posture errore= (e1,e2,e3)
T obtained using respectively the EKF, UKF and PF

methods. Figure 5(d) show the reference trajectory and comparison between robot trajectory using the EKF, UKF and PF
methods. As in the first scenario, all three filters methods show consistent and similar results.

Figures 6(a), 6(b) and 6(c) show the velocity errore= (e4,e5)
T obtained using respectively the EKF, UKF and PF

filters.
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Figure 5: Posture errors (using the filters: (a) EKF; (b) UKF and (c) PF) and (d) Trajectory of the robot for 2nd scenario.
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Figure 6: Velocity errors using the filters: (a) EKF, (b) UKF and (c) PF.



An Application of Filtering Techniques For the Tracking Control of Mobile Robots with Slipping

CONCLUSIONS

Two different adaptive tracking control for tracked mobilerobot under slip condition using the extended Kalman filter
(EKF), the unscented Kalman filter (UKF) and the particle filter (PF) to estimate all states of the robot are presented. The
EKF, UKF and PF techniques are analyzed in two scenarios. In the first scenario, the controller is based on the kinematic
model and provides angular velocities as the control input.Furthermore, the states estimates are position and orientation
of the robot. In the second scenario, the controller, based on the dynamic model, consists in a feedback control law that
provides torque as control input. In this case, in addition of the position and orientation the angular velocities of the
wheels are estimated. Numerical results show the performance of the adaptive control laws using the EKF, UKF and PF
filtering techniques. In future works, the sensors models should be included in the close-loop and the fusion datas should
be studied. Others nonlinear filtering approaches will be compared.
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