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Abstract: This paper presents an application of nonlindgeting techniques for the tracking control design of tradk
mobile robot under slip condition. The slip is representetydy the longitudinal wheels slip that is described by
just an unknown parameter. The extended Kalman filter (EKE) unscented Kalman filter (UKF) and the particle
filter (PF) are used to estimate the states of the system, wieasurements are assumed all available. Two adaptive
tracking control design for tracked mobile robots are prepd. The first controller is based on the kinematic model
and provides angular velocities as the control input. Theosel controller, based on the dynamic model, consists in a
feedback control law that provides torque as control ingdtimerical results show the performance of the proposed
adaptive control laws using the EKF, UKF and the PF filterieghniques.
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NOMENCLATURE

b = distance between the wheais, M = inertia matrix I

B = input transformation matrix n = number of system states B= Wel_g_htlng parameter

ki = controller gains, dimensionless  p = relative to slip ratio, dimen- y = auxiliar Welghtlng parameter

i = longitudinal slip ratio, dimen- sionless K = secondary SC&.‘"”Q_F’arafT‘eter
sionless r = radius of the robot wheels) p = update _Iaw gan, d!men5|on!ess
J = moment of inertiakg.n? a = size of the sigma point distri- Tt = posterior probability density,
m = mass of the robokg bution dimensionless

INTRODUCTION

Autonomous mobile robots has received renewed attentidheriast years because of its increasing use in tasks
as forestry, mining, agriculture, military applicatiorspace exploration, etc (Nourbakhsh and Siegwart, 2004)ofAl
these applications require an efficient solution to the mareous navigation problem, which has motivated variouks/or
in the area due to its theoretical challenges. Furtherntbese applications usually require the robot to travel sxro
unstructured environments, where the precise localimatfdhe robot is an important key for feedback control pugsos

Feedback control for mobile robots need knowledge of thet'sistate vector. In general, the estimation of the
robot’s state vector from measurement system can be obtaisiag filtering techniques. It is well known that mobile
robots are typical examples of nonlinear systems. In génisva types of filtering approaches for nonlinear systems
can be found (Thrun et al., 2005). The first class, known as§an filters, includes the extended Kalman filter (EKF),
Gauss-Hermite filter (GHF) and unscented Kalman filter (UKIF)e other class consists of the nonparametric filters, in
which the main algorithm is the particle filter (PF). Sevexakrks has been developed in the literature to deal with the
estimation problem applied to mobile robot motion. Foramse, Jetto et al. (1999) developed the adaptive EKF for the
localization of mobile robots, Kwon et al. (2005) proposesbhust localization method for mobile robot based on the
combination of Kalman filter and perturbation estimator &igatos (2010) compared the EKF and PF techniques for
sensor fusion in motion control of mobile robots. In the sdime as Rigatos (2010), this paper studies the performance
of the EKF, UKF and PF algorithms applied to the proposediraccontrol methods.

Morin and Samson (2006) present a review of the most receattkihg control methods for mobile robots. Other
studies on tracking control designs using Lyapunov ansilgan be found in Lee et al. (2009), Wu et al. (2009) and
Ju et al. (2009). All these control design techniques aredas the assumption that the wheels roll without slipping.
However, the slip has a critical influence on the performafamobile robots that cannot be neglected. Thus, to attain
higher performance, in addition to estimation of the staetar, the slip parameters is incorporate into the modéhief t
robot. Many papers have addressed the slip phenomenoniatigation of mobile robots (Matyukhin, 2007; Wang and
Low, 2008). However, in such works, the slip parameters ansicered as disturbance or noise (Scaglia et al., 2009) or
are estimated using some filtering technique (Zhou et ad7R0n lossaqui et al. (2010b,a), an adaptive law is progpose
to estimate the longitudinal slip parameter for two differeacked mobile robot. The first adaptive control desigken
from lossaqui et al. (2010b), is based on the kinematic madeélprovides angular velocities as the control input. The
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second adaptive control design, taken from lossaqui eR@lLda), based on the dynamic model, consists in a feedback
control law that provides torque as control input. Even aeiveral other works in the literature these two controlglesi
consider the perfect measurement of the states.

The main contribution of this paper is to incorporate thelimear filtering techniques to the adaptive control designs
proposed by lossaqui et al. (2010b,a). To address the manlfiitering problem, two group of filtering approaches are
studied and compared: Gaussian approximation and nonpaiasimulation. The former group, consisting of the EKF
and UKF algorithms, uses either a single Gaussian distoibith match the first and second-order moments of the redjuire
density to differentaccuracy levels (Cui et al., 2005) He EKF algorithm, the state distribution is propagatedyicallly
through the first-order linearization of the nonlinear syst In the UKF algorithm, the state distribution is représdn
using a minimal set of carefully chosen sample points andamated through the true nonlinear system. The latter group
represented by the PF algorithm, does not make any assungtithe measurement noise distribution. Instead, the
nonparametric filters approximate posterior probabilistribution by finite number of values, each corresponding t
region in the state space.

The paper is organized as follows. First, the adaptive odats for a tracked mobile robot under longitudinal slip
condition are reviewed. Next, the nonlinear filtering teglues used to estimate the states of the tracked mobile aobot
presented. Then, the results obtained by numerical sinokaof the controlled systems using the filtering technicare
showed and compared. Concluding remarks follow afterwards

THE PROPOSED ADAPTIVE TRACKING CONTROLS

In this section, two adaptive control techniques for tratkebile robots proposed by lossaqui et al. (2010b,a) are pre
sented. First, the model of the robot is presented and thatieqs that characterize the tracking problem are estadalis
Then, the first adaptive control law that provides velositis input is described. Finally, the second adaptive chatro
that provides torque as input is reviewed.

As presented in (lossaqui et al., 2010b), the kinematic iojuaf the tracked robot under slip condition is given by

X rcosy/2p rcosy/2p
Y | =|rsing/2p rsiny/2p (
1] —r/bp r/bp

whereq = (X,Y, )T denotes the states of the robot, which is given by the robsitipa (X,Y) and its orientation in an
appropriate inertial frame. The angular velocities of &€ &nd the right wheels are respectively andwg. The radius
of the robot wheels is and the distance between the wheels.i$he parametep is defined as

B 1
P

o) = a-s @

with i, the longitudinal slip ratio of the two wheels, given by

o (roy —v FWR — V. .
|:(°\)L L):(wR R), 0<i<1
rey IR
wherev, andvg are the linear velocities of the left and the right wheeldwilation to the terrain.

As presented in (lossaqui et al., 2010b), the dynamic eguatithe tracked robot is given by
ME = B(q)t 2)

whereq = (X,Y,)T has been defined before, the input torque in left and rightelehis given byt = (1., Tr)", M =
ST (q)MS(q) andB(q) = ST (q)B(q), with the matricesVl andB(q) given by

m 0 O 1 cosy cosy
M=(0 m 0|, B(gq==|sing siny
0 0 J "\ b2 b2

wherem s the total mass of the robot adds the moment of inertia about the vertical axis through gein center of
the robot.

In order to deal with the tracking control problem, we needdtine the reference trajectory,= (X, Y, {r)T, which
is generated using the kinematic model

X cosyy 0\ /.
Yo | = [ sinu o(é)@q=3@mr 3)
U 0o 1



Juliano G. lossaqui, Juan F. Camino, Douglas E. Zampieri

wherev; andwy are constant reference inputs. It is assumed that the signahdn, are bounded.
In addition, to analyze the tracking problem, the error ifrebel as

e cosyy sing O X —X
e|=|-sing cosy O Y —-Y 4)
e 0 0 1) \w-u

Adaptive velocity-based control

Figure 1 shows the scheme of the adaptive control used iadosst al. (2010b). The numbering inside the blocks in
Fig. 1 indicate the corresponding equation number. Notigtltieestate vector is composed of the three stdtes andy.
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Figure 1: Adaptive velocity-based control.

The velocity control inpuE = (w_,wRr)" is given by
w\ P /2 —b\/[v
(o)== ) (o) @
v) Vr COSe3 + ki€g )
W)  \oy+Vvkoe +kssines

5 wsin
p=p <vel+ ” e3> (7)
2

wherep'is the estimation of the parametgrk; > 0 andp > 0 are controller gains.

with auxiliary velocity

and update law

Adaptive torque-based control

Figure 2 shows the scheme of the adaptive control used iadosst al. (2010a). The numbering inside the blocks in
Fig. 2 indicate the corresponding equation number. Obdbatghe state vector is composed of the five stxte¥, ,

w, andwg.
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Figure 2: Adaptive torque-based control.

The torque control input = (1., Tr)" is given by

1=B(q) 'Mu ®)
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with

u=ta+ ('8 Q) Ea-0) ©)

(326 )

wherek; > 0 are given constant ar{d, )" is given by (6). The update law that provides the estinpeitegiven by (7).

and the desired velociti€g given by

NONLINEAR FILTERING TECHNIQUES

This section presents the EKF and UKF Gaussians algoritmtidhee nonparametric PF algorithm (Haykin, 2001).
The basic structure for the EKF, UKF and for the PF involvesrestion of the state of a discrete-time nonlinear dynamic
system of the form

X1 = T (X, Uk, Wk)
Yic = h(X, Vi)

wherexy is the state vector of the systemy,is a control input angl is the measured signal. The process and measurement
noises are respectively given by andvy. It is assumed thaty andvg are independent zero-mean Gaussian random
variables with respectively covariance matri€gandR. Note that the PF algorithm does not require any assumption o
the measurement noise distribution.

The EKF algorithm

The EKF algorithm (Haykin, 2001) is based on a first order dagkries expansion of the nonlinear functidnand
h at the estimate, and the propagatiox /1. The EKF algorithm is given below:

Initialize with

Fork € {1,...,»}, the time-update equations are

R = T (Rk—1, Uk—1,Wk),

Py = Ac-1P 1Ak 1+ BrQuBY,

and the measurement-update equations are
_ _ -1
Kk = kacl;r (CkkaCt;r + DkRkD-IE) )

K= R+ Kic [y — h(R  vie) |

Py = (I — KkCi) Py,
with
a af(X,Uk,Vvk) B, & af(f(*,uk,wk)
o ox rookT Wi

Xk

Ak ) Ck

Wi

with wx = E[wy| andvi = E[v], whereE]-] is the expectation. The meawg andvy are usually zero.

The EKF can achieve satisfactory results for many appboati but may suffer from large estimate errors when
systems have strong nonlinearities. As stated in Thrun.gR@05), the EKF is a widely used technique in nonlinear
state estimation and, in spite of its theoretical weakness,the lack of a formal proof of convergence, a number of
applications exists, giving satisfactory results, in @éalbroad of technological areas.
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The UKF algorithm

The UKF algorithm (Haykin, 2001) does not approximate thaelimear process and measurement models. Instead,
it uses the true nonlinear models and approximates thehdigtn of the state random variable. The UKF, which does
not need to compute the Jacobian, uses the so-called uaeddesmisform (UT) to obtain the sigma points. These sigma
points are propagated through the nonlinear function. TKE Blgorithm is given below:

Initialize with

Forke {1,...,0}

Calculate the sigma points

X1 = [R—1 K1 +VVPRe1r fe1—vyy Pk71:|

The time-update equations are
X1 = F( K-z, Ue-1)

a o
XE:i;Wi Xkk-1

Kid-1= [)G:\kfl Kopg-1+ PV Xg,k\k—l_p\/@}

k-1 = N(Xigk—1)
2n m
Yo = _Z}V\/i Nikk-1
1=
The measurement-update equations are
2n

Py = _;\Ni((:) (ko1 = Y6) (K1 — )7k)T + R

2n

P = _;W(C) (K1 —%¢) i1 —5i) "

Kic = Py PVE“/l
R =K + Kic (e — i)
Pc= Pl: — KRy KkT

with the weights
wim =A/(N+A) (© =N (N+N)+(1—a?+B)
0 )

W™ =w© =1/2(n+A), =12

gLy eeny

n

whereh = a2(n+K) —n, y=v/n+ A and withk > 0. The dimension of the state vectomisthe size of the sigma point
distribution is regularized by non-negative weightingieo andf3, which can be used to compensate for the information
of the higher order moments of the distribution.
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The PF algorithm

The PF algorithm (Haykin, 2001) is based on Monte Carlo satioh with sequential importance sampling. The key
idea is to directly represent the required probability dgrfsnction as a set of particles. These particles are pyafel
and updated from one discrete time to the next to represeitatist posterior density. The PF algorithm is given below:

1. Initializion: k=0
e Fori=1,..,N,drawthe statexg) from prior p(xo)
2. Fork=12,...

(a) Importance sampling step

e Fori=1,..,N, sample(f(i) ~ n(xk|xg:L71,Yé‘), wherem represents the posterior probability density
e Fori=1,...,N, evaluate the importance weights up to a normalizing corsta

i) — p(yXe )04 1%, )
ko D vk
% [Xox-1:Yo)
e Fori=1,...,N, normalize the importance weights:
(i)

z'j\l:lwl((I)

(b) Selection step (resampling)
e Multiply/suppress sampleeg) with high/low importance weights!”, respectively, to obtaifl random
samplesq((i) approximately distributed according méxl((i) |Y0k)
e Fori=1,...,N, setwl((i) = )”(l((i) =N-1

(c) Output: The output of the algorithm is a set of samplestha be used to approximate the posterior distribu-
tion as follows:

POwYE) = = 5 80k —x)

Mz

1
N £

The optimal MMSE estimator is given as

R = E(x, Y§) ~ NZXK

In general, the PF algorithm presents better accuracy oGtagssians filters, but this occurs at the cost of greater
computational effort (Thrun et al., 2005).

NUMERICAL RESULTS

Two simulation scenarios are presented in this sectiorgubia filtering techniques EKF, UKF and PF together with
the adaptive velocity-based control and the adaptive zpsed control. Figure 3 shows the schematic represamtati
the close-loops with controller, filter and noises chandxagion for the two scenarios studied. Observe that thelbbes
without subscript, with subscripts™, “ m’ and “€” describe respectively real, reference, measured an&d states.

Note that in the first scenario the angular velocities areuset in the feedback control, that is, the velocities do not
need to be measured. The velocities are provided directiigdogontrol law. In the second scenario, the angular vedscit
need to be measured and estimated for control proposes.€ldty motion model that uses robot’s velocity to compute
posterior over poses (position and orientation) is comseidlén the filtering implementation. The alternative salatis
odometry motion model, commonly obtained by integratingealtencoder information.

In order to applied the nonlinear filtering techniques, weeditize the continuous time equations (1) and (2) of the
mobile robot with slipping using first-order difference. érhthe nonlinear system dynamics at discrete time, for the fir
and second scenario, can be described as

Xk = f(Xk7 Uk) =+ Wi

wherew is a zero-mean Gaussian noise vector with covarighcerlhe states vector for the first and second scenarios
are respectively, = (X,Y,W)T andx = (X,Y,W,w,wr)". The input vector for the first and second scenarios are
respectivelyuy = (w,wr)" andug = (1., Tr)". The state noisey is considered zero for the two scenarios.
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Figure 3: The representation of the close-loops studied.

For the first scenario, a simplify model used to representrteasurement model is given by

Xm X Vxk
Yo | =Y |+ | wk]| €= %) +w
and for the second scenario by
Xm X VXK
Ym Y Wk
Wn|l=|WI|[+]| vk | ©¥%= %) + W%
WLm WL Vo k
WRm, R Veork

wherev is an additive zero-mean Gaussian noise vector with caveel&, given respectively by

01 0 O 0 0
01 0 O 0 01 O 0 0
Re=1 0 01 O and Rg=| 0 0 02 O 0
0O 0 02 0O O 0 Q001 O
0O 0 O 0 001

for the first and second scenarios. To perform comparisomdsst the filtering methods, it is assumed an additive zero-
mean Gaussian noise in all simulations.

The numerical simulations were performed using MATLAB. Titeysical parameters for the model, taken from
lossaqui et al. (2010a), are given by= 0.65 m,r = 0.35 m,m= 0.80 kg andl = 0.0608 kg.nf. The total time of the
simulation is chosen ds= 60 s. The control parameters of the controller are choskn-ass = 6,k = 8 andkqs = ks = 4.

The parameter of the adaptive rule is chosep &s3. The initial conditions of the equations that generategdfierence
trajectory are taken ag (0) = (0,0,0)T. The initial conditions of the adaptation lawp$0) = 1. The initial conditions of

the robot for the first and second scenario are respeciij8ly= (0, —1.5,7/4)" andq(0) = (0,—1,1/6,0,0)". In order
to demonstrate the tracking performance, the slip pararobsmges froni = 0 toi = 0.25 during the time period 22 s

<t<45s.

The reference inputg, w; are chosen as following

Os<t<15s: v, =05m/s and w, =O0rad/s
15s<t<33s: v, =05m/s and w; = —0.4rad/s
33s<t<bls: vy =05m/s and w; =0.4rad/s

51s<t: v=0.7m/s and w;, =O0rad/s

The three constant parameters used in the UKF are choser=a301, B = 2 andk = 0. The initial state covariance
used in the first and second scenarios are respect(@ly= 103,35 andP(0) = 10I55, beingl the identity matrix. The
number of particles, necessary in PF method, is choséh-a400.
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Scenario 1: Adaptive velocity-based control

In the first scenario, the nonlinear kinematic used in thienegion is given by

X X VCOS@
y =|y| +h| vsing
@1 \9 w

wherexy, Yk and@ corresponds to robot poseandw are respectively the linear and angular velocities. Thepsiam
step is taken als = 0.005.

Figures 4(a), 4(b) and 4(c) show the posture egrer(e;, e, e3)" obtained using the EKF, UKF and PF methods. The
reference trajectory and robot trajectory in the inertialhfe for each method is depicted in Fig. 4(d). All three fiter
methods show consistent and similar results.

1 T T T T T 1

0.8

== —
|
|
o
o
o
®
T
|
|
o
o

0.6 F
| |

0.4 - 0.4p 4
|

0.2 ~ 4

Posture Errors
Posture Errors
\
\
\

40 50 60 o 10 20 40 50 60

30
t(s)

(b)

- - - Reference trajectory
—o— Robot trajectory with EKF
1k —+—Robot trajectory with UKF ||
—— Robot trajectory with PF

Lo e -l il el - == g 7

Posture Errors
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Scenario 2: Adaptive torque-based control

The nonlinear kinematic used in the filter is given by

X X VCOS(
y y vsingy
0] =| o[ +h W

WL L 0

R/ k1 \WR/ 0

wherexy, Yk andgy corresponds to robot pos&, andwr are respectively left and right angulares velocities oftheels,
v andw are respectively the linear and angular velocitieis,the sampling time. The sampling step is takeh as0.005.

Figures 5(a), 5(b) and 5(c) show the posture egrer(e;,e;,e3)" obtained using respectively the EKF, UKF and PF
methods. Figure 5(d) show the reference trajectory and eoisgn between robot trajectory using the EKF, UKF and PF
methods. As in the first scenario, all three filters methodsvstonsistent and similar results.

Figures 6(a), 6(b) and 6(c) show the velocity erect (e4,e5)" obtained using respectively the EKF, UKF and PF
filters.
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CONCLUSIONS

Two different adaptive tracking control for tracked mobiddot under slip condition using the extended Kalman filter
(EKF), the unscented Kalman filter (UKF) and the particlefifPF) to estimate all states of the robot are presented. The
EKF, UKF and PF techniques are analyzed in two scenario$elfirist scenario, the controller is based on the kinematic
model and provides angular velocities as the control inputthermore, the states estimates are position and dimta
of the robot. In the second scenario, the controller, basetti® dynamic model, consists in a feedback control law that
provides torque as control input. In this case, in additibthe position and orientation the angular velocities of the
wheels are estimated. Numerical results show the perfacenafithe adaptive control laws using the EKF, UKF and PF
filtering techniques. In future works, the sensors modedsiEhbe included in the close-loop and the fusion datas shoul
be studied. Others nonlinear filtering approaches will bagared.
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