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This article explores nonlinear proportional plus integral (PI) feedback for controlling
the position of an object held in an optical trap. In general, nonlinearities in the spatial
dependence of the optical force complicate feedback control for optical traps. Nonlin-
ear PI control has been shown to provide all of the benefits of integral control: disturb-
ance rejection, servo tracking, and force estimation. The controller also linearizes the
closed-loop system. More importantly, the nonlinear controller is shown to be equiva-
lent to an estimator of the exogenous force. The ability of nonlinear PI control to lower
the measurement SNR is evaluated and compared to the variational open-loop case. A
simulation demonstrating the performance of the nonlinear PI control is presented.
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1 Introduction

Optical traps use light to exert forces on microscopic objects.
Specifically, laser light, focused through a high numerical aper-
ture objective, creates a high intensity focus. As light is diffracted
and reflected through dielectric objects, the change in momentum
of the light results in a force exerted on the diffracting object,
allowing the object to be held near the focus. The scale of these
forces is small, from femtonewtons to hundreds of piconewtons,
and depends upon the beam’s power, the numerical aperture
(NA) of the trapping objective, the size of the trapped object, and
the quality of the optical system. The ability to generate small
forces has made optical traps an important tool for investigating
nanoscale phenomena. Of particular importance are single-mole-
cule studies that use trapped microscopic beads as handles; these
handles are attached to the molecule of interest, e.g., DNA [1],
motor proteins [2], and others [3,4] (see Figs. 1 and 2.) The beads
can be manipulated in order to exert desired displacements or
forces on the molecule being studied. Also, in the case of motor
proteins, the beads can be monitored to measure the generation of
force by the motor protein, motor stall force, stepping length, and
the motor protein’s procession along a substrate molecule, and
energy used per step.

A significant challenge in such single-molecule experiments and
optical trapping investigations in general, is that all motions at the
molecular scale are dominated by Brownian fluctuations, and dig-
ging signals of interest out of this Brownian noise is hard. Such
signals are often low bandwidth with cut-off frequency xb; e.g.,
molecular stepping of 1 bp (0.34 nm) every 2 s which results in a
signal bandwidth dominantly below 0.5 Hz. A typical approach is
to trap the beads in a high-stiffness trap,2 and to filter the measure-
ment with a low-pass filter at or near the signal bandwidth, thus
eliminating noise above the low-pass filter’s cut-off frequency. A
careful analysis of the noise characteristics using this approach
shows that the small bandwidth signal-to-noise ratio (SNR) is inde-
pendent of trapping stiffness [5]. From this result, some researchers
have concluded that feedback control, which for simple position
feedback has the same effect as increasing the trapping stiffness,
cannot improve the SNR [6]. However, this conclusion overlooks

the fact that feedback control can frequency shape the response
and can reject disturbances while controlling variables of interest.
Furthermore, as will be shown in this paper, feedback control can
generate an estimate of the exogenous force acting on the trapped
bead, and these estimates are a direct and robust measure of the
molecular forces of interest. Such capabilities enable optical traps
to do more than manipulate objects. Instead, they can be highly
versatile platforms for single-molecule investigations.

Linear integral feedback control has been shown to provide
advantages over open-loop techniques [5]. The linear theory is
appropriate for small displacements of objects within their traps
where the linear approximation of the trapping stiffness holds.
Integral control can provide measurements with SNR at least as
good as open-loop measurements filtered over a low bandwidth.
Feedback control, however, provides the advantage that signal SNR
can be improved while simultaneously controlling other variables
of interest, like the force applied to a molecule. However, many
experiments can require the optical trap to generate forces near the
peak trapping force. In such cases, Hooke’s law for estimating the
trapping forces is no longer valid, or more importantly, the bead
escapes the trap altogether. A control theory that accounts for the
nonlinear characteristic of the trapping force is needed. This paper
investigates a nonlinear PI (proportional plus integral) control law
that accounts for the spatial nonlinearities of the trapping force.

2 The Optical Trap Equation of Motion

Stable 3D traps can be constructed using high numerical aper-
ture objectives, and several researchers have provided both geo-
metric optic theories [7] and electro-magnetic theories [8–10] for
the optical trapping forces. Here, we will consider trapping along
a single axis; the extension to the 3D case should be apparent.

Optical trapping forces are generated by the interaction of a
dielectric object with the electric field of the focused laser beam.
This interaction can be characterized by a potential

EðzÞ ¼ �E0 exp �1

2
z2=w2

0

� �
(1)

where E0 is the total depth of the potential, w0 is a characteristic
dimension of the potential related to the beam waist and the size
of the trapped object, and z is the relative displacement of the
trapped object with respect to the center of the trap. The force act-
ing on the trapped object is

ftðzÞ ¼ �rEðzÞ ¼ �kz exp �1

2
z2=w2

0

� �
(2)

1Corresponding author.
2Here high stiffness implies that the trap’s cut-off frequency k/c is greater than

the bandwidth of the signal of interest, so that k� cxb.
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where k ¼ E0=w2
0 is the stiffness of the trap. It is apparent that the

optical forces are a nonlinear function of the relative position, z.
Note that the peak trapping force is ft,max¼ kw0e�1=2¼ 0.61kw0.

In optical trapping experiments, inertial forces can often be
ignored. The dominant force is viscous drag

fd ¼ c _x ¼ cð _zþ uÞ (3)

where c¼ 6plr is the Stoke’s drag coefficient, _x ¼ _zþ u is the
absolute velocity of the bead with respect to the surrounding fluid,
and u is the velocity of the trap. The equation of motion is then

c
dz

dt
þ kz exp �1

2
z2=w2

0

� �
¼ �cuþ fex (4)

where we have included fex as exogenous forces that include
Brownian fluctuations and molecular forces under investigations.
The forces can be modulated either by moving the beam (chang-
ing u) or by modulating the power of the beam (changing E0

and k). In this study, the signal u is the control input to the opti-
cal trapping system.

3 Open-Loop and Linear Control

Assume the trap is open-loop (u¼ 0). For small motions about
z¼ 0, the variational plant is

c
dz

dt
þ kz ¼ fex (5)

This model is appropriate for small deflections about the trap’s
center. This model is characterized by the stiffness k, which can be
calibrated several ways including equipartition, autospectra, and
cross-correlation methods, and by the trap’s bandwidth (cut-off fre-
quency) xt¼ k=c [11]. The trap’s bandwidth is important because
it determines the upper frequency limit for open-loop measure-
ments made using the trap.

The exogenous force includes the molecular forces under inves-
tigation and Brownian fluctuations resulting from the collisions of
molecules in the surrounding fluid with the trapped object. These
Brownian fluctuations are characterized by zero-mean white noise
with power spectral density, sex¼ 2ckBT; where, kB is Boltzmann’s
constant and T is the absolute temperature of the environment.

A typical strategy for measuring the exogenous force is to esti-
mate the force with Hooke’s law, fest¼ kz. It is straightforward to
show that

festh i ¼ k zh i ¼ fexh i (6)

so this open-loop approach to measuring fex results in an unbiased
estimator. The variance of this estimate is

VarðfestÞ ¼ k2VarðzÞ ¼ k kBT (7)

It is well known that Var(z)¼ kBT=k by the equipartition theorem.
The broadband SNR is

SNR ¼ festh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfestÞ

p ¼ fexh iffiffiffiffiffiffiffiffiffiffiffi
k kBT
p (8)

Thus, the SNR improves for a smaller trapping stiffness. In princi-
ple, this relationship can be used to determine an acceptably small
stiffness so that the SNR meets objectives. However, in practice,
as the stiffness gets smaller it is more difficult for trapped objects
to remain in the trap. Small disturbances, particularly from
Brownian fluctuations, tend to push the objects out of the trap.
This is a result of the characteristics of a 3D trap, where reducing
the lateral stiffness (e.g., by reducing the trapping laser’s power)
reduces the longitudinal stiffness to a point that the 3D trap is no
longer stable. Thus, there are practical limits on how small the
trapping stiffness can be made.

Very often, the signal of interest is band-limited up to a fre-
quency xb<xt. In this case, we are interested in the band-limited
noise in the force estimate. The small bandwidth variance is

Fig. 1 Optical traps are typically built around a microscope,
which provides a high NA objective and a means for imaging
trapped objects. A collimated beam is introduced to the micro-
scope at the front focal plane of the objective, making a tight
focus at the specimen plane. Diffraction of the light at the focus
by dielectric objects results in the optical forces that hold the
object. Light from a laser can be steered using various means,
and the position of the trapped object within the trap can be
sensed using a quadrant photo-diode positioned at the objec-
tive’s back focal plane.

Fig. 2 This schematic illustrates a typical single-molecule
experiment. In this two-beam setup, microspheres are held in
each trap. A long chain polymer, e.g., DNA, is tethered between
the two spheres, and the force on the molecule can be deter-
mined by measuring the position of each microsphere in its
trap. Feedback control can be used to control the molecule’s
elongation or the force applied to it.
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VarðfestÞxb
¼ ckBTxb

p
(9)

and the small bandwidth SNR is

SNRxb
¼ p

ckBTxb

� �1=2

fexh i (10)

Now, the SNR is independent of the trapping stiffness. The appa-
rent implication of this result is that controlling the trap, which
has typically been done using proportional control and has the
same effect as increasing trap stiffness, has no effect on the SNR
over small bandwidths. However, as will be seen in the remainder
of the paper, frequency shaped controllers, like integral control,
can result in improved SNR while simultaneously controlling var-
iables of interest.

4 Nonlinear PI Control

The objective here is to synthesize a nonlinear controller that
can control the relative position, z, of the particle in the trap. This
objective appears in many single-molecule control experiments
where the trapping force, ft(z), is used as a measurement proxy for
the exogenous forces (which include the forces from the molecule
applied to the bead). Control of z can also be extended to the con-
trol of force. A force setpoint fsp 2 �fpeak; fpeak

� �
can be mapped

to a displacement setpoint zsp 2 �w0;w0½ �, which then becomes
the setpoint for position regulation. This mapping can be done by
iteratively solving ft(zsp)¼ fsp (see Eq. (2) and Fig. 3).

We will use the method of Wright et al. [12] to generate a non-
linear PI controller with the following criteria:

1. The controller should be first order: This criterion limits con-
troller complexity and facilitates design, which is done by
choosing two gains. This criterion matches the linear PI con-
troller which is also first order. The resulting closed-loop
system is second order.

2. The controller should possess integral action: Integral
action is necessary to drive the steady-state error to zero;
improved accuracy is a primary reason for including inte-
gral control. The state of the controller is the state of the in-
tegrator, although for the nonlinear case, the controller
output may depend nonlinearly upon this state.

3. The controller should induce linear closed-loop dynamics:
While the first two criteria follow from linear PI controllers, this
criteria reflects a desired property of the closed-loop system. A
linear closed-loop system is easier to analyze and to predict sta-
bility. These features will facilitate the design of the controller.

The following controller meets the given specifications:

dẑ

dt
¼ g1ðzsp � zÞ (11)

u ¼ �g1ðzsp � zÞ � g2ðẑ� zÞ � c�1kz exp �1

2
z2=w2

0

� �
(12)

This controller has two tunable parameters: g1 and g2. Substituting
these into the equation of motion (Eq. (4)), the closed-loop system
is linear, as required, with dynamics

d

dt

z
ẑ

� �
¼ �ðg1 þ g2Þ g2

�g1 0

� �
z
ẑ

� �
þ g1

g1

� �
zsp þ

1=c
0

� �
fex (13)

It is straightforward to show that the characteristic equation for
this linear system is

s2 þ ðg1 þ g2Þsþ g1g2 ¼ 0 (14)

and the eigenvalues are k1,2¼ {�g1,� g2}. Thus, the closed-loop
system is characterized by the two time constants, s1¼ 1=g1 and
s2¼ 1=g2.

For now consider the exogenous force to be zero, fex¼ 0. This
control law forces ẑ to match z so that the closed-loop dynamics
are linear and first order. We can view ẑ as an estimate of the bead
displacement z, and the estimation error is

d

dt
ðẑ� zÞ ¼ �g2ðẑ� zÞ (15)

The position z and its estimate ẑ approach each other with time
constant s2. For t� s2, ẑ ’ z and Eq. 13 can be simplified to

dz

dt
¼ g1ðzsp � zÞ t� s2 (16)

If we compare this with Eq. (11), we see that once the estimator
has converged ẑ represents a precalculated estimate of z in the
closed-loop.

5 Mean Response and Exogenous Force Estimation

In general, it is desirable to have xb< g1< g2 so that the dy-
namics of the closed-loop system are faster than the signals of in-
terest. Assume also that the exogenous force has an estimated
value fexh i that is band-limited to xb; that is, it changes with a
time constant s> 1=xb> s1> s2. In this case, after sufficiently
long time, t� s1, the expected value of z and ẑ can be determined
from Eq. (13) to be

Fig. 3 (a) A plot of the normalized optical trapping force,
ft=(kw0). (b) A plot of the normalized local stiffness, ft=k . The op-
tical force acting on a trapped object is a nonlinear function of
the displacement of the object within the trap. Two parameters
characterize the trap: the trap stiffness k and the peak trapping
force ft,max 5 0.61kw0, where w0 is a characteristic dimension of
the trap.
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zh i ¼ zsp (17)

ẑh i ¼ zsp �
1

cg2

fexh i (18)

As expected, z tracks zsp, and we see that fexh i does not affect zh i.
Such disturbance rejection is one of the benefits of integral con-
trol. Also, we see that ẑh i is related to fexh i; hence, we can use ẑ to
calculate an estimate of the exogenous force

fest ¼ cg2ðzsp � ẑÞ (19)

The result in Eq. (18) shows that

festh i ¼ cg2ðzsp � ẑh iÞ ¼ fexh i (20)

making this an unbiased estimate of the exogenous force.
The variance of fest depends upon the fluctuations in the system

due to Brownian excitations from the surrounding fluid, and is
proportional to the variance of ẑ

VarðfestÞ ¼ ðcg2Þ2VarðẑÞ (21)

To calculate the variance of ẑ, consider the setpoint to be zero
and the exogenous force to be the fluctuating Brownian force
resulting from the collision of surrounding molecules with the
bead. This force is zero-mean white noise with constant power
spectrum; sex¼ 2ckBT. The steady-state response due to this
fluctuating forces can be found by solving the Lyapunov
equation [13]

ARþ RA0 þ BB0sex ¼ 0 (22)

where

A ¼ �ðg1 þ g2Þ g2

�g1 0

� �
; B ¼ 1=c

0

� �
;

R ¼ z2
	 


zẑh i
zẑh i ẑ2

	 
� � (23)

with the solution

VarðzÞ ¼ kBT

c
1

g1 þ g2

� �
; VarðẑÞ ¼ kBT

c
g1

g2

1

g1 þ g2

� �
;

Covðz; ẑÞ ¼ 0 (24)

The variance of fest is

VarðfestÞ ¼ ðcg2Þ2VarðẑÞ ¼ ckBT
g1g2

g1 þ g2

(25)

If we ensure that g1 � g2 then Var festð Þ ’ ckBTg1. The signal-to-
noise ratio is

SNR ¼ festh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfestÞ

p ¼ fexh iffiffiffiffiffiffiffiffiffiffi
ckBT
p 1

g1

þ 1

g2

� �1=2

’ fexh iffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckBTg1

p (26)

This result is strikingly similar to Eq. (10), but this is a broadband
result. We notice that the SNR is improved as g1 is reduced, much
like reducing the filter bandwidth xb in the open-loop case. The
advantage here is that feedback control lets us control the relative
displacement, z, of the bead within the trap. Since this displace-
ment is directly related to the optical forces, it gives us precise
control over the forces applied to single-molecules, for example,
something that is not possible in the open-loop case.

5.1 Estimation Sensitivity. The estimation of the exoge-
nous force implicitly depends upon correct knowledge of the

trapping stiffness k. The preceding theory assumes that the
nominal stiffness, k, is the true trap stiffness, but for off-nomi-
nal estimation the true stiffness is ktrue¼ kþ dk, which is the
appropriate stiffness to use in Eq. (4). The resulting closed-loop
equation of motion is

d

dt

z

ẑ

" #
¼
�ðg1 þ g2Þ g2

�g1 0

" #
z

ẑ

" #
þ

g1

g1

" #
zsp þ

1=c

0

" #
fex

þ
c�1dkz exp

�
� 1

2
z2=w2

0

�

0

2
64

3
75

(27)

The result of the uncertainty in the stiffness introduces bias in the
exogenous force estimate, can affect stability of the system, and
affects the achieved SNR. We look at each in turn.

5.1.1 Estimation Bias. With the bandwidth assumptions out-
lined in Sec. 5, the expected value of z and ẑ are

zh i ¼ zsp (28)

ẑh i ¼ zsp �
1

cg2

fexh i þ
dk

cg2

z exp

�
� 1

2
z2=w2

0

�� �
(29)

The effect of the integral control is to maintain the desired set-
point, and it does so by adjusting ẑ to account for unknown stiff-
ness; this is a standard robustness result for integral feedback.
However, our estimation equation defined in Eq. (20) results in a
mean estimated force

festh i ¼ cg2ðzsp � ẑh iÞ ¼ fexh i � dk z exp

�
� 1

2
z2=w2

0

�� �
(30)

which results in a biased estimate of the true exogenous force. For
small fluctuations, z is normally distributed, z�N(zsp,r2), and the
bias is

fexh i � festh i ¼ dk z exp

�
� 1

2
z2=w2

0

�� �

¼ dkzsp exp

�
� 1

2
z2

sp=w2
0

�
þ O½r2� (31)

We would like the bias to be small compared to the magnitude of
the signals we are trying measure. This gives an upper bound on
the stiffness error

jdkj � fexh i
zsp


 exp

�
1

2
z2

sp=w2
0

�
< 1:649

fexh i
zsp


 (32)

where in the second inequality we have assumed the setpoint posi-
tion is within the bounds of the trap: |zsp|<w0.

5.1.2 Stability. Stability of the off-nominal system can be
determined by linearizing Eq. (27) about the mean. For oscilla-
tions about the mean, the dynamics matrix becomes

A ¼ �ðg1 þ g2 þ xdÞ g2

�g1 0

� �
(33)

where the frequency

xd ¼
dk

c
1�

z2
sp

w2
0

 !
exp �

z2
sp

2w2
0

 !
(34)
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The quantity xd can be thought of as the error in the trap’s band-
width xt¼ k=c due to uncertainty in the true stiffness; this error is
bounded above by |xd| � |dk|=c. The characteristic equation is

s2 þ ðg1 þ g2 þ xdÞsþ g1g2 ¼ 0 (35)

A sufficient condition for stability is |dk|< c (g1þ g2).

5.1.3 Achieved SNR. Using Eq. (22) for the off-nominal sys-
tem, the variance of z and ẑ is

VarðzÞ ¼ kBT

c
1

g1 þ g2 þ xd

� �
;

VarðẑÞ ¼ kBT

c
g1

g2

1

g1 þ g2 þ xd

� �
; Covðz; ẑÞ ¼ 0 (36)

and the variance of fest is

VarðfestÞ ¼ ðcg2Þ2VarðẑÞ ¼ ckBT
g1g2

g1 þ g2 þ xd
(37)

The SNR is

SNR ¼ festh iffiffiffiffiffiffiffiffiffiffi
ckBT
p 1

g1

þ 1

g2

þ xd

g1g2

� �1=2

’ SNR0 1þ xd

2g2

� �
(38)

where SNR0 is the SNR with no uncertainty. We can ensure that
the SNR is not affected significantly if xdj j < dkj j=c� g2, or
dkj j � cg2.

6 Discussion

For many single-molecule experiments, the objective is to esti-
mate the exogenous forces, generated by a motor protein attached
to the bead. The open-loop approach (u¼ 0) is to measure directly
the position of the bead in the trap and to estimate the optical
forces using Eq. (2). The assumption here is that the optical forces
exactly balance the exogenous force; however, the forces acting
on the bead also include fluctuating Brownian forces that result
from surrounding water molecules colliding with the bead. Thus,
it is necessary to filter the estimated force to a sufficiently low
bandwidth to get to the signal of interest.

The measurement of the exogenous force can also be viewed as
an estimation problem where the objective is to estimate the exog-
enous force (which includes molecular forces of interest and
Brownian forces) over some bandwidth. This estimated force can
then be used in a feedback scheme to drive the difference between
the true exogenous force and its estimate to zero; in other words,
feedback can be used to make the estimation error small.

The control scheme presented here has two purposes: First, it
linearizes the system, making the relationship between the system
inputs, zsp and fex, and the system outputs, z and fest, linear. This
greatly simplifies the dynamics of the closed-loop system, facili-
tating analysis, and it enables the force estimation, which arises
naturally through the integral control process.

To see the various parts of this control process, we rewrite the
control signal as

� cu ¼ �ftðzÞ þ cðg1 þ g2Þðzsp � zÞ � fest (39)

Written this way, we see that the control signal contains three
feedback loops (see Fig. 4): Loop 1 cancels the nonlinear optical
force; Loop 2 stabilizes the system; and Loop 3 uses integral con-
trol for improved tracking, disturbance rejection, and force esti-
mation. We will discuss these in turn.

Loop 1 is positive feedback of the optical force, ft(z). In princi-
ple, this exactly cancels the nonlinear relationship between bead
position and the optical force in the bead’s equation of motion.
After canceling, the bead position is unstable since the resulting
equation of motion is for a bead undergoing free diffusion. Direct
cancellation of forces that are position dependent is risky since
the resulting system could be unstable. In practice, an estimate of
the true optical force is used, f̂tðzÞ, and the optical force is can-
celed, but possibly not entirely with the possibility of the resulting
system being unstable.

Loop 2 uses position feedback to stabilize the system. The
resulting closed-loop system is

c
dz

dt
þ cðg1 þ g2Þz ¼ cðg1 þ g2Þzsp þ fex (40)

This system has improved tracking, z ’ zsp, for higher gains. In
principle, this system could be used to estimate the exogenous
force with fest =c (g1þ g2)(z – zsp). However, the variance of
the force estimate is Var(fest)¼ ckBT(g1þ g2), and the SNR

¼ fexh i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckBTðg1 þ g2Þ

p
becomes worse as gains increase. This

Fig. 4 The controller can also be viewed as an estimator that estimates the exogenous
force over some bandwidth. This is done in a feedback scheme to make the estimation
error small. The control signal contains three feedback loops: Loop 1 cancels the nonlin-
ear optical force; Loop 2 stabilizes the system; and Loop 3 uses integral control for
improved tracking, disturbance rejection, and force estimation.
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broadband SNR is over the bandwidth of the closed-loop system,
g1þ g2. In many cases, this bandwidth would be much greater
than xb, the bandwidth of the signals of interest. The open-loop
strategy outlined in Sec. 3 could be used on the output of this
closed-loop system with the resulting small bandwidth SNR

¼ fexh i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ckBTxb

p
. This result shows no benefit for position

feedback control, a result which has been shown elsewhere [5,6].
Integral feedback, however, can result in improvements in SNR,
which is the purpose of Loop 3.

Integral feedback has several advantages: First, it provides
good tracking, enabling z to track zsp over a desired bandwidth,
and in particular, results in zero steady-state error for a constant
zsp; that is, zsp – z¼ 0 for zsp¼ constant. Second, it provides good
disturbance rejection over a desired bandwidth. This bandwidth is
presumably xb, the bandwidth of the process of interest. The dis-
turbance in this case is the fluctuating Brownian force. Third, the
integrator state, ẑ, is directly related to the exogenous force driv-
ing the system away from the setpoint and can be used to form an
estimate of those forces over the bandwidth of interest.

The linearized plant (Eq. (40)) in the frequency domain is writ-
ten as

z ¼ g1 þ g2

sþ ðg1 þ g2Þ
zsp þ

c�1

sþ ðg1 þ g2Þ
ðfex � festÞ (41)

The estimated force is generated as

fest ¼ cg2 zsp �
g1

s
ðzsp � zÞ

� �
¼ cg2

g1

s
z� g1 � s

g1

zsp

� �
(42)

In general, the fact that the estimated force is related to the integral
of zsp—z implies that we can think of the forces estimate as propor-
tional to the average difference between zsp and z. In an ideal sys-
tem with no noise, any difference between zsp and z would be
caused by an external force pulling on the bead. The right-half
plane zero atþ g1 in the above relationship is a bit peculiar, and is
there to account for the delay between zsp and z that occurs in the
plant. From this, we should expect that at low frequencies, below
g1, the estimated error will be the proportional to the time average
of z – zsp. Combining Eqs. (41) and (42) gives the closed-loop
system

fest ¼ cg2

s

sþ g1

zsp þ
g1g2

ðsþ g1Þðsþ g2Þ
fex (43)

The result is that fest ’ fex at least up to first cut-off frequency g1.
The contributions of the Brownian fluctuations can be minimized
by making g1 suitably small, causing the estimation bandwidth to
be low. Furthermore, the effects of a dynamically changing zsp

will not be seen in fest at frequencies below g1, the cut-on fre-
quency of the resulting high-pass filter from zsp and fest; that is,
the controller rejects the effects of zsp in fest at low frequencies.

So what are the advantages of using feedback control? Is not
the effect of this force estimation the same as the open-loop strat-
egy of low-pass filtering the measured signal over a suitably low
bandwidth to reconstruct fex? The advantage of feedback control
is that, while the exogenous force is being measured, variables
like molecular elongation or the nominal applied force can be pre-
cisely controlled. This is not the situation for the open-loop case.
A further advantage of PI control is that the exogenous forces are
rejected from the bead’s displacement from the trap center. The
closed-loop displacement is

z ¼ g1

sþ g1

zsp þ
s

ðsþ g1Þðsþ g2Þ
fex (44)

Table 1 The characteristics of the optical trap system and con-
troller used in the simulations.

Parameter Symbol Value

Trap stiffness k 0.13 pN nm�1

Maximum trapping force ft,max 68 pN
Trap dimension w0 860 nm
Bead diameter 1.72 lm
Viscosity of medium l 10�3 Pa s
Stokes drag coefficient c 16.2� 10�9 N s m�1

Control bandwidth g1 18.8 s�1 (3 Hz)
Position estimator bandwidth g2 1880 s�1 (300 Hz)

Fig. 5 (a) The relative displacement z for a move-and-settle
motion with a rise segment (at a constant velocity) to a final set-
point. The final setpoint is chosen to be 817 nm (0.95w0); that
is, we require the bead to nearly reach the boundaries of the
optical trap. Note: the reference signal zsp has been displaced
up 200 nm for clarity. (b) The integral state ẑ during the move-
and-settle motion. Note that in the presence of an exogenous
force, ẑh i will be different from zh i as shown in Eq. (18).

Table 2 Statistical results of the simulation about z 5 0 when
zsp 5 0 and fex 5 0. The mean values of z and ẑ should be zero.
The theoretical variance and covariance are given by Eq. (36).
N 5 5,000,000 points were used in the calculations (500 s
sampled at 10 kHz).

Quantity Numerical Theoretical

zh i �5.34� 10�5 nm 0 nm
ẑh i �2.6� 10�3 nm 0 nm

Var(z) 129.3 nm2 129.6 nm2

VarðẑÞ 1.289 nm2 1.296 nm2

Covðz; ẑÞ �0.0039 nm2 0 nm2
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The effect of closed-loop control is to filter the exogenous force
by a high-pass filter with cut-off frequency g1, the control band-
width, while the position tracks zsp up to this frequency. Thus, up
to the control bandwidth, the exogenous force has little effect on
the modal position, which follows the setpoint as required.

7 Simulation

To demonstrate feedback control for single-molecule experi-
ments, we have simulated the response of the system under the
action of an exogenous force. A model of the system was con-
structed in Simulink, and the system equations of motion were
solved using solver (ode45) based on an explicit Runge-Kutta
(4,5) formula, the Dormand-Prince pair. The sample frequency for
the solution was 10 kHz.

To verify the characteristics of the model, an open-loop simula-
tion was done. The mean-squared response was 3.77 pN nm, which
compares well with the theoretical value of 4.00 pN nm for an
absolute temperature of 290 K; the value depends upon the solver
method used. The statistics of the closed-loop response were calcu-
lated for the gain values given in Table 1. The closed-loop statis-
tics, shown in Table 2, compare well with theoretical values.

An exogenous force was applied to the bead, and was intended
to emulate the force applied to a bead by an attached molecule.
We assumed the exogenous force is a function of time and is
determined by fex(t)¼�ft(zsp(t)). The setpoint is a move-and-set-
tle motion with a rise segment (at a constant velocity) to a final
setpoint. The final setpoint is chosen to be 817 nm (0.95w0); that
is, we require the bead to nearly reach the boundaries of the opti-
cal trap. The rise lasts for 5 s, making the velocity during the
move 163 nm=s. The steady-state optical force at the final set-
point is 67.6 pN.

The strength of optical traps and the nonlinear feedback control
of optical traps is that small changes in the exogenous force can
be measured in the presence of significant Brownian noise. To

demonstrate this, the exogenous force is oscillated with an ampli-
tude of 70 fN about its final setpoint of 67.6 pN. The frequency of
this oscillation is 1 Hz. Figure 6 shows the oscillating exogenous
force and the estimated force. The achieved SNR is 2 (6 dB).

8 Summary and Conclusions

In an ideal optical trapping system, the measurement of exoge-
nous forces acting on a trapped bead is limited by fluctuations
caused by Brownian forces. These Brownian disturbances result
in broadband white noise in the measurement, which limits the
ability to resolve minute changes in the position of the bead or
equivalently small changes in the exogenous force. For open-loop
control, this broadband noise can be filtered over a suitably low
bandwidth to reveal the signal of interest. However, this open-
loop approach does not enable other variables such as molecule
elongation or the nominal molecular force to be controlled.

Feedback control provides the benefits of being able to control
aspects of the molecule’s configuration. Using frequency shaped
controllers, like integral control, allows for the closed-loop system
to minimize the effects of Brownian fluctuations in frequency
ranges of interest. But, in general, nonlinearities in the spatial
dependence of the optical force complicate feedback control. In
this article, a nonlinear PI control approach has been investigated
and has been shown to provide all of the benefits of integral con-
trol: disturbance rejection, servo tracking, and force estimation.
The nonlinear controller also linearizes the closed-loop system.
Finally, it has also been shown to be equivalent to an estimator of
the exogenous force.
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