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Abstract: Some perspectives and challenges in research on the crossing of system biology, hybrid
system formulations and system identification are outlined. Emphasis is given on the hybrid, gray box
modeling of interactions between the different abstract levels of organization typically recognized in
(micro-)organisms, its associated identification problemand optimal experimental (input) design.

Keywords:system biology, system identification, input design, hybrid systems

1. INTRODUCTION

Since the emergence of high throughput techniques like auto-
mated DNA sequencing, but also13C-labeling techniques, a lot
of data originating from several species has been generated,
published and stored in databases during the last two decades.
This enormous amount of data, predominantly on the genetic
level, has lead to the desire to integrate the available knowledge
and data in order to understand the functioning and interactions
appearing in an organism or population of organisms.

The idea in the field of Systems Biology is to fulfill this desire
in a systematic manner. For this purpose, but also for prediction,
there is a lot of effort in putting first principle knowledge of bio-
logical mechanisms in dynamic models. Already is the systems
and control community learning in and aiding to the modeling,
analysis (Alur et al., 2002; Hu et al., 2004), experimental de-
sign (Sontag, 2008), identification procedures (Riel and Sontag,
2006; Drulhe et al., 2008) and control (Doyle, 2008) aspects
associated with the myriad of biological interactions and pro-
cesses.

Naturally, a question which arises is:whathas to be identified?
From a biology perspective, an organism can be studied on
one or more organizational levels, typically ranging from the
genetic, molecular interaction level, the level of cells and their
functional sub-units (organelles) to the level of cell populations
and organs. There are many measurement techniques associated
with each set of compounds of interest. Of course, for a model
describing the myriad of interacting processes at these different
organizational levels, the plethora of measurement techniques
complicates the identification of the model.

The nature of experimentation, i.e. characterization of a certain
compound versus measurements of the quantity of a certain
compound, and the available biological knowledge motivates
the use of identification methods for hybrid dynamic models.
Hybrid models typically describe both continuous dynamical
behavior and discrete transitions between discrete modes,the
latter e.g. being a switch turned from mode ‘on’ to ‘off’.

There are many open problems when it comes to hybrid model
identification of biological systems. In this contribution, a brief

overview is given of to the challenges associated with identi-
fication of hybrid-type, cell microbiology systems. Additional
attention is given towards ways how to profit from the degrees
of freedom in experimental conditions and input signals to
improve the model identification a priori.

The paper is organized as follows. Section 2 gives a brief
overview of organizational levels within so-calledunicellular
micro-organismstogether with commonly used measurement
techniques. The use of hybrid modeling for these systems
is further motivated in Section 3. Some modeling paradigms
and associated identification issues are presented in Section
4. Section 5 covers some available degrees of freedom when
it comes to manipulation of experiment conditions and input
design. Finally, some conclusions are presented in Section6.

2. BIOLOGICAL MECHANISMS AND MEASUREMENT
TECHNIQUES

A short background on the various recognized organizational
levels within microorganisms follows. A more elaborate andin-
formative description can be found in the survey texts (Sontag,
2003; Crampin, 2006) or the textbook (Klipp et al., 2005).

2.1 Genes and their expression

At the base level, genetic information of an organism is stored
in the genome, i.e. a collection of genes, and is encoded with
the double-stranded molecules DNA (deoxyribonucleic acid).
It can either be transcribed and subsequently translated1 into
proteins for further regulation or other functioning, it can have
structural significance for e.g. biochemical stability or DNA can
be doubled when the cell is reproducing itself. This DNA re-
production process is calledreplication. The process from gene
to protein is often regulated by metabolites and generally also
by other proteins, called transcription factors. Such an interact-
ing network of regulated genes is called agenetic regulatory
network(GRN). DNA replication, as well as the readout from
gene to protein and its regulation, is shown simplified in Fig. 1.
1 Transcription is the process of reading DNA and storing the information
in messenger RNA which are in turn precursors of thetranslationprocess to
proteins.
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Fig. 1. Schematic view of replication and the transcoding route
from a gene (shown in red) via mRNA to protein. Bars
represent nucleotides, gray arrows indicate processes and
dots represent a sequence not shown.

Measurement techniques.Advanced genetic engineering tools,
such as gene deletions, insertions, polymerase chain reaction
(PCR)2 , but also measurement technologies like fluorescence
microscopy, microarrays and blotting, have contributed tothe
generation of massive amounts of data typically stored in ge-
nomics and proteomics databases. These databases typically
store chemical characterizations of gene or protein sequences
found in species, but do not cover quantitative information. The
involved measurement technologies have in common that the
detection of particular compounds or fragments is based on
light intensity measurements at particular wavelengths oron
radioactivity intensity, see e.g. Klipp et al. (2005). Since thou-
sands of genes may play a role, clustering techniques, singular
value decomposition and truncation is typically used for static
and time series analysis of microarray data (Crampin, 2006).

2.2 Metabolites and Proteins

A metabolic network is a set of chemical reactions between
(bio)chemical compounds calledmetabolites, like amino and
fatty acids, sugars, etc. There is a tied interplay between the
metabolic and genetic regulatory network of a living cell and
these interacting networks establish control mechanisms in or-
der to maintain life, i.e. grow and reproduce, maintain their
structures and respond to their environments. Proteins catalyze
these reactions and can also function in the genetic regulatory
network. Catalyzing proteins are called enzymes. Besides cat-
alyzing, blocking, slowing down and regulating genes, some
proteins function as receptors that endow the cell with sensing
capabilities or actuators3 . They also provide structural support
of the cell, help in the transport of smaller molecules, as well as
direct the breakdown and reassembly of other cellular elements
such as lipids (structures composed of fatty acids) and sugars.

Measurement techniques.For in vitro analysis or concentration
measurements4 , a sequence of laboratory steps have to be
2 PCR amplifies DNA, typically a (part of a) gene, in large enoughquantities
to enable the use of measurement techniques.
3 A notable example is thechemotaxisprocess, where bacteria have sensor-
and actuator-proteins which enable the movement towards nutrients or away
from poisons via chemical gradient sensing.
4 Concentration units are expressed in molar weight per volume unit. During
metabolomic experiments, a time series of concentration measurements is

made, i.e. (i) metabolites and proteins must be purified away
from other cellular components, (ii) enzyme activity should
be stopped and (iii) further chemical reactions should be pre-
vented, see again the work of Klipp et al. (2005). Besides
detection of metabolites, it is possible to measure metabolite
concentrations with the aid of tagged13C-atoms and rapid
sampling. Therefore, this13C–labeling technique is particularly
suited for collecting time series response data of metabolites
after step or pulse experiments, see e.g. Nöh et al. (2006).

2.3 Cells, Population and Environment

Cells have different phases likecell division with their own
associated processes like DNA replication and cell built-up,
maintenance of metabolismfor repair and survival purposes
and ultimatelydeath and cell lysis. The average number of a
set of cells, sayx(t) on a ‘macroscopic’ population level has
similar definitions: growth (̇x > 0), a stationary or adaptation
phase (̇x ≈ 0) and population decay (ẋ < 0). Different
growth conditions can be stimulatedin vivo by manipulating
the cultivation conditions in a bioreactor setup.

Measurement techniques.There are many techniques avail-
able for cell density (or biomass concentration) measurements.
Fluorescence-tagging is the most widely used method and is
mostly used as a detection method. However, it performs quan-
titatively acceptable under strictly controlled cultivation con-
ditions. Moreover, fluorescence sensors for biomass determi-
nation are well developed. Other methods are dielectric spec-
troscopy and flow cytometry. A discussion of density measure-
ment techniques can be found in (Madrid and Felice, 2005).

3. DATA CHALLENGES AND MOTIVATION
HYBRID MODELING

3.1 Data challenges

With increasing available knowledge and the desire to under-
stand every mechanism in an organism, non-linear network
models of already large model order are expanded, especially
in the metabolic network research. These are mostly white or
‘light gray’–box models, i.e. models which are highly deter-
ministic. One often tries to validate these models by new exper-
imental findings, e.g. when studying another organism. How-
ever, identification of those large networks models is severely
limited or even impossible since the biological experimental
results are subject to one or more of the following:

• Different experimental sampling density, i.e. the sampling
density of data can vary a lot, ranging from a high to a
low sampling density. For example, real-time measure-
ment of gene expression with reporter-gene assays or13C-
labeling combined with rapid sampling provide quite ac-
curate measurements whereas measurements of protein
concentrations with so-called Western-Blot assays, only
provide a few data points with low sampling density and
precision. A considerable amount of data with low sam-
pling density is collected, typically by microarray, blotting
and other detection techniques.

• Low precision. Most measurement techniques are still col-
lected by humans, introducing large measurement uncer-
tainties. Even worse, often, different experimental condi-
tions are considered. For a given biological system, it is

collected by taking ‘snapshots’ at some time instant, therebyfreezing the
metabolic reactions by a sequence of chemical steps.



rare to have data obtained in the same conditions: they are
usually obtained in different laboratories, with different
experimental conditions and different bacterial strains.

• Irregular sampling;
• Small data sets, i.e. small amount of measurements. For

example, when measuring metabolite concentrations, a
typical amount of collected samples is in the order of10
to 100;

• Few or no replicate data;
• Unobserved states. For example, not all metabolites can

be measured in vivo.

3.2 Motivation hybrid modeling

The choice for a hybrid systems framework may be motivated
by the following:

• switch behavior:a specific (genetic) switch or some signal
transduction mechanism occurring in a particular organ-
ism is studied, and/or one wants to take qualitative knowl-
edge into account, and/or

• approximation:the underlying dynamics, e.g. enzyme ki-
netics, are not known or specifieda priori and collected
data is not reliable enough to deduce a non-linear rela-
tionship and/or;

• analysis:the original non-linear system is to difficult to
analyze and an (approximative) alternative is sought for.

The main motivation is that a hybrid modeling framework can
be assessed with data having two sampling density levels: very
low and high sampling density. Low sampling density is typ-
ically found with characterization experiments, e.g. to detect
whether or not proteinA is produced due to a gene trigger-
ing eventB. Hence, a transition between discrete states5 is
associated to eventB, while high sampling density data enable
the reconstruction of e.g. a time series of the concentration of
A. A hybrid framework also has its drawbacks. One of them
is the exponential growth of discrete modes with increasing
switch thresholds and the associated identification difficulty
of detecting these (model) switches. Furthermore, apart from
model class selection, a balance between number of identified
switches and parameter uncertainty bounds, i.e. ‘goodnessof
fit’ should be found and formulated in an identification crite-
rion. Also, parameters of the switched hybrid system may not
have a deterministic interpretation. And although analysis tasks
like identifiability tests may be more straightforward for linear
switched systems than for non-linear systems (Vidal et al.,
2002), these results are in its infancy and no implementation
of these results in biological applications is yet known to us.

Thus, careful analysis is always needed, possibly after applying
reduction of the original model. It is furthermore important
to check and analyze the identification procedure with respect
to (i) irregular sampling, (ii) post-data processing, (iii) iden-
tification criteria, (iv) unbiasedness properties when dealing
with small data sets, and (v) need of excitation of the system.
When considering hybrid system identification, some of these
questions are still open, even with the simplest form of hybrid
models: piecewise linear systems. A selected subset of hybrid
model classes and their identification challenges will be dis-
cussed briefly.
5 The restrictions in sampling density and the need of analysistools have
largely motivated researchers (e.g. de Jong (2002)) to use a qualitive, linear
switched systems modeling approach for genetic regulatory networks, although
in reality the assumed discrete transition or switch behavesmuch ‘smoother’.

4. HYBRID SYSTEM BIOLOGY IDENTIFICATION

This section is divided in two parts: Section 4.1 where light-
gray box, i.e. deterministic hybrid models with additive noise
assumed, and their identification are treated and Section 4.2
where the use of gray-box, stochastic hybrid models in cell
systems are discussed.

4.1 Deterministic, Light-gray Box Hybrid Systems

There are numerous subclasses of deterministic hybrid systems
known, for example Piece-wise Affine (PWA), Mixed Logic
Dynamic (MLD), (Extended) Linear Complementary ((E)LC),
Max-Min-Plus Scaling (MMPS), Petri Nets and Discrete Event
systems, see also (Bemporad and Morari, 1999). Most of these
modeling frameworks have also been used for the modeling
biological systems, see e.g. (de Jong, 2002; Alur et al., 2002).
The use of hybrid modeling concepts like hybrid automata
and Petri nets provide powerful descriptive tools and are often
embraced by system biologists. However, the generalizing char-
acter of these descriptions exhibits an extensive syntax which
complicates control, input design and/or analysis as compared
to the tools available for more restrictive classes like PWA,
ELC, MLD and/or MMPS hybrid systems.

Furthermore, it is shown that PWA, MLD, (E)LC and MMPS
systems are equivalent up to some additional constraints in
(Bemporad and Morari, 1999). Therefore, the equivalence re-
sults allow an interchange of theoretical properties and com-
putational tools. Consequently, we restrict our attentionto the
identification of PWA models which have also recently gained
considerable momentum on the theoretical side (Ferrari-Trecate
et al., 2003; Roll et al., 2004; Rosenqvist and Karlström, 2005;
Bemporad et al., 2005; Juloski et al., 2005) as well as on the
biological application side (Drulhe et al., 2008; Cinquemani
et al., 2008). PWA models have the advantage that the state
flows are linear, but, due to the incorporation of discrete transi-
tion behavior, can still explain non-linear (switching) behaviors
typically encountered in gene regulation networks (de Jong,
2002; Batt et al., 2005), or linearly approximated nonlinear
metabolic network models (Musters, 2007).

Discrete-time PWA system.Consider the discrete-time formu-
lation of a PWA linear time-invariant system (Ferrari-Trecate,
2007):

x(k + 1) = θT
i z(k) + η(k)

y(k) = z(k) + e(k)
for z(k) ∈ Xi (1)

with

z(k) =
[

x(k) x(k − 1) · · · x(k − na)

u(k) u(k − 1) · · · u(k − nb) 1
]T

wherex(k) ∈ R
n is the state vector,u(k) ∈ R

m is an exoge-
nous input,y ∈ R

n the output observation vector,{X}s
i=1 is

a region of the polytopeX ⊂ R
n+m, θi ∈ R

na+nb+1 are the
parameter vectors,η, e ∈ R

n are noise sequences.

I/O representations.Several I/O representations of PWA state
space models exist, differing on where the noise signal enters
the system. In biological applications, the choice for a noise
model is generally assumed to be independent of the process
model, hence a PWA-OE form withη = 0 and e a noise
sequence in (1) is more obvious. Therefore, other noise rep-
resentations like PWARX (η 6= 0 a noise sequence ande = 0
in (1)), will not be treated here.



Identification problem.GivenN data points, the identification
problem is to find a model that best matches the given data
Z = {y(k), k = 1, · · · , N} under some identification criterion
(not shown here, the reader is referred to the standard work of
(Ljung, 1999)). When dealing with PWA systems, Roll et al.
(2004) roughly categorizes two identification methods:

• all parameters, i.e. including the switch thresholds which
determine the boundaries of{X}s

i=1, are identified simul-
taneously;

• regions{X}s
i=1 and parameters{θ}s

i=1 are identified iter-
atively.

In case the regression regions are known a priori, the identifica-
tion problem reduces tos standard identification problems.

PWA-OE (PieceWise Affine Output Error).Rosenqvist and
Karlström (2005) consider the identification problem when the
noise model is independent of the process model and some
types of I/O output-error representations when starting from
different state-space forms. It is assumed that the switching
function is known prior to the identification.

Identification problem for hybrid biological systems.For iden-
tification of hybrid biological systems, it is worthwile to take
advantage of the available structure. However, identification of
hybrid biological models is further complicated since, usually,
it is a priori not preciselyknown how many modes are present.
The issue of unknown number of modes is even more important
when considering (linear) switched systems for approximative
modeling of metabolic networks. In particular, simultaneous
identification (as discussed in the previous section) can be
extremely difficult, since the rate of switching may differ by
different time scales and frequency spectrum of the input signal.
Therefore, for these systems, iterative or segmentation based
methodologies are proposed (Cinquemani et al., 2008). For in-
stance, by assuming that gene expression or other characterized
measurement profiles have been split into segments generated
by a single affine mode, data classification amounts to group
together segments that have been produced by the same mode
(cf. discrete state of gene). In particular, this operationmust be
performed in a noisy setting and without using any knowledge
on the number of modes excited in the experiment.

In the paper of Ferrari-Trecate (2007), but also in related
works, the identification problem of genetic regulatory net-
works (GRNs) is split in the following iteration of tasks: (1)
detection of switches in (gene expression) data by multicut
algorithms; (2) classification of data to distinct modes of op-
eration of the whole GRN; (3) reconstruction of concentration
threshold variables, e.g. with a branch-and-bound algorithm for
finding minimal multicuts and (4) estimation of kinetic param-
eters in each mode of operation.

A general assumption in system biology applications is thatthe
state variables can be measured. By further assuming additive
noise on the measurements, the state-space model result in an
OE format. The following simple GRN example illustrates the
use of PWA-OE modeling.

Example 1.(PWA-OE biological system). Consider the follow-
ing deterministic, continuous-time state space model from
(de Jong, 2002), describing agenetic regulatory network:

ż =
d

dt

[

z1

z2

z3

]

=

[

κ1r(z3) − γ1z1

κ2z1 − γ2z2

κ3z2 − γ3z3

]

, z0 = z(0) (2)

wherez1, z2 and z3 represent the measured concentration of
mRNA, a protein and a certain metabolite, respectively,κi are
the production constants andγi, i ∈ {1, 2, 3}, are degradation
constants. Mostly,r is modeled as a so-called positive-valued
sigmoid function depending onz, termed aHill equation.
Nevertheless, the experiments needed for characterization of
r, are laborous or even impossible to implementin vivo. As
an alternative, low-resolution data is usually generated,for
instance, it is detected that mRNA is produced in either low
or high quantities. In this low sampling density data case,r in
(2) can be approximated by a step function, i.e.κ2r(x3) ≈ κ2L,
with κ2L having a low value ifx3 < α andκ2r(x3) ≈ κ2H and
κ2H > κ2L for high values of metabolite:x3 ≥ α, with α > 0
a certain threshold.

After rewriting (2) in discrete-time and assuming additivewhite
noise to the observation measurements, it can be shown that (2)
turns naturally into a PWA-OE format:

y(k) = x(k) + e(k)

=
κi

γi

−

(

κi

γi

− x(k0)

)

e−γj(k−k0)T + e(k)

where it assumed that in the interval[k0, k] only modej ∈
{1, 2} is active depending on thresholdα, T is the sampling
time interval,κi andγi are the parameters andx(k0) can either
be treated as parameter or as a measured exogenous input.
Estimation techniques for the parameters, including detection
of α, are further discussed in (Ferrari-Trecate, 2007).

Note that, the transformation from continuous-time to discrete
time may lead to unidentifiable parameters and requires lump-
ing to obtain a new, affine parameter format. Furthermore, itis
also assumed that one gene corresponds to one affine mode,
while in practise this may not be true. The assumption that
switching of genes can be modeled in a deterministical way
may also be argued, see Section 4.2 for further discussion.

4.2 Stochastic, gray-box hybrid systems

The interest in stochastic hybrid formalisms has also gained
momentum, especially in cases where it seems logical to model
the occurence of molecular events with certain probability.
Reported examples are the probability of gene switching in the
antibioticum-producing bacteriumBacillus subtilisand DNA
replication mechanism (Hu et al., 2004; Kouretas et al., 2006).
Fig. 2 shows a sketch of the mechanism. The examples provide
a nice showcase when embracing the modeling notion of Jump
Linear Markov chains. Other hybrid model forms are possible,
like stochastic Petri Nets, Bayesian networks or Agent Based
models, but are not discussed here.

Identification difficulties lie again in data classificationand the
combinatorial nature of the number of existing modes, but also
in reconstruction of the probability rate of switching. In these
systems, it is worthwile to exploit the specific biological model
structure and implement it by tailored estimation techniques,
e.g. particle filters (Doucet et al., 2001), Maximum Likelihood
(Tugnait, 1982) or Bayesian estimation (Jilkov and Li, 2004).

5. EXPERIMENT AND INPUT DESIGN PERSPECTIVES

5.1 Closed-loop experimental design

The problem of optimal input and experiment design has re-
ceived ample attention in the system identification community,



Fig. 2. Regulatory network model of subtilin defense mech-
anism byB. subtilis. Switching of the cascade of genes
is represented by the arrows toS3, S4 andS5. S3 is de-
terministically switched on when the population (x1) ex-
ceeds certain threshold value and nutrients become scarce.
With certain probability,S4 and S5 trigger the proteins
x4 and x5, which in turn aid in the production of the
antibioticum subtilin (x2). Other micro-organisms die and
fall apart because of the antibioticum, thereby releasing
nutrients. Whenx1 falls below the threshold value, the
subtilin mechanism is repressed.

see e.g. (Mehra, 1974; Walter and Pronzato, 1990), but has
in the early 90s mostly focused onopen-loopissues. During
the last decade, interest in experiment design has renewed and
results are extended to the closed-loop domain, with emphasis
on least-costly identification for control, (Bombois et al., 2006;
Hjalmarsson, 2005). Put briefly, this concept refers to achieving
a prescribed accuracy and/or precision at the lowest possible
price, measured in terms of duration of the identification exper-
iment, the perturbation induced by the excitation signal, or any
combination of these.

As far as the authors know of, experimental (input) design for
biological applications has been limited to open-loop identifi-
cation problems (e.g. Riel and Sontag (2006); Zak et al. (2003);
Stigter et al. (2003)), while closed-loop investigation and costs
of experimentation may certainly be relevant, since:

(i) the amount of samples is often limited due to labour-
intensive methods and

(ii) there are I/O limitations, i.e. not all external metabolites
can be monitored or manipulated.

Input design should also be feasible from a hybrid systems
point of view, given the recent advancements in control laws
for multi-affine systems (PWA is a subclass of multi-affine
systems) such as presented in (Belta et al., 2002; Collins etal.,
2006). Examining the results reported in (Stigter et al., 2003;
Barenthin et al., 2005), we expect that, also for hybrid (biology)
system applications, considerable improvement in parameter
estimation can be achieved in a few input design iterations.

5.2 Hybrid system identifiability and information content

Key variables in experimental (input) design areidentifiabil-
ity (given the model structure, does the associated parameter
estimation problem have a unique, global minimum?) andin-
formativenessor ‘richness’ of the I/O data. The first concept

is dependent on the model structure and can in principle be
checkeda priori, while the latter is usually captured in the
Fisher Information Matrix (FIM) (Mehra, 1974). For PWA sys-
tems where ana priori known number of modess is assumed
known and the probability density function of the noise se-
quencee is considered to normally distributed, a ‘deterministic’
FIM reads:

F(s,N, θ) =
s

∑

i=1

N
∑

k=1

1

σ2

(

∂y(k)

∂θ

)T (

∂y(k)

∂θ

)

(3)

whereθ are the parameters occuring in the state space formula-
tion,σ represents the standard deviation of the noise andy ∈ R

the observations.

Note that clearly,F is also related to the inputs like manip-
ulated extracellular metabolites, the initial conditions, sample
strategy and amount of samplesN . Furthermore, (3) does not
apply to the case where the exact number of discrete modes
is not known, which is important in the case of finding the
numbers of switches to hypothesize different reconstructions
of regulatory networks. With respect to the data classification
problem, a suitable definition for the information content and
a selection criterion for the strongly related amount-of-modes
problem is subject of ongoing research.

6. CONCLUDING REMARKS

It is postulated that the systems biologists’ desire to model
several biological mechanisms inside (micro)organisms while
there is a mix of ‘qualitative’ data typically obtained on genetic
studies and ‘quantitative’ data obtained with metabolomicand
cell growth studies. Such a mix of data types calls for a hybrid
‘light-gray’ modeling approach. It is further shown that identi-
fication of these models create opportunities for both system bi-
ology and identification communities to explore the challenges
when dealing with non-linear switching behavior, modelingand
measurement uncertainties, parameter estimation, data classifi-
cation and closed-loop experimental (input) design.

The investigation of experimental (input) design for, and identi-
fication of hybrid microbiology systems forms one of the major
topics of ongoing research. To be tackled research questions are
model order selection, discrete mode classification, least-costly
input design and identifiability.
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