
Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

DOI : 10.5121/acij.2012.3212 105

ASPECT-ORIENTED SOFTWARE QUALITY

MODEL: THE AOSQ MODEL

Pankaj Kumar
Noida Institute of Engineering & Technology, Greater Noida

unpankaj@gmail.com

ABSTRACT

Nowadays, software development has become more complex and dynamic; they are expected more

flexible, scalable and reusable. Under the umbrella of aspect, Aspect-Oriented Software Development

(AOSD) is relatively a modern programming paradigm to improve modularity in software development.

Using Aspect-Oriented Programming (AOP) language to implements crosscutting concerns through the

introduction of a new construct Aspect like Class is defined as a modular unit of crosscutting behavior

that affect multiple classes into reusable modules.

Several quality models to measure the quality of software are available in literature. However, keep on

developing software, and acceptance of new environment (i.e. AOP) under conditions that give rise to an

issue of evolvability. After the evolution of system, we have to find out how the new system needs to be

extensible? What is the configurable status? Is designed pattern stable for new environment and

technology? How the new system is sustainable?

The objective of this paper is to propose a new quality model for AOSD to integrating some new quality

attributes in AOSQUAMO Model based which is based on ISO/IEC 9126 Quality Model, is called Aspect-

Oriented Quality (AOSQ) Model. Analytic Hierarchy Process (AHP) is used to evaluate an improved

hierarchical quality model for AOSD.

KEYWORDS

AOP, AOSD, Aspect, Crosscutting Concern, Model Development, Quality Attributes, Software Quality

Engineering, Software Quality Models

1. INTRODUCTION

Software engineering is related to the development and evolution of large, complex and critical

software-intensive system. These systems are expected to be more flexible, scalable and

reusable. In order to achieve these objectives, development techniques that support abstraction

and modularization in software development system can be useful. Software Modularity

surpassing traditional abstraction is necessary for developing complex modern systems -

specifically software and software-intensive systems.

Aspect-Oriented Software Development (AOSD) and other new types of modularity and

abstraction approaches are attracting lot of attention over many domains within, and beyond

computer science [1, 2, 18]. AOSD is comparatively a modern Programming Paradigm aimed at

improving modularity under the umbrella of Aspect. Implementations using an Aspect-Oriented

Programming (AOP) language attempts to encapsulate crosscutting concerns. Crosscutting

concerns are introduced through a new construct class like Aspect which is, defined as a

modular unit of crosscutting implementation. It encapsulates behavior affecting multiple classes

into reusable modules.

Any new addition to the existing code may further worsen the situation, if the integration is not

carried out carefully. Since the target application will have its behavior changed, it can cause an

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357374659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

106

impact on software quality parameters like reliability, functionality, performance and efficiency.

The application of AOP paradigm can simplify the up gradation, maintenance and evolvability

of the software. However, the incorrect usage of AOP paradigm may not lead to the desired

quality level of the software. Further, existence large number of process paradigms and

existence varied product standards, the assessment of quality becomes pertinent.

The demand for quality has been part of human nature for a long time, but the quantification of

quality and establishment of formal quality standards are a 20th century phenomena [1, 3].

Practitioners, Researchers and Developers have proposed several metrics and quality models

[21]. In general, the expert's definitions of quality fall into two categories: Level one quality

applies to products or services whose measurable characteristics satisfy a fixed set of

specifications that are usually numerically defined. Level two quality products and services

need only satisfy customer expectations [3]. In this paper, level one category is followed.

The remainder of this paper is organized as follows: Section 2 discusses the chronological

development of software quality models. Section 3 discusses the background of software quality

models. Section 4 proposes a new software quality model for AOP i.e. called Aspect-Oriented

Software Quality (AOSQ) Model and Section 5 presents conclusion and future work directions.

2. CHRONOLOGICAL DEVELOPMENTS OF QUALITY

MODELS

Over the last five decades, there are number of software quality models in software engineering

literature. The quality Models are divided into two categories: Hierarchical quality Model and

Non-Hierarchical quality Model. In this paper, only hierarchy quality models are described.

Each one of these quality models consist of a set of high quality characteristics/factors and sub-

characteristics/sub-factors.

In late 70’s, two principal models were proposed one after another. In 1977, McCall et al. [7]

proposed a quality model called McCall’s Software Quality Model and it is also called Classical

Quality Model. McCall’s Quality Model was later adapted and revised as the MQ Model by

Watts in 1987. Next year in 1978, Boehm et al. [8] proposed another quality model using

McCall’s quality model, called Boehm’s Software Quality Model.

Later on in late 80’s, three quality Models (in 1987, Evans & Marciniak’s Quality Model and

FURPS Quality Model and next year 1988, Deutsch & Will’s Quality Model) were proposed.

Among these quality models, FURPS Quality Model [9, 10] is more popular because it is first

industrial approach based quality model, proposed by Hewlett-Packard (HP). Later on, the

model was extended by IBM Rational Software into FURPS+, widely used in the software

industry now.

Till 90’s, number of software quality models were proposed. This led to lot confusion among

practitioners, which model to actually follow. Therefore, International Organization for

Standardization/International Electro-technical Commission (ISO/IEC) began to develop and

standardize a new quality model considering the entire repository of various quality models

proposed so far. . In 1991, ISO/IEC proposed a quality model, called ISO/IEC Quality Model.

Later on, the name was changed to ISO/IEC 9126 Quality Model [11, 12, 13] since ISO 9126

was part of the ISO 9000 standard. Later on in 1995, R.G. Dromey [14] proposed a quality

model adding one characteristic into ISO/IEC 9126 Quality model. The model is called

Dromey’s Software Quality Model.

All the above defined software quality models were derived based on either legacy software or

object-oriented software. The upraise of new technologies like Aspect oriented programming

(AspectJ), the software development architecture focus on maintaining the overall quality of

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

107

software systems through their lifecycle. AOP Application consists of Class and Aspect. The

quality assessment of Implementation of Class modules is measured by above defined quality

models. The quality of aspect modules cannot be by the above discussed models and software

quality model for assessing the quality of projects developed using AOP need to be developed.

In 2009, Software quality model for AOSD was proposed by Kumar et al. [15] and it is called

Aspect-Oriented Software Quality Model (AOSQUAMO). Another AOSD based quality model

is proposed by I. Castillo et al. [25] in 2010. It is a common framework, based on UML

conceptual model the REASQ (REquiremets, Aspects and Software Quality) model. The model

exists as a specification definition as an integrated ontology implemented with the Protégé Tool,

for the reasoning, understanding, handling and reuse of the main notation related to AOSD

Paradigms.

So, integrating some new characteristics/factors and sub-characteristics/sub-factors of AOSD in

AOSQUAMO Model as a base ISO/IEC 9126 Quality Model and proposed a new quality model

for Aspect-Oriented Programming Paradigm, is called Aspect-Oriented Software Quality

(AOSQ) Model.

3. SOFTWARE QUALITY MODELS BACKGROUND

Several software quality models were proposed, in order to evaluate different types of software

products. This section presents the most popular quality models.

3.1. McCall’s Quality Model

One of the most oldest and renown predecessors of today’s software quality model developed

by McCall et al. [7] also known as the General Electric (GE) Model originates from US Air

Force, the Rome Air Development Center (RADC), to improve the quality of software products.

Main purpose of this model is to estimate the relationship between external factors and product

quality criteria.

The structure of McCall’s Quality Model [7] is shown in figure 1.

Figure 1: Structure of McCall's Quality Model

The McCall’s Quality Model is divided into highest three major perspectives: Product

Operation, Product Revision and Product Transaction. All the three major perspectives are

divided into 11 external factors which describe the external view of software system (i.e. User

View) and all the external factors are divided into 23 quality’s criteria which describe the

internal view of software system (i.e. Developer View). Quality’s criteria associated with a set

of quality metrics are defined and used to provide a scale and method for measurement [6]. The

factors and criteria are shown in table 1. The main contribution of this quality model is the

relationship between quality factors and metrics. However, the quality model does not take into

account the quality aspect of various functionalities of the software product.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

108

Table 1: McCall's Quality Model
Quality Type Product

Perspective

Factors Criteria

Quality Software

Product

Product Operation

Correctness
Traceability

Completeness

Consistency

Reliability

Accuracy

Error-Tolerance

Consistency

Efficiency Execution Efficiency

Storage Efficiency

Integrity

Access Control

Access Audit

Usability
Operability

Training

Communicativeness

Product Revision

Maintainability

Simplicity

Conciseness

Self-Descriptiveness

Modularity

Testability

Instrumentation

Self-Descriptiveness

Simplicity

Modularity

Flexibility

Simplicity

Expandability

Generality

Modularity

Product

Transaction

Portability
Simplicity

Software System Independence

Machine Independence

Reusability

Simplicity

Generality

Modularity

Software System Independence

Machine Independence

Interoperability Communications Commonality

Data Commonality

3.2. Boehm’s Quality Model

The second renowned predecessors of today’s software quality model was developed by Boehm

et al. (1978), adding emphasis on the maintainability for software product into McCall’s Quality

Model is called Boehm’s Quality Model [8] and is shown in table 2.

The importance of this model is to describe the current coexisting deficiency of McCall’s

Quality Model that automatically and quantitatively evaluate the quality of software product.

Hence, characteristics of Boehm’s quality model are represented in hierarchical form to manage

total quality. The validity of model is mostly assumed for common sense reasons, rather than on

empirical evidence of their accuracy as a model.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

109

Table 2: Boehm's Quality Model
Quality Type Product Perspective Factors Criteria

General Utility Portability Device-Independent

Completeness

As is utility

Reliability Accuracy

Completeness

Consistency

Efficiency Device Efficiency

Accessibility

Human

Engineering
Communicativeness

Accessibility

Maintainability

Testability Communicativeness

Accessibility

Structuredness

Self-Descriptiveness

understandability Consistency

Structuredness

Self-Descriptiveness

Conciseness

Legibility

Modifiability Structuredness

Augment-ability

3.3. FURPS Quality Model

All the models proposed so far mentioned in section 3.1 and 3.2 were developed by

academicians as a research activity only. So far industry had not show any interest in the quality

issues of the software development processes. Robert Grady and Hewlett-Packard are the first

one to propose model with the industrial approach. This quality model is known as FURPS

Quality Model [9, 10]. The model aimed at improving the management of software

development processes by software industry.

FURPS Quality Model includes top five level attributes (Functionality, Usability, Reliability,

Performance and Supportability) as shown in table 3. Further, the model was extended by IBM

Rational Software into FURPS+, widely used in the software industry now.

3.4. ISO/IEC 9126 Quality Model

Since, the number of software quality models were proposed, the confusion occurred and new

standard quality model was essential.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

110

Thus, ISO/IEC Joint Technical Committee (JTC) [11, 12, 13] started to develop model using the

required consensus and inspire standardization worldwide. In 1991, ISO/IEC JTC – 1 proposed

a quality model called ISO/IEC Quality Model. Further, name was changed to ISO/IEC 9126

Quality Model. The model is an extension of previous work did by McCall (1977), Boehm

(1978) and FURPS (1987) etc.

Figure 2: Structure of ISO/IEC 9126 Quality Model

The structure of ISO/IEC 9126 quality model is shown in figure 2 and the characteristics and

sub-characteristics are shown in table 4.

ISO/IEC 9126 quality model is divided into two perspectives (i.e. first is External & Internal

Quality and second is Quality in Use) for evaluating the quality of software products. The

defined characteristics in external & internal quality perspective are applicable to each and

every type of software products.

Though, ISO/IEC 9126 quality model reasonably covers most of the quality characteristics, and

sub characteristics, the product perspective are taken as external and internal quality. The model

did not take into account the reusability feature.

Table 3: FURPS Quality Model

Quality Type Product

Perspective

Characteristics Sub- Characteristics

Quality Software

Product

Functionality

Feature Set
Capabilities

Generality

Security

Usability

Human Factors
Aesthetics

Consistency

Documentation

Reliability

Frequency/Severity of Failure
Recoverability

Predictability

Accuracy

Mean Time to Failure

Performance

Speed
Efficiency

Resource Consumption

Throughput

Response Time

Testability

Extensibility

Adaptability

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

111

Supportability

Maintainability

Compatibility

Configurability

Serviceability

Install-ability

Localizability

Portability

3.5. Dromey’s Quality Model

Dromey’s quality model [14] states that every software product has its own process evaluation.

So, there are some dynamic ideas required for process modeling. Hence, Dromey proposed a

software quality model in 1995 called Dromey’s Quality Model to integrate Reusability and

Process Maturity as characteristics in ISO/IEC 9126 Quality Model. The main objective of this

quality model is to obtain a model in broad area for variety of application. The characteristics

and sub-characteristics are shown in table 5.

Dromey’s quality model is associated with reliability and maintainability. So, it is typical to

judge, that model is feasible before the software system is operational in development area or

not.

Table 4: ISO/IEC 9126 Quality Model

Quality Type Product

Perspective

Characteristics Sub- Characteristics

Quality Software

Product

Functionality

Suitability

Accuracy

Interoperability

Security

Reliability

Maturity

Fault Tolerance

Recoverability

Usability

Understandability

Learn-ability

Operability

Attractiveness

Efficiency

Time Behavior

Resource Utilization

Maintainability

Analyzability

Changeability

Stability

Testability

Portability

Adaptability

Replace-ability

Install-ability

Co-Existence

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

112

Table 5: Dromey's Quality Model

Quality Type Product Perspective Characteristics Sub- Characteristics

Quality Software

Product

Implementation

Correctness Functionality

Reliability

Internal

Maintainability

Efficiency

Reliability

Contextual

Maintainability

Reusability

Portability

Reliability

Descriptive

Maintainability

Efficiency

Reliability

Usability

3.6. AOSQUAMO Model

All the above defined quality models belongs to either legacy software or Object-Oriented

software but not to AOP.

Kumar et al. [15] proposed first AOP based software quality model called Aspect-Oriented

Software Quality (AOSQUAMO) Model in 2009 which is an extension of ISO/IEC 9126

quality model. Four sub-characteristics (i.e. Reusability, Complexity, Code-Reducibility and

Modularity) are integrated under different characteristics of ISO/IEC 9126 quality model which

is shown in table 6.

But this model also lacks some characteristics/factors and sub-characteristics/sub-factors which

is important for Aspect-Oriented Programming based applications.

Table 6: AOSQUAMO Model

Quality Type Product Perspective Characteristics Sub- Characteristics

Quality Software

Product

Functionality

Suitability

Accuracy

Interoperability

Compliance

Security

Reusability

Reliability

Maturity

Fault Tolerance

Recoverability

Usability

Understandability

Learn-ability

Operability

complexity

Efficiency

Time behavior

Resource behavior

Code-reducibility

Maintainability

Analyzability

Changeability

Stability

Testability

Modularity

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

113

Portability

Adaptability

Replace-ability

Conformance

4. PROPOSAL OF SOFTWARE QUALITY MODEL: AOSQ

MODEL

Over the last 50 years, the increasing trend to evolve complex software system has emphasized

the need to consider software quality as an integral part of software system development. There

are so many programming paradigms coming over this period. Every programming paradigm

has its own characteristics and sub-characteristics. On the way of evolution, AOP programming

paradigms was proposed by Kiczales et al. (1997) [22] and its main objective is to improve

software quality by providing better modularization and separation of concern (SoC).

Most of all the software quality models which are proposed after ISO/IEC 9126 Quality Model

(1991) [11, 12, 13], are derived from ISO/IEC 9126 Quality Model. Example:

Reusability is integrated as a characteristic by R. G. Dromey (1995) [14] to obtain a model in

broad area for variety of application.

Bansiya et al. (2002) [35] proposed a quality model for Object-Oriented Design (QMOOD)

which is extension of Dromey’s quality model. The QMOOD provides a way to define Object-

Oriented Design properties with their associated metrics.

Bertoa et al. (2002) [23] proposed a quality model for Component-based Software Development

(CBSD) which is called Quality Model for COTS (Commercial off the Shelf) Components. In

this model sub-characteristics are divided into two categories: Runtime and Life Cycle based on

their nature and two new sub-characteristics also integrated: Compatibility and Complexity in

the category of life cycle which indicated whether previous version of component is compatible

with its new version.

Rawashdeh et al. (2006) [24] divided characteristics into different types of stakeholder and also

removed two sub-characteristics Stability and Analyzability from Maintainability. After that,

integrating two sub-characteristics Compatibility into Functionality and Complexity into

Usability proposed a quality Model.

Kumar et al. (2009) [15] proposed a first quality model for AOSD to integrate Reusability into

Functionality, Complexity into Usability, Code-reducibility into efficiency and Modularity into

Maintainability.

Castillo et al. (2010) [25] proposed a conceptual quality model to clarify the AOSD emergent

terminologies: Aspect, Composition Concern (Functional, Non-functional and Crosscutting),

Quality (Functional and Non-functional) or Property (Inherited and Assigned) requirements for

the software product. This conceptual model is called REASQ Model which is integration of

ISO/IEC 9126 and ISO/IEC 25030 and expressed in UML.

On the way of defining a new software quality model for AOSD, we should have to try to

integrate almost all the characteristics of AOSD. Most of the ideas of AOSD are borrowed from

Object-Oriented Programming (OOP) and introduce new Abstraction technique. So that AOP

has all the characteristics of OOPs. However, problems begin from introduction of new

Abstraction features.

Due to rapid change of development system, real world software system is evolved continually

to meet challenges between the user requirement and operational environment. The nature of

change action can be corrective, adaptive and perfective. Development of software concern is

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

114

well modularized to achieve desirable characteristics like Extensibility, Sustainability, Design

Stability and Configurability [21] which is missing form quality model. Among all the desirable

characteristics Design Stability is most important. Integrating Extensibility, Sustainability,

Design Stability and Configurability as Sub-characteristics under Evolvability characteristic into

AOSQUAMO Model, proposed a new quality model is called Aspect-Oriented Software

Quality (AOSQ) Model which is derived from ISO/IEC 9126 quality Model. All the

characteristics and sub-characteristics of AOSQ Model are shown in table 7 and newly

integrated characteristics are highlighted.

5. CHARACTERISTICS IDENTIFICATION AND DEFINITION

FOR PROPOSED QUALITY MODEL

As we know, it is based on the ISO/IEC 9126 quality model and all the characteristics belong to

AOSQUAMO Model. Four new sub-characteristics are integrated: Extensibility, Sustainability,

Design Stability and Configurability under Evolvability Characteristics in AOSQUAMO Model.

Rest of the characteristic’s definition is similar to AOSQUAMO Model. Definition of new

characteristic is as follows:

5.1. Evolvability

Any real-world software needs evolution after a certain period of time to fulfill the current

trends, technology, changes in user requirement and operational environment. In the process of

developing software, every well modularized concern needs stability, maintainability,

changeability, and extensibility. Programming in aspect-oriented languages has been suggested

a way to realize these characteristics [21].

Due to the changing nature of real-world software, we proposed Evolvability as characteristic of

AOSQ Model. After the evolution of system, we must find out the how much new evolved

system is extensible?, what are the configurable status?, is designed pattern is stable for new

environment and technology? And how much new evolved system is sustainable?

On the basis of above questions, we short out some new sub-characteristics such as

Extensibility, Sustainability, Design Stability and Configurability under Evolvability.

Definitions of new sub-characteristics are as follows:

Table 7: Proposed AOSQ Model
Quality Type Product

Perspective

Characteristics Sub-Characteristics

Quality Software

Product

Functionality

Suitability

Accuracy

Interoperability

Security

Reusability

Reliability

Maturity

Fault Tolerance

Recoverability

Usability

Understandability

Learn-ability

Operability

Attractiveness

complexity

Efficiency

Time behavior

Resource behavior

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

115

 Code-reducibility

Maintainability

Analyzability

Changeability

Stability

Testability

Modularity

Portability

Adaptability

Replace-ability

Install-ability

Co-Existence

Evolvability
Extensibility

Sustainability

Design Stability

Configurability

5.1.1. Extensibility

AO Software development continues to grow beyond the scope. AOSD is likely to have positive

effect on performance, modularity and evolution. So, it becomes important to reuse components.

We focus on a specific kind of reusing of component called extensibility, i.e. the extension of

software without accessing existing code to edit or copy it. Extensibility is a systemic measure

of the ability to extend a software design principle where the implementation takes into

consideration future growth.

Specifically, our definition prevents two acts: The first is source modification, which can

introduce unexpected behavior and structural changes. The second is copying of code, which

increase the clerical effort needed to maintain program by introducing potential inconsistencies

[26, 27]. Extensibility is particularly critical for a developer who wishes to delivered software

that clients can customize, but who does not want to reveal proprietary source code.

Cody et al. [27] conducted a case study on FreeBSD Operating System. They used the evolution

of the FreeBSD operating system of three different versions. They focused on the evolution of

specific crosscutting concerns in isolation. They found that in the AO implementation of each

concern, changes to the concern itself were better localized due to textual locality, configuration

changes mapped directly to modification to pointcuts and/or make file options, and

aspectization solutions provided extensibility due to improved modularization.

So, we propose Extensibility as sub-characteristics in Evolvability Characteristics.

5.1.2. Sustainability

Legacy software system faces problems in new software system structure. The start of new

software system structure such as OOP, AOP etc., marked by improved separation of concern, is

often preceded by the darkness in which the old software system structure must be degraded.

Though aspects have been shown to be effective as a center point for evolving crosscutting

concerns, the fact that they rely on explicit external interaction infers the aspects could have

negative affect under these extreme conditions - when the code that is crosscut, or the dominant

decomposition - is undergoing structure re-composition [29]. Low level system infrastructure

need to be fast and flexible. While unpleasant to many developers due to their lack of semantic

leverage in traditional language construct of C, C++ and Java, this is a reality in today's

software system infrastructure.

Gibbs et al. [29] conducted an experimental on Sustainability of aspects in software system

using the rapidly evolving Memory Management Tool kit (MMTK) with the Jikes Research

Virtual Machine (RVM). The RVM is an open source project in Java. Sustainability is the long-

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

116

term maintenance of software system, which has environmental and economic for management

of all types of resource.

In that manner one more sub-characteristics Sustainability is proposed under Evolvability

Characteristics.

5.1.3. Design Stability

Design Stability covers the sustenance of system modularity characteristics and the absence if

ripple-effects in the presence of change. Development of stable design has increasingly been a

deep challenge to software engineers due to the high volatility of systemic concern and their

dependencies. Some recent industrial case studies have demonstrated that around 50% of object-

oriented code is altered between two releases, and 68% of change requests are accepted and

implemented [30]. It has been empirically observed that design stability is directly dependent on

the decomposition mechanisms.

The definition of AOP indicate that better modularity and changeability of crosscutting concerns

are obtained through the use of new composition mechanisms, such as pointcut-advice and

inter-type declarations. AOP decompositions promote better design stability in realistic software

development process, especially when experiencing changes of a diverse nature [30].

In that manner, one more sub-characteristics Design Stability is proposed under Evolvability

Characteristics.

5.1.4. Configurability

A Middleware platform, like CORBA, DCOM, J2EE and .NET offers abstraction and simplicity

for the complex and heterogeneous computing environment with high quality of distributed

applications with a shortest development cycle and a much smallest coding effort. Many

middleware features do not exist in modular forms and crosscut implementations of other

functionalities. So, AOP based newer middleware technologies, such as J2SE, J2EE, and J2ME,

appear to have taken the same direction. But a serious limitation of these solutions is increased

complexity of development and maintenance, is that they only provide a fixed set of options for

users [32].

The effective solution of this problem is to achieve using a high degree of configurability in the

middleware architecture and to customize middleware according to a specific user need, a

concrete usage scenario, and a particular deployment or runtime instance [32].

So, we proposed Configurability as sub-characteristics in Evolvability.

6. CONCLUSION AND FUTURE WORK

Several surveys have been conducted by researchers to investigate the effect of AOP on non-

AOP characteristics for software development since 1997 when the AOP was born. On the way

of investigation, the effects of AOP on code size (i.e. size, redundancy), cognition (i.e.

understandability, development efficiency), language mechanism (i.e. exception handling)

performance, modularity (i.e. design quality, pattern composition) and evolvability (i.e.

changeability, maintainability, extensibility, configurability, design stability) related

characteristics are used. A few of product related characteristics are examined. Some product

related characteristics can help to understand the true potential of AOSD i.e. Evolvability.

Among above defined characteristics, some of the characteristics are still left in software quality

model.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

117

In this paper, Integrating Evolvability as characteristic under Extensibility, Sustainability,

Design Stability and Configurability as Sub-characteristics into AOSQUAMO Model, a new

quality model called Aspect-Oriented Software Quality (AOSQ) Model; derived from ISO/IEC

9126 quality Model is proposed. This paper also contains chronological development of

software quality models with description.

Every proposed model required evaluation. To evaluate the proposed quality model for AOP,

Analytics Hierarchy Process (AHP) approach could be used which addresses uncertainty and

imprecision in evaluation during pre-negotiation stages, where comparative judgments of

characteristics based on decision maker with the help of fuzzy logic.

REFERENCES

[1]. R. Laddad, “Aspect-Oriented Programming Will Improve Quality,” IEEE Computer Society,

2003.

[2]. AOSD Web Site: http://www.aosd.net/2012/.

[3]. R. W. Hoyer and B. B. Y. Hoyer, “What is Quality?,” American Society for Quality, Page No.:

53 - 62, July 2001.

[4]. K. Khosravi and Y. Gueheneuc, “On Issues with Software Quality Models,” Page No.: 70 - 83,

2004.

[5]. R. E. Ai-Qutaish. “Quality Models in Software Engineering Literature: An Analytical and

Comparative Study,” Journal of American Science, Volume 6 Number 3, 2010.

[6]. B. Al-Badareen, M. H. Selamat, M. A. Jabar, H. Din and S. Turarv, “Software Quality Model:

A Comparative Study,” Springer ICSECS’11, Page No.: 46 - 55, 2011.

[7]. J. A. McCall, P. K. Richards and G. F. Walters, “Factors In Software Quality - Concept and

Definitions of Software Quality,” Rome Air Development Center, Air Force Systems Command,

Griffiss Air Force Base, New York, Volume 1, Number 3, November, 1977.

[8]. B. W. Boehm, J. R. Brown and M. Lipow, “Quantitative Evaluation of Software Quality,” IEEE

Computer Society Press, Page No.: 592 - 605, 1978.

[9]. R. Grady, D. L. Caswell, “Software Metrics: Establishing a Company-wide Program,” Prentice

Hall, 1987.

[10]. R. Grady, “Practical software metrics for project management and process improvement,”

Prentice Hall, 1992.

[11]. ISO/IEC 9126-1: Software Engineering - Product Quality- Part 1: Quality Model, International

Organization for Standardization, Switzerland, 2001.

[12]. ISO/IEC 9126-2: Software Engineering - Product Quality- Part 2: External Metrics,

International Organization for Standardization, Switzerland, 2002.

[13]. ISO/IEC 9126-3: Software Engineering - Product Quality- Part 3: Internal Metrics,

International Organization for Standardization, Switzerland, 2003.

[14]. R. G. Dromey, “A Model for Software Product Quality,” IEEE Transactions on Software

Engineering, Volume 21 Number 2, Page No.: 146 - 162, February 1995.

[15]. A. Kumar, P. S. Grover and R. Kumar, “A Quantitative Evaluation of Aspect-Oriented

Software Quality Model,” ACM SIGSOFT Software Engineering Notes Volume 34, Number 5,

Page No.: 1 - 9, September 2009.

[16]. Web Site: http://en.wikipedia.org/wiki/FURPS

[17]. D. Galin, “Software Quality Assurance-From theory to implementation,” Addison Wesley-

Pearson Education Limited, 2004.

[18]. P. Kumar, “Aspect-Oriented Programming - A New Programming Paradigm,” IEEE

International Advance Computing Conference (IACC’09), Page No.: 1018 – 1022, March 2009.

[19]. Rawashdeh and B. Matalkah, “A New Software Quality Model for Evaluating COTS

Components,” Journal of Computer Science, Volume 2 Number 4, Page No.: 373 - 382, 2006.

[20]. J. Tian, “Software Quality Engineering-Testing, Quality Assurance and Quantifiable

Improvement,” IEEE Computer Society, 2005.

Advanced Computing: An International Journal (ACIJ), Vol.3, No.2, March 2012

118

[21]. M. S. Ali, M. A. Babar, L. Chen and K. Stol, “A Systematic Review of Comparative Evidence

of Aspect-Oriented Programming,” Elsevier Journal of Information and Software Technology,

Volume 52, Page No.: 871 - 887, May 2010.

[22]. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtie and J. Irwin,

“Aspect-Oriented Programming,” ECOOP’97, Page No.: 220 - 242, June 1997.

[23]. M. F. Bertoa and A. Vallecillo, “Quality Attributes for COTS Components,” 6th ECOOP

Workshop on Quantitative Approaches in Object-Oriented Software Engineering

(QAOOSE'02), June 2002.

[24]. Rawashdeh and B. Matalkah, “A New Software Quality Model for Evaluating COTS

Components,” Journal of Computer Science, Volume 2 Number 4, Page No.: 373 - 381, 2006.

[25]. Castillo, F. Losavio, A. Matteo and J. Boegh, “REquirements, Aspects and Software Quality:

the REASQ model,” Journal of Object Technology, Volume 9, Number 4, Page No.: 69 - 91,

2010.

[26]. S. Krishnamurthi and M. Felleisen, “Toward a formal Theory of Extensible Software,” ACM

SIGSOFT Conference, Page No.: 88 - 98, 1998.

[27]. Y. Coady and G. Kiczales, “Back to the Future: A Retroactive Study of Aspect Evolution in

Operating System Code,” ACM Aspect-Oriented Software Development’03, Page No.: 50 - 59,

2003.

[28]. R. G. Dromey, “Software Product Quality: Theory, Model, and Practice,” Software Quality

Institute, Griffith University, Australia, Page No.: 1 - 31, March 1998.

[29]. C. Gibbs, C. R. Liu and Y. Coady, “Sustainable System Infrastructure and Big Bang Evolution:

Can Aspects Keep Pace?,” ECOOP’2005, Page No.: 241 – 261, 2005.

[30]. P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Garcia, N. Cacho, C. Santanna, S.

Soares, P. Borba, U. Kulesza, and A. Rashid, “On the Impact of Aspectual Decompositions on

Design Stability: An Empirical Study,” ECOOP’2007, Page No.: 176 – 200, 2007.

[31]. E. Figueiredo, N. Cacho, C. Santanna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares, F.

Ferrari, S. Khan, F. Filho, F. Dantas, “Evolving Software Product Lines with Aspects: An

Empirical Study on Design Stability,” ACM ICSE’2008, Page No.: 261 – 270, 2008.

[32]. C. Zhang and H. Jacobsen, “Resolving Feature Convolution in Middleware Systems,” ACM

OOPSLA’04, Page No.: 188 – 205, 2004.

[33]. C. Chang, C. Wu and H. Lin, “Integrating Fuzzy theory and Hierarchy Concepts to Evaluate

Software Quality,” Springer Software Quality Journal, Volume 16, Page No.: 263 – 276, 2008.

[34]. Technical White Paper on Producing High-Quality Software with Aspect-Oriented

Programming, SHARTCRAFTERS. July 2011.

[35]. A. Bansiya and C. G. Davis, “A Hierarchical Model for Object-Oriented Design Quality

Assessment,” IEEE Transaction on Software Engineering, Volume 28 Number 1, January

2002.

