

Intercloud Message Exchange Middleware

Muhammad Bilal Amin
Department of Computer

Engineering,
Kyung Hee University,

Korea
mbilalamin@oslab.khu.ac.kr

Wajahat Ali Khan
Department of Computer

Engineering,
Kyung Hee University,

Korea
wajahat.alikhan@oslab.khu.ac.kr

Ammar Ahmad Awan
Department of Computer

Engineering,
Kyung Hee University,

Korea
ammar@oslab.khu.ac.kr

Sungyoung Lee
Department of Computer

Engineering,
Kyung Hee University,

Korea
sylee@oslab.khu.ac.kr

ABSTRACT
Cloud Interoperability has been a core issue pertaining Intercloud and
Cloud Federation. Several vendor-based proprietary solutions and
open-source middleware are present for the resolution; however,
these solutions are highly coupled to particular cloud environments.
For heterogeneous clouds to exist in an interoperable environment,
the need of a vendor-independent, secure and reliable message
exchange middleware is critical. In this paper, considering general
cloud architecture, we are presenting a Publish-Subscribe based
middleware for Intercloud Message Exchange. Intercloud Message
Exchange is an implementation of Data Distribution Service (DDS).
DDS’s reliable pub-sub messaging in conjunction with our devised
Information Model can be a novel candidate for messaging domain of
Intercloud Interoperability Standards. This Information Model also
hosts an OWL based Cloud Resource Description Ontology, utilized
by cloud environments for resource cataloguing and possible
matchmaking prior to workload migration between heterogeneous
clouds.

Categories and Subject Descriptors
C.2.4 [Distributed Systems] : Client/server, Distributed applications

General Terms
Design, Experimentation, Standardization

Keywords
Cloud Computing, Interoperability, Intercloud, Cloud Federation,
Messaging, Data Distribution Service (DDS), Cloud Resource
Description Ontology

1. INTRODUCTION
Cloud computing has matured itself to a point where community has
started identifying clouds as single entities rather than a collection of
servers or a specialized datacenter. Cloud is a datacenter with
specialized properties [1] and it has shown the potential of not only
existing as a monolith but to shake-hands with other clouds for mutual
benefit and collaborations as claimed in [2].

Cloud Computing definitions, service, and deployment models are
well established. With their on-going implementations, research
community and industry, understands their need of better and
collaborative utilization. Subsequently, Hybrid Cloud Models,
Intercloud [3], Cross-Cloud [4], and Cloud Federation have emerged
as essential Topics of concern. Classification of applications and data
as public and private, hosting them in their respective clouds with
ubiquitous access via services is how we implement a Hybrid Cloud
infrastructure.

Hybrid Cloud balances the trade-off between availability and privacy,
which has been its key selling point. To implement Hybrid Clouds,
proprietary solutions and standards are used for portability and
interoperability. However, Intercloud and Cloud Federation, are
generalization of two or more clouds collaboration for a mutual
benefit model. While Cloud Federation is more focused towards
vendor-centric solutions, Intercloud gives us the opportunity for future
standards and open interfaces [5]. The required strategy must conquer
the heterogeneity issues among various cloud environments by
resolving Intercloud Interoperability based on standards, automation,
scalability, security, and privacy.

Any two or more clouds can communicate with each other via
http/https, like service calls; however, what required is the ability of a
cloud to discover an interoperable cloud ready to exchange
information over a secure channel for a possible workload scaling or
migration keeping the transparency intact. There is a great need of
Intercloud Interoperability Standard that systematically identifies the
key-areas and provides guidelines for possible implementation. For a
resolution, David Bernstein et al. [1] established a key set of domains,
which gives researchers an opportunity to provide comprehensive
solutions to address these domains individually. In this paper we are
proposing solution for “Cloud Presence and Messaging” [1] domain.

For Intercloud Interoperability to execute, the necessity is not just the
existence of another interoperable cloud, but their need to exist a
protocol that caters the need of reliable Intercloud presence and
messaging. Based on the work presented in [1], we are proposing an
Intercloud Presence and Message Exchange Middleware (ICME).
ICME utilizes a real-time messaging service particularly build for
distributed applications called Data Distribution Service (DDS). DDS
is an Object Modeling Group’s (OMG) standard with several
successful implementations and deployments in the field of real-time
distributed applications. DDS being a well-established middleware,
this paper approaches from a feasibility aspect of its implementation
for Intercloud presence and message exchange. In contrast with Point-
to-Point manner of Intercloud communication where each cloud
provider carries a direct reference to another cloud provider which
results in the n2 complexity problem, ICME’s inherited pub-sub nature
from DDS will have the constant complexity for sending and receiving
messages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICUIMC’12, February 20–22, 2012, Kuala Lumpur, Malaysia.
Copyright 2012 ACM 978-1-4503-1172-4…$10.00.

In addition to Intercloud presence and messaging, there is indeed a
requirement for a formal definition of cloud infrastructure and
resources. This definition must catalogue the entities of Cloud
Computing domain and describe their relationship in a formal
hierarchy. This hierarchy is not only beneficial for cloud
implementation; however, can also be very effective in Cloud
Description, Cloud Computing Requirements and even in Cloud
Infrastructure Design for various deployment models. To formalize
this hierarchy we are also presenting an OWL-based Cloud Resource
Description Ontology that is utilized by ICME for Intercloud resource
description and matchmaking for possible workload migration.

Use Cases of Virtual Machine (VM) Migration is discussed in Section
VI of this paper. These Use Cases provide an end-to-end flow with
identification of processes involved in a VM Migration scenario using
ICME. These Use Cases capture utilization and behaviors of ICME
during the execution of a likely-to-occur Intercloud task.

This paper is arranged as follows, Section II briefly describes some of
the related work in the field of Cloud Interoperability, Intercloud
Presence, and Messaging, and Cloud Federation. Section III explains
the general terminologies of DDS. Section IV presents our approach
by describing the ICME implementation in detail. Section V explains
the Cloud Resource Description Ontology. Section VI executes the
presented solution in the form of possible Use Cases. Section VII
concludes this paper.

2. RELATED WORK
Apparently, several cloud implementations are available across the
Cloud Computing industry. Some of them are vendor based
proprietary solutions (i.e., Amazon EC2 [6], Microsoft Azure [7],
Salesforce [8], Google AppEngine [9]), while few are the middleware
implementations provided as open-source (i.e., OpenNebula [10],
OpenQRM [11], Eucalyptus [12], Nimbus [13]). Apart from being
state-of-the-art they are either vendor-closed or highly-coupled to
particular environments solutions. OpenQRM is a closed platform
with no federation and interoperability support while OpenNebula,
Eucalyptus, and Nimbus are only compatible with Amazon EC2
environment. Libraries like jclouds[14], boto[15] and libclouds[16] are
available to provide abstraction over Cloud Interoperability but fail to
cater the needs of cataloguing cloud resources in a standardized format
which we realizes as an integral part of Cloud Interoperability domain.

In an effort to present a standardized mechanism for message
exchange, David Bernstein and Deepak Vij from Huawei
Technologies, USA have presented an XMPP and RDF based
Intercloud Directory and Message Exchange Protocol [17]. This
protocol utilizes the UDDI-based nature of XMPP as a cloud registry
module. This extends the ability of Intercloud communication from
peer-to-peer to a broker-based 1-many resolution. Being the registry
based nature of XMPP; this implementation has reliance on a third
party server that manages the directory of all the connected cloud
nodes. This solution does decouple the clouds successfully; however,
it couples the cloud to a particular registry server.

For Cloud Federation a solution has been presented by Antonio et-al.
[18], which explains a three-phase (discovery, matchmaking, and
authentication) cross-cloud federation model for resource migration.
An XML based solution is explained that utilizes XMPP, XACML,
and SAML. Concept of this solution is presented by T. Bittman in [2].

A Multi-Agent Middleware system for isolated control and
communications is proposed in [19] which combine DDS and
ontology implementation for Intelligent Distributed Systems. Tree
based ontology structure is used for defining quality of service policies
combined with DDS to extract communication details and identify
location of an agent in a certain space. Concept of an intelligent robot
has been given as an example implementation. ICME uses similar
technologies; however, its application context, implementation goals,

approach of solution, and technique itself is focused on Intercloud
messaging and cloud resource cataloguing.

Motivation of our solution is to remove the reliance on a third party
registry and present a solution towards standardization. As the
importance of Intercloud interoperability is fairly understood, we
believe the discovery of a cloud by another cloud can be taken care by
an Intercloud Domain where the middleware is embedded with the
discovery and messaging system between cloud environments. Data
Distribution Service by OMG based implementation is our underlying
technology that fully supports our earlier stated motive. Our solution
also benefits from the idea of RDF based catalogues and has defined a
Cloud Resource Description Ontology based on the layered
architecture of Cloud Datacenters as defined and explained in [20].

3. DDS TERMINOLOGIES
DDS is an OMG standard for real-time distributed systems. It works
on publish-subscribe based data exchange model between entities.
DDS was devised in 2003, since than it has been established as
mainstream pub-sub technology for high performance distributed
systems including Air Traffic Control, High Frequency Trading, and
Military & Defense applications. DDS has gone through multiple
iterations. The latest update is ver. 1.3 managed and used by OMG
members. The details can be viewed in [21].

The key foundation of DDS implementation is Global Data Space
(GDS). GDS is a contribution environment of participants. A GDS can
be further classified into individual Domains depending on the
application. Participants can join the GDS as publisher and/or
subscriber as and when needed. The message being published by a
participant is propagated across the domain and only the subscribers to
the message are able to receive it, decoupling the publishers and
subscribers. This type of subscription is defined as a Topic and gets
encapsulated with various values in a Sample. In short, Samples are
different values of Topics travelling over GDS. A subscriber
subscribes to a Topic carried by the Sample and receives only the
information from the Topic it subscribed to.

GDS configuration management performs the dynamic discovery of
publishers and subscribers. Data flows are automatic and taken care by
the DDS layer. For every Topic travelling over a particular domain has
QoS definition attached as parameters. These parameters add
reliability and customization on Topics and Samples.

DDS promotes the implementation of a Net-Centric Security Model,
in which security can be defined like Topics or over a domain. Two
possible implementations can be, a “Domain-based Mandatory Access
Control” and “Topic-based Role-based Access Control” as defined in
[22]. All the participating entities can be authenticated with
confidential message communication across a particular domain.

DDS is a highly interoperable middleware. DDS “Interoperability
Wire Protocol” guarantees the interoperability among various
architectures. Data-Centric Publish Subscriber (DCPS) provides
platform interoperability with implementation in various languages
and frameworks. RTI’s Implementation of DDS offers C, C++, C# and
Java versions of DDS API [23].

The application model of DDS can be compared with JMS and
CORBA. However DDS is a non-broker/non-registry based
architecture. DDS provides abstraction by user-defined data types
through Topics. Unlike JMS and other technologies, DDS enables
customization using QoS parameters, which caters the non-functional
aspects of Topics also. The higher performance is achieved by very
low latency of DDS i.e. million updates a sec. Detail Architecture of
DDS is defined in [24].

4. INTERCLOUD MESSAGE EXCHANGE
 (ICME) FOR INTERCLOUD
 INTEROPERABILITY
This section describes the conceptual architecture for ICME over a
cloud participating node, shown in Fig 1. Entity Definition Layer
defines the cloud-oriented entities, instantiated by Entity Factory for a
particular subscription or publication. Core components of ICME
architecture are explained below in detail.

Figure 1. Conceptual Architecture of ICME leveraging DDS

4.1. Information Model
In any modern day software application, foundation lies in its object
model. Objects as Entities, Controllers, and Interfaces build the
structure of scalable and reliable software architecture. Important part
is the discovery of these objects and their relationships among each
other. ICME’s architecture is not unlike. Apart from the publication
and subscription, the conceptual objects in context with application,
need to be defined. Information Model as shown in Fig 2 defines this
abstraction. All the participants of this Information Model are called
the Entities.

Message encapsulates request for discovery of interoperable cloud
environment and response from friendly clouds within Cloud Domain.
Request and Response are not to be confused with conventional
request and response communication. Request and Response entities
are both publications with-in the Cloud Domain. Concrete Request
and Concrete Response are specializations of Request and Response.

Message Type enumeration can be used to classify a message further.
For example, a resource migration request (MSG_RMR) or a
previously sent message disposal request (MSG_DSP) which means
the previously sent request is invalid and any processing in this regard
needs to be stopped or cancelled.

Figure 2. ICME Information Model

QoS Parameters enumeration provides the quality of service
parameters defined by DDS. QoS Policy defines the collection of QoS
Parameters as per publication or subscription. QoS Parameters
enumeration can contain all the provided QoS Parameters by DDS or a
specialized list, specific to the domain. For Example, message
expiration time (Deadline). These conditions may exist with the
lifecycle of Request and Response.

Resource Description is a container for formal cloud resource
description i.e., Ontology-based specification of a cloud in Web
Ontology Language (OWL) format. Section V describes cloud
resource description ontology in detail.

4.2. Domain & Domain Participants
Every cloud has a participating root node that registers the cloud in
GDS. Every root has the ability to run DDS for multipurpose
applications. Domains classify these applications. There exist a many-
to-one relationship between an application and a domain i.e., an
application can belong to multiple domains; however DataReaders and
DataWriters only belong to the domain in which they are created.
DataReader and DataWriter belonging to different domains will never
exchange data even being on the same machine. To implement
Intercloud Interoperability based services, isolated application (ICME)
is created and deployed under GDS (Cloud Domain) represented in
Fig 3.

Figure 3. Cloud Domain over Global Data Space (GDS)

A Domain Index (Integer Value) identifies a particular domain. ICME
deployed on all the root nodes creates DomainParticipants with the
same domain index belonging to the Cloud Domain. Each
DomainParticipant is implicitly the root node of every cloud with
ICME deployment (Fig 1).

4.3. Samples and Topics
A Topic is the realization of a data type in ICME and the unit of data
travelling over the Cloud Domain. In object oriented terms, the
instantiation of request and response is called Topic-Instance, where
request and response are the user-defined data-types (Entities).
Multiple instances of a Topic can exist in an ICME environment,
whereas, each instance can have mutable values except the key-value.
A distinct set of value for a particular Topic-Instance is called a
Sample. This enables ICME to carry multiple samples for a particular
Topic-Instance. Following listings elaborate these concepts (Note:
These code snippets are for explanation only, they do not follow any
particular programing language syntax or any programming paradigm).

struct Request
{
 Time timestamp;
 string topicId; // Key‐Value
 string OS;
 int RAM;
}

Listing 1.

In Listing 1, Request is a user-defined data type. String topicId is the
key-value that uniquely identifies an instance. Every root node in
Cloud Domain via ICME will subscribe all the Topics and Samples
created for Request.

request_1 = (Topic: “Request”)
 + (Key: “VM1”)
request_1.timeStamp = Time.Now
request_1.OS = “Win2K3SP2SRV”
request_1.RAM = 2048

request_2 = (Topic: “Request”)
 + (Key: “VM2”)
request_2.timeStamp = Time.Now
request_2.OS = “WinXPSP3Pro”
request_2.RAM = 1024

Listing 2.

Listing 2 creates request_1 and request_2 as two Topic-Instances of
type Request with distinct key-values, VM1 & VM2 respectively.
Currently, this defines a single Sample per Topic-Instance. However
multiple Samples per Topic Instance can be created (Listing 3).

request_1.timeStamp = Time.Now
request_1.OS = “Win2K3SP2SRV”
request_1.RAM = 4096

Listing 3.

Listing 3 appends to Listing 2, creating second Sample for Topic-
Instance request_1. The key-value “VM1” remains unchanged,
however the value for timestamp has changed during the execution
flow i.e. the timestamp value for first Sample of request_1 is different
from the second Sample of the same Topic-Instance. The value for
RAM has also changed from 2048 to 4096.

These Listings are related to VM Migration between interoperable
clouds using ICME. All the root nodes subscribe to Request, and get
values for all the Topic-Instances and samples pertaining to Request.
In addition, root nodes do not have to subscribe explicitly for a
particular Sample or Topic-Instance i.e., a VM configuration in this
case. As new configurations become available, all the root nodes will
immediately start receiving requests for those VMs as well.

4.4. Quality of Service (QoS)
One of the novelties of DDS is the control over publications and
subscriptions via Quality of Service parameters. These parameters add
up to become a QoS Policy. QoS adds agility in communication
between publishers and subscribers for a fairly simple to a very
complex requirement. DDS provides a set of QoS parameters that can
be utilized as per requirement. This innovation is fully utilized by
ICME’s Information Model. For our scope i.e., Cloud Domain, we
can enlist the parameters fit for our needs. These parameters are
defined in QoS Parameter’s enumeration in our information model
(Fig 2).

QoS Policy must be defined by mutual agreement between publishers
and subscribers in the form of a contract. For two root nodes to
communicate, their QoS Policy must be compatible. In case of
incompatibility, DDS will flag the ICME DataReader and DataWriter
of incompatible root nodes and mutual communication will not occur.
Table 1, describes the candidate QoS Parameters in accordance with
ICME’s requirements. (Note: a “message” can be a request or a
response type Topic)

Table 1 (QoS Policy Parameters).

A QoS Policy is created prior to the creation of DataWriter and
DataReader. Default QoS parameters can be also be tweaked and
updated as shown in the Listing 4.

DataWriterQoS qos
publisher.getDefaultDataWriterQoS(default)
default.reliability.kind =
 QoSParameters.Reliability
publisher.setDefaultDataWriterQos(default)

Listing 4.

4.5. Publication & Subscription
To publish and subscribe Topics at root nodes, DataReader and
DataWriter of DDS are used via API. DataReader object is created
when ICME has a Topic to write as publication; correspondingly
DataReader object is created when ICME wants to receive values for a
Topic.

In case of VM Migration, ICME uses DataWriter object to send
request Topic. A DataWriter is associated with single request;
however, multiple DataWriters and Topics in ICME can exist
depending on the entity definition in Information Model. As
mentioned earlier ICME uses DataWriter via DDS API i.e., a
Publisher object. When ICME calls a write() on DataWriter, request
object is passed to the publisher object, which does the actual
serialization of data over Cloud Domain. Listing 5 shows the ICME
write via DDS publisher object.

DataWriter ICMEWriter =
 publisher.createDataWriter(request, qos)
ICMEWriter.write()

Listing 5.

Similarly, ICME uses DataReader object to receive request Topic. A
DataReader is associated with single request; however, multiple
DataReaders and Topics in ICME can exist depending on the entity
definition in Information Model. After receiving data, it is first
processed (de-serialization) by a Subscriber object of the root node.
The data sample is then stored in the appropriate DataReader. ICME
can read the request either by registering to a listener or by calling
read() and take() in frequent intervals. Listing 6 describes the
ICME read via DDS subscriber.

DataReader ICMEReader =
 subscriber.createDataReader(request, qos,
 listener)
ICMEReader.enable()

Listing 6.

Calling enable() on a reader will change the request object to an
operational state i.e., its Topic will be read by ICME. This eventually

Deadline For DataReader, Maximum expected elapsed
time between the arrivals of message samples.

 For DataWriter, a commitment to publish
message samples with no greater elapsed time.

Durability Specifies whether to re-publish the message
samples to other or new DataReaders.

LatencyBudget Allowed time to deliver a message.
Lifespan Duration while the message is valid.
Reliability Whether or not message needs to be delivered

using a reliable mechanism.
Liveliness Mechanism to detect whether any root node is

alive or dead.
TransportPriority Message classification by priority for DataWriter.

binds a DataReader with the request Topic. A ‘disabled state’ can be
called if the ICME is not ready to accept data i.e., root node is not
accepting any VM migration requests or its resources aren’t adequate
or alive. (Note: There is no “disable” operation, the request can only
be disabled by subscriber’s QoS properties). In case of
acknowledgment, a response object is created and published in similar
fashion.

5. CLOUD RESOURCE DESRIPTION
ONTOLOGY

As mentioned earlier, the need for a formal cloud resource description
is eminent for Intercloud Interoperability. This formal description
defines the resources and their relationship in the form of schema
(OWL format), named as Cloud Resource Description Ontology. This
ontology will behave as a resource catalogue being shared among
cloud root nodes. Being part of the Information Model this catalogue
enables request to be utilized for resource matching between different
cloud environments. Depending on the resource match a cloud
becomes interoperable to the other(s).

Similar solution for resource cataloguing is presented in [13]; however,
its existence is entirely focused on UDDI based RDF framework.
ICME instead, proposes the mechanism of Ontology-Conformance
over GDS i.e., the Cloud Domain and redefines the ontology in a
comprehensive fashion keeping the cloud service and deployment
models in perspective [14].

Figure 4. Ontology Conformance

Shown in the Fig 4, two types of ontologies participate in ICME
implementation. Global Cloud Resource Description Ontology
describes all the concepts existing in Cloud Domain. Local Cloud
Resource Description Ontology is specific to every cloud deployment.
Local ontology only covers the concepts local to a particular cloud
vendor. Local ontologies conform to the global ontology owned by the
Cloud Domain.

Each Cloud conforms to the global ontology on the basis of their
needs leading to different local ontologies. Cloud Resource
Description Ontology behaves as a catalyst between cloud
environments through their local ontologies resolving interoperability
issue.

5.1.Classes
The Cloud_Node class of the ontology contains the four subclasses
that define the resources to be used by the cloud environment. The
subclasses of the Cloud_Node of the ontology are shown in cloud
resource description ontology diagram (Fig 5) and explained as
following:

Kernel contains the information about the Kernel of the Cloud Node.
The information about this resource is contained in further level of
subclasses as Hypervisor, Operating System, VM Monitor, and
Clustering Middleware.

Figure 5. Cloud Resource Description Ontology

IaaS contains information of Cloud_Node related to infrastructure as a
service. Its subclasses store information regarding Computational
Resources (includes Virtual Machines), Communication (includes
QoS), and Data-store (include File-System and RDBMS).

PaaS contains information related to the platform used by the
Cloud_Node is contained in PaaS subclass. PaaS is further
subdivided in to Security, Management, Load Balancing, API, and
Runtime subclasses.

SaaS contains the information on cloud related to software as a service
for the cloud node is contained in SaaS subclass. This subclass
contains another class called Application.

Table 2 (Domain & Range of Cloud Resource Description Ontology).

S.No Data-type
Property

Domain Range

1. vendor Hypervisor, OS string
2. info ClusteringMiddleware,DataCenterManagement,

FileSystem,LoadBalancing, Management,
RDBMS, Scheduling,Security,
PowerConsumption, VMMonitor

string

3. name API, Application, FileSystem, Hypervisor, List,
Management, OS, RDBMS, Runtime, VM

string

4. capacity VM string
5. id Cloud_Node string
6. os VM string
7. ram VM string
8. version API, Hypervisor, Management, OS, Runtime string

HaaS contains the hardware related information about the
cloud node is stored in HaaS subclass. It is further divided into
Power Consumption, Data Center Management, and
Scheduling.

5.2. Properties
By defining property, we can restrict a relation by specifying its
Domain and Range. Data type properties of the cloud resource
description ontology, with domain, range and restriction are specified
in table 2 and 3.

Table 3 (Properties of Cloud Resource Description Ontology).

Class Property Restriction
Cloud_Node contains ≥ contains min 1
API, LoadBalancing,
Management,
Runtime, Security

contains ≥ contains min 0

6. USE CASES

6.1.Use Case – I: A Cloud root node publishes a
request for VM migration over Cloud
Domain

Publishing cloud initiates the process by creating Sample(s) of request
Topic. Local Cloud Resource Description Ontology is initialized with
the values specific to the migrating VM requirements (OS, RAM,
STORAGE). Ontology is created in OWL format and becomes part of
the publication. DataWriter publishes the request with a unique
request Id as asynchronous message over Cloud Domain.
Subsequently, publishing cloud creates a response with the same
request Id and registers the response to a listener for an expected read.
Request Id act as a unique identifier, on which response publications
can correspond to. Read’s lifecycle depends upon the “Lifespan”
parameter of QoS Policy defined while creating response Topic.

Publication is received by all the ICME implementations at
participating root nodes over Cloud Domain. However, it is only
processed by the ones registered for the request Topic. In case of
registered subscription, appropriate DataReader stores and process the
request sample. Local cloud ontology is loaded and matched with
ontology of publishing cloud for further evaluation.

Ontology matching techniques and algorithms can be custom defined
and tweaked for Cloud Domain. These techniques can be defined by
mutual agreement among participating clouds as well as local to a
cloud environment in accordance with cloud governance policies.

Consequently, ICME of the subscribing node loads local resource pool
information for resource availability. Fig 6 describes this Use Case as
activity diagram.

Figure 6. Use Case-I Activity Diagram

6.2.Use Case – II: A cloud root node publishes a
response of acknowledgment for VM
migration over Cloud Domain

In case of resource availability from the resource pool, ICME checks
whether the request’s Lifespan is still valid. If valid, DataWriter
creates response with the request’s Id. Afterward, this response is
written as a publication over Cloud Domain. The entire participating
root nodes receive this publication; however it’s only processed by the
root node with the request Id registered at the listener for a possible
read. This unique identifier (request Id) guarantees the mapping of
incoming responses to the original request.

After receiving the acknowledgment, response(s) is read by
DataReader and processed. As there can be more than one response
for a certain request, bringing forward multiple candidate clouds ready
for accepting a VM. A certain evaluation mechanism needs to be in
place to evaluate these responses. These mechanisms can vary from
first-come-first-serve model to a highly technical evaluation model
with intrinsic details. These mechanisms can be implemented over
Cloud Domain with mutual agreement or even local to a certain cloud
implementation in accordance with its cloud governance policies.

After the selection of the target cloud environment, Single Sign-On is
initiated for possible handshake and VM migration. Fig 7 describes
this Use Case as activity diagram.

Figure 7. Use Case-II Activity Diagram

7. FUTURE WORK & CONCLUSION
ICME is a part of our larger and comprehensive effort to solve
Intercloud interoperability issues among various cloud environments.
Nevertheless, It is detailed enough to cater the needs of pub-sub based
decoupled messaging among cloud nodes for workload sharing. ICME
is one of the implementations DDS can provide in the field of
Intercloud. The novelties like domain-based security, Topic-based
subscription, quality-of-service based messaging, cross-platform
deployment and a reliable pub-sub messaging model can be utilized
very efficiently for the interoperability needs among heterogeneous
clouds running proprietary or open-source middleware solutions. In

future we are planning on extending this implementation to cater the
needs of efficient resource migration in real-time and a comprehensive
security platform for Intercloud access control.

8. ACKNOWLEDGMENT
This research was fully supported by Microsoft Research Asia.

9. REFERENCES
[1] David Bernstein, Erik Ludvigson, Krishna Sankar, Steve Diamond and

Monique Marrow, “Blueprint for the Intercloud – Protocols and Formats
for Cloud Computing Interoperability,” 2009 Fourth International
Conference on Internet and Web Applications and Services.

[2] Thomas J. Bittman, “ The Evolution of the Cloud Computing Market,”
Gartner Research Blog Network,
http://blogs.gartner.com/thomas_bittman/2008/11/03/the-evolution-of-
the-cloud-computing-market/, November 2008.

[3] Sun Microsystems, “Take your business to a Higher Level- Sun cloud
computing technology scales your infrastructure to take advantage of
new business opportunities,” Guide April 2009.

[4] W. Li and L. Ping, “Trust model to enhance security and interoperability
of cloud environment,” Cloud Computing November 2009.

[5] Enterprise Cloud Computing Blog,
http://www.cloudswitch.com/page/cloud-federation-and-the-intercloud

[6] Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/

[7] Microsoft Azure, http://www.microsoft.com/windowsazure/

[8] Salesforce, www.salesforce.com/cloudcomputing/

[9] Google AppEngine, http://code.google.com/appengine/

[10] OpenNebula, http://opennebula.org/

[11] OpenQRM,http:// www.openqrm.com/

[12] Euclyptus, http://www.eucalyptus.com/

[13] Nimbus, http:// www.nimbusproject.org/

[14] jclouds, http://code.google.com/p/jclouds/

[15] boto, http://code.google.com/p/boto/

[16] Apache libcloud, http://libcloud.apache.org/

[17] David Bernstein and Deepak Vij, “Intercloud Directory and Exchange
Protocol Detail using XMPP and RDF,” 2010 IEEE 6th World Congress
on Services

[18] Antonio Celesti, Franco Tusa, Massimo Villari and Antonio Puliafito,
“How to Enhance Cloud Architectures to Enable Cross-Federation,”
2010 IEEE 3rd International Conference on Cloud Computing.

[19] Jose L Poza, Juan L. Posadas and Jose E. Simo, “Adding an Ontology to
a Standardized QoS-Based MAS Middleware,” DISTRIBUTED
COMPUTING, ARTIFICIAL INTELLIGENCE, BIOINFORMATICS,
SOFT COMPUTING, AND AMBIENT ASSISTED LIVING. Lecture
Notes in Computer Science, 2009, Volume 5518/2009, 83-90.

[20] Youseff, L. and Butrice, M. and Da Silve, D., “Towards a Unified
Ontology for Cloud Computing,” Grid Computing Environments
Workshop, 2008.

[21] Data Dstribution Service Specification,
http://www.omg.org/technology/documents/dds_spec_catalog.htm

[22] Gerardo Pardo-Castellote, “Secure DDS, A security model sutable for
Net-Centric, Publish- Subscribe and Data Distributed Systems,” RTESS,
Washington DC, July 2007.

[23] RTI Data Distribution Service, User’s Manual. Real-Time Innovations,
Inc, June 2010.

[24] J. M. Schlesselman, Gerardo Pardo-Castellote and Bert Farabaugh,
“OMG Data-Distribution Service (DDS): Architectural Update,”
MILCOM 2004.

