
A Framework for Optimal Decentralized Service-Choreography ∗

Saayan Mitra1 Ratnesh Kumar1 Samik Basu2

1 Department of Electrical and Computer Engineering
2 Department of Computer Science

Iowa State University, Ames, IA
Email:{saayan,rkumar,sbasu}@iastate.edu

Abstract
We address the problem of optimizing mediator-based

service composition where the services and the desired
composition (goal) functionality are represented as i/o-
automata with loops. The objective of optimization is to
minimize the costs of communications and computations
necessary to realize the goal from the existing services. We
develop an algorithm to compute the minimum cost of an
automaton representing the choreographed behavior of ser-
vices realizing the goal. This forms the central theme of our
technique for developing automatically a strategy of decen-
tralized mediation that will result in the optimized composi-
tion of services.

1 Introduction
Web Services composition, that composes existing ser-

vices to realize a target service known as the goal service
has followed two kinds of methodology. One depends on
a centralized mediator (often referred to as orchestrator or
choreographer) to realize a goal service [15, 4, 6, 8, 12];
while the other approach is decentralized choreography
where mediators are placed physically close to the services
and the client for optimality of performance (w.r.t. compu-
tation and communication costs) [7, 9].

The existing techniques for decentralized choreogra-
phy require manual guidance. In our previous work [13],
we provided an automata-theoretic composition algorithm
which identifies appropriate decentralization necessary to
minimize computation and communication costs of compo-
sition having loop-free goal specifications (workflow). In
this paper, we extend that work to deal with loops in goal
specifications. The introduction of loops, however, leads
to a number of complications as cost is typically an addi-
tive feature, and as such simple additive cost computation

∗The research was supported in part by the National Science Foun-
dation under the grants NSF-CCF-0702758, NSF-CNS-0709217, NSF-
ECCS-0424048, NSF-ECCS-0601570, NSF-ECCS-0801763, NSF-CCF-
0811541.

will not suffice for compositions which may contain loops.
Completely new insights are required to solve the problem
which explores the trade-off between the “penalty” versus
“payoff” of reaching a nonterminating final state (see Re-
marks 1 & 3).

The contributions of our work can be summarized as
follows. This is a first approach which presents an auto-
mated solution to optimum decentralized choreography for
Web services composition, where loops are considered in
the goal service. Our approach is based on i/o-automata
representation of the services and the goal, and identifies ap-
propriate choreography scheme using the notions of univer-
sal service (obtained as interleaving and transduced-closure
of the given services), simulation relation, and worst-case
path-cost minimization over graphs. The technique is prov-
ably sound and complete.

2 Illustrative Example
Figure 1(a) presents sequence diagrams of three services

S1, S2 and S3. S1 takes as input a product name (p) and
provides some information (inf) about the product, such as
weight, size etc. Service S2 takes as input the information
(inf) about (p) and its shipping address (a) and provides as
output the price (prc) for shipping (p) to the address (a).
The client can decide to cancel (c) the shipping after the
quote (prc) is given out as output. S3 is a service similar to
S2, the difference being it is located somewhere other than
S2 and has different computation costs for its operations
and communication costs of inputs and outputs from and
to the client are different as well. Note that S2 and S3 are
shown by the same sequence diagram. The developer wants
to create a new service (goal service), S0, for a client which
provides (p) and (a) and expects a quote (prc), additionally
it can cancel the order as shown in Figure 1(a). The cost
of communication (in terms of usage of the network) be-
tween the client and the services, and between the services
is presented in Figure 1(b-i). Another table (Figure 1(b-ii))
illustrates the computation cost for each operation in each

S1

p

inf

Service 1

S3
S2,

inf

a

prc

c

Service 2 and 3

p

S0

c

a

prc

Goal service

To Site

Fr
om

Si
te S0 S1 S2 S3

S0 0 2 4 3
S1 2 0 1 2
S2 3 2 0 5
S3 4 1 5 0

Communication Cost
(i)

Services

Tr
an

si
tio

ns S1 S2 S3

p/inf 4 - -
inf/ε - 3 2
a/prc - 22 14
c/ε - 36 57

Computation Cost
(ii)

a

C1

S1

C0
p

a

p

inf

p

C2
inf

inf

a

prc

S2

prc prc

c cc

s1

p/inf

ε

t1
εinf/

t2
a/prc

t3

c/

Service 1 A1 Service 2 A2

ε

r1
εinf/

r2
a/prc

r3

c/

Service 3 A3

g3g1
p/ a/prc

c/ ε

g2
ε

Goal Service A0

(a) (b) (c) (d)
Figure 1: (a) Existing Services & goal service (b) cost metrics, (c) decentralized choreography, and (d) i/o-automata models

of the services.

Given a set of services, a goal, and communication and
computation costs, our objective is to devise an optimal
decentralization choreography scheme that will realize the
goal from the existing services by incurring the minimum
cost. To satisfy the above objective, multiple choreogra-
phers are deployed at servers which are at close proxim-
ity (physically or in terms of request/response delay) to the
existing services. Not all sites may have choreographers
in this scheme as they may not participate in the optimal
choreography scheme. We will refer to choreographer at
site i where Si resides as Ci; choreographer at site 0 (i.e.
the client site) being C0.

A possible choreography scheme is shown in Fig-
ure 1(c). Note that the service S3 remains unused in the
scheme. This is because both services S2 and S3 provide
the same functionality. Thus, any one of them can be used
to realize the goal. The realization of the goal involves the
communication of p from C0 at the client site to C1 at site
1, inf from the choreographer C1 to C2 which is the chore-
ographer at site 2, a from C0 to C2, and finally output prc
from C2 to C0. Moreover the client can input a request c
to cancel order, which similarly needs to be communicated
to C2. If S3 is to be used, the communication needs to be
between the choreographers C0,C1 and C3 deployed at site
3. If S2 is used, the overall cost of the cancelation operation
from the perspective of the client would be communication
cost from C0 to C2 added to the computation cost at S2,
which is 4 + 36 = 40. If instead S3 is used, then by similar
calculations the cost would turn out to be 3 + 57 = 60. In
contrast, it can be shown that the cost for an optimal cen-

tralized choreographer is more, showing the advantage of
decentralized choreography. The cost of the composite be-
haviors as presented in Figure 1(c) is equal to the sum of
the cost of exchanging messages as shown between C0, C1
and C3 and the respective computation costs at S1 and S2

to produce the desired outputs. Weighing the communica-
tion costs and the computation costs for each operation, S2
might be a cheaper alternative than S3.

3 Choreographer Existence
I/O-automata naturally represent the behavior of Web

services which are described as a set of sequences of input
and output computations.
Definition 1 (I/O Automaton) An i/o-automaton A is de-
fined by a tuple (S, S0, SF , I, O, ∆), where, S is the set of
states, S0 ⊆ S is the set of initial states, SF ⊆ S is the set
of final states, I is the set of inputs, O is the set of outputs,
and ∆ ⊆ S× (I ∪{ε})× (O∪{ε})×S is the set of transi-
tions. An element of ∆, represented by (s, i, o, s′), is such
that s ∈ S is the origin state of the transition, i ∈ I ∪ {ε} is
the input to the transition, o ∈ O ∪ {ε} is the output of the
transition, and s′ ∈ S is the destination state of the transi-

tion. We use s
i/o−−→ s′ to denote (s, i, o, s′) ∈ ∆.

Figure 1(d) presents the i/o-automata models for the three
services and goal described in Figure 1(a). The automaton
Ai (i = 1, 2, 3) corresponds to the i-th service and the au-
tomaton A0 corresponds to the goal. The start states of the
automata have curved arrows pointed to them and the final
states are marked with double-circles. For a goal service,
reaching any final state signifies completion of a task. In
contrast, being at a non-final state signifies a pending task.

2

Furthermore, if a final state in the goal is non-deadlocking,
another task initiates from that final state and its completion
occurs when a subsequent final state is reached. When a
final state is reached in the goal, any state can be reached
in the services used to realize the goal. For this reason all
states in the given services are treated final.

In order to realize the goal, each i/o operation of the goal
needs to be realized by a sequence of i/o operations of the
existing services, such that the input of the goal transition
matches with the first input of the sequence and the output
matches with the last output of the sequence. To formalize
these concepts we define the notion of interleaving product
with distributed history.

3.1 Product with Distributed History
We allow a choreographer to be associated with each

service site and the client site. Suppose there are N
services located at sites 1, . . . , N . The service at site-n
(n ∈ {1, . . . , N}) is modeled as an i/o-automaton An =
(Sn, S0

n, Sn, In, On, ∆n). Note each state is treated a fi-
nal state (and so the third tuple-element is the same as the
first tuple-element), since after reaching any state the ser-
vice may no longer be required for realizing the goal. We
designate site-0 as the site interfacing with the client or the
goal service. Associated with each site-specific choreogra-
pher is a local history consisting of the inputs and outputs
seen and stored at that site. The following definition of In-
terleaving Product With Distributed History (‖ ~H

n An) cap-
tures all possible interleaved behaviors of the given service
automata and the associated local histories.

Definition 2 (‖ ~H
n An Automaton) Given service automata

{An = (Sn, S0
n, Sn, In, On, ∆n)|1 ≤ n ≤ N}, their inter-

leaving product with distributed history is defined as the i/o-
automaton ‖ ~H

n An = (~S× ~H, ~S0× ~H0, ~S× ~H, I0, O0, ∆ ~H)
where

~S =
∏N

n=1 Sn, ~S0 =
∏N

n=1 S0
n, ~H =

∏N
n=1 2In∪On ,

~H0 =
∏N

n=1{∅}, I0 =
⋃N

n=1 In, O0 =
⋃N

n=1 On, and

(~s,~h)
i/o−−→
n

(~s′, ~h′) ∈ ∆ ~H if and only if

~s(n)
i/o−−→ ~s′(n) ∈ ∆n ∧ ~h′(n) = ~h(n) ∪ {i, o} ∧

∀m 6= n : ~s′(m) = ~s(m) ∧ ~h′(m) = ~h(m).

In the definition of ∆ ~H , the first conjunct states that when-
ever a constituent service makes a move, the ‖ ~H

n An automa-
ton also makes a move with the same transition label. The
second conjunct states that the local history of the partici-
pant service is updated with the input and output transition
labels. The third and fourth conjuncts state that other ser-
vices do not change their states or their corresponding local
histories. Thus, if a service gets the input i and produces
output o, its local history is updated to include {i, o}.

ε

s1{p,inf}
t3{inf,a,prc}r1{}

a/prc
t2{inf}r1{}
s1{p,inf}εinf/

t1{}r1{}
s1{p,inf}p/inf

t1{}r1{}
s1{}

1 2 2

inf/

3

ε s1{p,inf}
t1{}r2{inf}

a/prc

3

s1{p,inf}
t1{}r3{inf,a,prc}

c/

3

ε

s1{p,inf}
t1{}r1{inf,a,prc,c}

p/inf

1
s1{p,inf}
t1{}r1{inf,a,prc,c}

inf/ ε

3
s1{p,inf}
t1{}r2{inf,a,prc,c}

a/prc

3
s1{p,inf}
t1{}r3{inf,a,prc,c}

c/

εc/

2

t1{inf,a,prc,c}r1{}
s1{p,inf} p/inf s1{p,inf}

t1{inf,a,prc,c}r1{}

inf/ ε s1{p,inf}
t2{inf,a,prc,c}r1{}

a/prc s1{p,inf}

c/ε

3

t3{inf,a,prc,c}r1{}1 2 2

2

Figure 2: Interleaving Product Automaton ‖ ~H
n An

Example 1 Figure 2 depicts a part of the automaton || ~Hn An

for A1, A2 and A3 presented in Figure 1(d). The history of
the start state is empty. Every state is shown with the local
history associated with it and transitions are labeled with
the participating service responsible for the transition.

3.2 Transduced Closure Automata
A site can get data from its own local history or from

the local history of another site to execute the next tran-
sition of the service residing at that site. There is a cost
associated with any such communication of data, and we
use c(n,m) ∈ <+, where <+ is the set of nonnegative re-
als, to denote the (cheapest) cost of communicating a data
from site-n to site-m. The cost can be any numeric valu-
ation quantifying various aspects of communication; e.g.,
network traffic, distance between servers, number of hops
for each communication. Note that, communication be-
tween a pair of sites n and m will, in general, involve mul-
tiple options (such as over different routes between n and
m), and c(n,m) denotes the cheapest option. By defin-
ing c(n,m) this way we are able to abstract away the issue
of optimum communication option from that of optimum
choreography, although in the end, optimum choreography
cost does depend on the optimum communication cost be-
tween a pair of sites. The table in Figure 1(b-i) presents the
communication cost for our example. Utilizing the local
histories, a sequence of input/output computations can be
performed by the various site-services without the interven-
tion of the client-site choreographer. The inputs for these
computations are produced from the history of the nearest
site repository, whereas the outputs are sent to the client-
site only when needed. Further note that, each transition
also incurs a computation cost (for our example it is sum-
marized in Table 1(b-ii)). We will denote the computation

cost of a transition s
i/o−−→ s′ as w(s

i/o−−→ s′). The uni-

3

verse of all choreographed behaviors of existing services
that can be accomplished in the manner described above is
computed via the transduced-closure of the automaton with
distributed history ((‖ ~H

n An)T), and is defined as follows.

Definition 3 ((‖ ~H
n An)T Automaton) Given an interleav-

ing product automaton with distributed history ‖ ~H
n An =

(~S × ~H, ~S0 × ~H0, ~S × ~H, I0, O0,∆ ~H) of {An|1 ≤ n ≤
N}, its transduced-closure is the automaton (‖ ~H

n An)T =
(~S × (2I0∪O0 × ~H), ~S0 × ({∅} × ~H0), ~S × (2I0∪O0 ×
~H), I0, O0, ∆T

~H
), where (~s, (h0,~h))

i/o−−→
c,γ

(~s′, (h′0, ~h′)) ∈
∆T

~H
if and only if

1. ∃m.

(~s,~h)
i1/o1−−−→

n1
(~s2,~h2) ∈ ∆ ~H ∧

(~s2,~h2)
i2/o2−−−→

n2
(~s3,~h3) ∈ ∆ ~H ∧ . . .

(~sm,~hm)
im/om−−−−→

nm

(~s′, ~h′) ∈ ∆ ~H ∧
∀2 ≤ k ≤ m : ik ∈ h0 ∪

⋃

1≤n≤N

~hk(n),

i1 = i, om = o

2. h′0 = h0 ∪ {i, o}

3. c :=

c(0, n1) + w(~s(n1)
i/o1−−−→ ~s2(n1)) +

m∑

k=2

MIN

{c(n, nk) | 1 ≤ n ≤ N :
ik ∈ ~hk(n)}
∪ {c(0, nk) | ik ∈ h0}

+ w(~sk(nk)
ik/ok−−−→ ~sk+1(nk))

+ c(nm, 0)

4. γ = (src2, . . . , srcm) where for 2 ≤ k ≤ m:

srck := arg

MIN

[
{c(n, nk) | 1 ≤ n ≤ N : ik ∈ ~hk(n)}
∪ {c(0, nk) | ik ∈ h0}

]

+ w(~sk(nk)
ik/ok−−−→ ~sk+1(nk))

We call U := (‖ ~H
n An)T to be the universal service automa-

ton for the service-automata {An | 1 ≤ n ≤ N}.
Observe that, in the above definition, the states of U are
represented by the states of ‖ ~H

n An coupled with elements
from 2I∪O. The extra elements represent a history set of
the client-site, i.e., the inputs and outputs seen by the client-
site choreographer. According to the above definition, each
transition in U automaton corresponds to the transduced-
closure of a sequence of transitions present in the inter-
leaving product automaton ‖ ~H

n An. Each transduced-closure
transition is annotated with its cost c and the tuple γ of the
nearest sources from where the inputs (for the sequence of
transitions implementing the transduced-closure transition)
are obtained.

Example 2 Figure 3(a) presents part of the transduced
closure automaton U obtained from ‖ ~H

n An (Figure 2) of
A1, A2 and A3 (Figure 1(d)). The history at the client site,
h0 is shown within []. The dotted transitions correspond to
the transitions obtained via the transduced-closure of a se-
quence of transitions. E.g., the transition s1{}t1{}r1{}[]
p/ε−−→
10,1

s1{p,inf}t1{}r2{inf}[p] is obtained from

the transduced-closure of s1{}t1{}r1{} p/inf−−−−→
1

s1{p,inf}t1{}r1{} inf/ε−−−→
3

s1{p,inf}t1{}r2{inf}.
Cost of this transduced-closure transition is c = 4+2 (com-
putation costs for the transitions involved)+c(0, 1)+c(1, 3)
(communication costs) = 10. Note that the ε output does
not need to be communicated and hence the communication
cost associated with it is not added.

3.3 Realizability of goal
A goal service is specified as an i/o-automaton, A0 =

(S0, S
0
0 , SF

0 , I0, O0,∆0). Note that I0 = ∪N
n=1In and

O0 = ∪N
n=1On (see Definition 2), i.e., the inputs/outputs of

the goal are the union of the inputs/outputs of the existing
services. A goal service A0 is realizable from the existing
services under a centralized/decentralized choreographer if
and only if all input/output behaviors of A0 are also present
in the universal service automaton U . Note that the inputs in
A0 come from the client and the outputs from A0 go to the
client. Similarly the transition labels in U have inputs com-
ing from the client and the outputs going to the client. The
realizability of a goal using the existing services is verified
by checking whether A0 is simulated by U .

Definition 4 (Simulation [11]) Given a goal automaton
A0 = (S0, S

0
0 , SF

0 , I0, O0, ∆0) and an universal service au-
tomata U = (SU , S0

U , SU , I0, O0,∆U), a state s1 ∈ S0 is
simulated by a state s2 ∈ SU if and only if they are related
by the largest simulation relation denoted by s1 v s2 and

defined as: s1 v s2 ⇒ [∀t1 : s1
i/o−−→ t1 ∈ ∆0 ⇒ (∃t2 :

s2
i/o−−→
c,γ

t2 ∈ ∆U ∧ t1 v t2)]. A0 is said to be simulated

by U , denoted by A0 v U , if all states in S0
0 are simulated

by some state in S0
U .

Then we have the following result from [13].

Theorem 1 Given a goal A0 and a set of services {An |
1 ≤ n ≤ N}, the goal is realizable from the choreography
of {An | 1 ≤ n ≤ N} if and only if A0 v U where
U is the transduced-closure of the (‖ ~H

n An)-automaton, and
(‖ ~H

n An) is the interleaving product with distributed history
of the automata {An | 1 ≤ n ≤ N}.

Example 3 It can be seen that the goal A0 given in Fig-
ure 1(e) is simulated by the U automaton in the Figure 3(a).

4

γ1

t2{inf}r1{}
p/ε a/prc s1{p,inf}

t3{inf,a prc}r1{}
[p] [p,a,prc]

s1{p,inf}

[p,a,prc,c]

p/ s1{p,inf}

s1{p,inf}

[p,a,prc,c]
t2{inf,a,prc,c}r1{}

s1{p,inf}
t3{inf,a,prc}r1{}
[p,inf,a,prc]

a/prc
t2{inf}r1{}
s1{p,inf}

[p,inf]

εinf/

t1{}r1{}
s1{p,inf}

[p,inf]

p/inf

[]
t1{}r1{}
s1{}

s1{p,inf}
t3{inf,a,prc,c}r1{}
[p,a,prc,c]

a/prc

s1{p,inf}
t1{}r2{inf}
[p,inf]

a/prc s1{p,inf}
t1{}r3{inf,a,prc}
[p,inf,a,prc]

p/ s1{p,inf}
t1{}r2{inf}
[p]

a/prc
t1{}r3{inf,a,prc}
s1{p,inf}

[p,a,prc]

s1{p,inf}
t1{}r1{inf,a,prc,c}

t1{inf,a,prc,c}r1{}

[p,a,prc,c]

s1{p,inf}
t1{}r2{inf,a,prc,c}
[p,a,prc,c]

a/prc s1{p,inf}
t1{}r3{inf,a,prc,c}
[p,a,prc,c]

p/

c/e

inf/ε

c/

p/inf s1{p,inf}
t1{inf,a,prc,c}r1{}
[p,a,inf,prc,c]

inf/ s1{p,inf}
t2{inf,a,prc,c}r1{}
[p,a,inf,prc,c]

a/prc s1{p,inf}
t3{inf,a,prc,c}r1{}
[p,a,inf,prc,c]

p/inf s1{p,inf}
t1{}r1{inf,a,prc,c}
[p,a,inf,prc,c]

inf/ s1{p,inf}
t1{}r2{inf,a,prc,c}
[p,a,inf,prc,c]

a/prc s1{p,inf}
t1{}r3{inf,a,prc,c}
[p,a,inf,prc,c]

10,

10,

8,

20,10,

c/

40,

c/

40,

ε

ε

ε

ε

ε

ε

ε

ε

γ160,

20,5,

20,

60,

10,

8,

5,

7,

20,

30,

30,7,8,

30,

γ3 γ1

γ1 γ1γ1

γ3

γ1

γ1

γ1 γ1

γ1γ1γ1

γ2

γ1

γ1

γ1γ1

γ2

30,γ1

γ1

(a)

(b)
Label Sources Label Sources Label Sources
γ1 - γ2 1 γ3 1

(c)

g3

t2{inf}r1{}
p/ε a/prc s1{p,inf}

t3{inf,a prc}r1{}
[p] [p,a,prc]

s1{p,inf}
t1{inf,a,prc,c}r1{}
[p,a,prc,c]

s1{p,inf}

[]
t1{}r1{}
s1{}

p/

s1{p,inf}
t1{}r2{inf}
[p]

a/prcp/ε s1{p,inf}
t1{}r3{inf,a,prc}
[p,a,prc]

s1{p,inf}
t1{}r1{inf,a,prc,c}
[p,a,prc,c]

p/

s1{p,inf}
t2{inf,a,prc,c}r1{}
[p,a,prc,c]

a/prc s1{p,inf}
t3{inf,a,prc,c}r1{}
[p,a,prc,c]

s1{p,inf}
t1{}r2{inf,a,prc,c}
[p,a,prc,c]

a/prc s1{p,inf}
t1{}r3{inf,a,prc,c}
[p,a,prc,c]

c/

c/

c/

c/

ε

ε

ε

ε

ε

ε

γ110,γ2

40,γ1

10,γ2 30,γ1

40,γ1

10,γ3

30,

20,γ1

60,γ1

10,γ3 20,γ1

60,γ1

g2 g3g1

g1 g2 g3

g2 g3

g1 g2

(d)

g1

t2{inf}r1{}
a/prc s1{p,inf}

t3{inf,a prc}r1{}
[p] [p,a,prc]

s1{p,inf}
t1{inf,a,prc,c}r1{}
[p,a,prc,c]

s1{p,inf}

p/ s1{p,inf}
t2{inf,a,prc,c}r1{}
[p,a,prc,c]

a/prc s1{p,inf}
t3{inf,a,prc,c}r1{}
[p,a,prc,c]

c/

c/ε

ε

ε

γ1

40,γ1

10,γ2 30,γ1

40,γ1

30,
g2 g3

g1 g2 g3

s1{} εp/

γ210,t1{}r1{}

[]

Figure 3: (a) Transduced Closure Automaton U , (b) Valuations of γ for each transition (“-” denotes input to the transition obtained from
the client), (c) Simulating synchronous product A0 × U , (d) Mincost Choreography C.

Thus A0 can be realized by choreographing the services
A1, A2, A3 of Figure 1(d).

It can be verified that A0 v U holds if and only if
A0 v A0 × U holds, where A0 × U denotes “simulating
synchronous product” of A0 and U as defined below:

Definition 5 (Simulating Synchronous Product) Given a
goal A0 = (S0, S

0
0 , SF

0 , I0, O0, ∆0) and an universal ser-
vice automaton U = (SU , S0

U , SU , I0, O0, ∆U), their sim-
ulating synchronous product is the automaton A0 × U =
(S0 × SU , S0

0 × S0
U , SF

0 × SU , I0, O0, ∆×), where

(s0, su)
i/o−−→
c,γ

(s′0, s
′
u) ∈ ∆× ⇔

{
s0

i/o−−→ s′0 ∧ su
i/o−−→
c,γ

s′u
∧ s0 v su ∧ s′0 v s′u.

}

The size of A0×U is usually smaller compared to the size of
U (since size of A0 is smaller compared size of U). Hence
it is preferable to check whether A0 v A0 × U holds (as
opposed to checking whether A0 v U holds).

Example 4 Figure 3(c) shows the simulating synchronous
product of the goal automaton A0 in Figure 1(d) and the uni-
versal service automaton U in Figure 3(a). Here, A0 × U
has two paths from the start state both of which can yield
choreographers; one path uses automaton A2 for comput-
ing the transitions inf/ε, a/prc as well as c/ε and other
path uses service A3 for the same. In the following sec-
tions we introduce the algorithm for choosing the optimal
choreography.

4 Optimum Decentralization
Realizability of a goal A0 by choreographing a set of ser-

vices {An | 1 ≤ n ≤ N} is guaranteed by the satisfaction
of A0 v A0 ×U . It is possible that A0 can be simulated by
A0 × U in multiple ways since A0 × U can possess multi-
ple subautomata each of which can simulate A0. Thus there
can be multiple realizations of A0, each with its own cost
(as defined below). Our goal then is to find an optimum

5

Algorithm 1 (MinCost Choreography)
Initialization: (k = 0)

costk(s0, su) =

0 if (s0, su) is a deadlocking state
MAX

s0
i/o−−→s′0∈∆0

MIN
(s0,su)

i/o−−→
c,γ

(s0,su)∈∆×{ {c + costk(s0, su) | (s0, su) /∈ SF
0 × SU}

∪{c | (s0, su) ∈ SF
0 × SU}

}

otherwise
costk = MAX{costk(s0, su) | (s0, su) ∈ S0 × SU}
Iteration: (k ≥ 1)

costk(s0, su) =

0 if (s0, su) is a deadlocking state
MAX

s0
i/o−−→s′0∈∆0

MIN
(s0,su)

i/o−−→
c,γ

(s0,su)∈∆×

{c + costk(s0, su) | (s0, su) /∈ SF
0 × SU}

∪{c | (s0, su) ∈ SF
0 × SU ,

∀m < k : costm(s0, su) 6= costm}
∪{∞ | (s0, su) ∈ SF

0 × SU ,
∃m < k : costm(s0, su) = costm}

otherwise
costk = MAX{costk(s0, su) | (s0, su) ∈ S0 × SU ,∀m < k :

costm(s0, su) 6= costm}
Termination: If costk < costk−1, set k := k+1 and repeat Iteration

step; otherwise stop and output costk−1.

Figure 4: Algorithm for computing minimum cost choreography

cost realization of A0, which can be obtained by first find-
ing an optimal cost subautomaton of A0 ×U that simulates
A0, and next projecting that subautomaton over individual
sites to obtain the site-specific choreographers. The objec-
tive of optimization is to choreograph the existing services
in such a way that regardless of the history of evolution,
any pending task is completed in a minimal cost (the worst
cost between any state and its nearest reachable final states
is minimized). With this in mind, we define the cost of an
automaton of A0 × U as follows.

Definition 6 (Automaton Cost) Given an i/o-automaton
with each of its transitions labeled by some cost, we de-
fine the cost of a path to be the sum of the costs of all the
transitions in that path. We define the cost of a state to be
the maximum cost among all paths originating at that state
and terminating at a final state. The cost of an automaton is
defined to be the maximum cost among all its states.

We refer to the cost of an i/o-automaton A as cost(A). Us-
ing the notion of cost from Definition 6, we define the min-
imum cost choreography automaton for realizing A0 from
{An | 1 ≤ n ≤ N}.

Definition 7 (MinCost Choreography Automaton)
Given a goal automaton A0 and an universal service au-
tomaton U such that A0 v A0 × U , the minimum cost for
choreography is obtained as the cost of a subautomaton C
of A0 × U such that A0 v C and for all subautomata C ′ of
A0×U with A0 v C ′, it holds that cost(C) ≤ cost(C ′).

4.1 Computing optimum cost
The algorithm for computing the optimum cost of the

subautomaton in Ao × U that simulates Ao is presented in
Algorithm 1 in Figure 4. In the initialization phase (k = 0),
cost of all deadlocking states is assigned 0. For the non-
deadlocking state (s0, su), its cost is computed in two steps.
In the first step (minimization-step), the cheapest way to

simulate the goal transition s0
i/o−−→ s′0 is identified. The

cost for such simulation is computed as the sum of the cor-
responding transition from (s0, su) and the cost of the des-
tination state. If the destination state is a final state, its cost
is assumed to be 0 as it denotes completion of a task. In
the second step (maximization-step), the worst cost of sim-
ulating a transition originating from s0 is computed. The
maximum cost of any state as computed in the initialization
phase is denoted cost0.

Remark 1 As shown in our earlier work [13], in the ab-
sence of loops in the goal specification, the optimum cost
computation is already obtained at this point, i.e., no fur-
ther iteration is required. In the presence of loops however,
it is possible that the goal specification doesn’t terminate
at a final state, and thus the cost of such a final state is
non-zero. So there is a possibility of lowering the overall
cost if the “payoff” of reaching a final state (namely low-
ering of costs of other states by completing tasks through
reaching the final state) is overshadowed by the “penalty”
of reaching it (namely incurring the cost of the final state).
Thus further iterations are required to explore this trade-off,
which makes the algorithm for specification with loops non-
trivially different from the loop-free specifications, where a
straightforward backward search starting from terminating
states suffices.

The kth iteration (k ≥ 1) explores the possibility of
reducing the overall cost by way of avoiding reaching the
worst-costing final states (cost of which is equal to costm,
for some m < k) of the earlier iterations. Doing this results
in raising the cost of all the other states (since they no longer
have access to the worst-costing final states of the earlier
iterations), but the overall cost may still reduce since the
costs of the worst-costing states of the earlier iterations no
longer affect the overall cost. The worst-costing final states
of the earlier iterations are avoided by simply setting their
cost contribution to be infinity. This is the only difference
between the 0th iteration, and the subsequent iterations. A

6

new iteration is executed only if the current iteration results
in a reduction in the overall cost compared to the previous
iteration.

It can be concluded that the kth iteration will re-
quire O(|S0|.|SU |) number of computations. Further since
in each iteration at least one final state is avoided (by
forcing its cost contribution to be infinity), there can
be at most O(|SF

0 |.|SU |) number of iterations. Thus
the overall computational complexity of Algorithm 1 is
O(|S0|.|SF

0 |.|SU |2).
Remark 2 While Algorithm 1 works for general services
and goals, a finite-cost optimum solution will exist if all cy-
cles in the goal service either possess a final state or cost
zero to simulate. (Otherwise the optimal cost will be ∞,
and in which case any decentralized choreographer is an
optimum one.)
Theorem 2 Given A0 × U , where A0 and U are goal and
universal service automata respectively, Algorithm 1 in Fig-
ure 4 terminates with the cost equaling that of a mincost
choreography subautomaton C of A0 × U .
The proof is omitted due to space constraint. For details re-
fer to http://www.public.iastate.edu/∼saayan/th2-proof.pdf

Example 5 Figure 5 presents the computation of Algo-
rithm 1 as applied to our running example. The simulating
synchronous product A0 × U is shown in Figure 3(c). Ob-
serve that A0 × U has one initial state, and two final states.
Upon starting from the initial state, when a final state is
reached a certain task of the goal is completed. If the final
state reached is non-deadlocking, a new task begins from
this state and its completion occurs when a subsequent final
state is reached. Thus A0 × U can execute three distinct
tasks, starting from either the initial state or one of the final
states. In order to simplify the illustration of the algorithm,
the graph of A0×U is accordingly split into three subgraphs
(that are trees), one for each task, as shown Figure 5(k = 0).

For our example, cost0 = 90. Therefore, for k = 1
iteration, the worst costing state is avoided by assigning it
cost of ∞. Furthermore, since this state is to be avoided, it
can no longer act as a restarting point of a task, and hence
there are only two trees to consider in Iteration k = 1 (Fig-
ure 5). Proceeding further, cost1 = 80. In the next iter-
ation for k = 2, cost2 = ∞ as the state with worst cost
(= 80) is avoided and we will be left with one subgraph
whose leaf-states have the cost ∞. This results in termina-
tion of our algorithm cost2 > cost1 and we output cost1

as the optimum cost. In other words, we identify the op-
timum decentralized choreography which uses service 2 to
realize the goal instead of service 1 (see Figure 3(d)).
Remark 3 It should be noted that if the algorithm of loop-
free specifications [13] is used, then the iterations k = 1
and k = 2 won’t be performed, and the optimum answer
reported would be cost0 = 90 which obviously is incorrect
since a cheaper alternative with cost1 = 80 exists.

40

s1{}
t1{}r1{}
[]p/ε

s1{p,inf}

[p]
t1{}r2{inf}
[p]

s1{p,inf}
t1{}r3{inf,a,prc}
[p,a,prc]

a/prc

γ3

20,γ1

30

10, p/ε 10,γ2

s1{p,inf}
t2{inf}r1{}30

s1{p,inf}
t3{inf,a prc}r1{}

[p,a,prc]

g1

g2

g3

g2

g3

a/prc 30,γ1

20

0

0

s1{p,inf}
t1{}r3{inf,a,prc}
[p,a,prc]

s1{p,inf}
t1{}r1{inf,a,prc,c}
[p,a,prc,c]

p/

c/

s1{p,inf}
t1{}r2{inf,a,prc,c}
[p,a,prc,c]

s1{p,inf}
t1{}r3{inf,a,prc,c}
[p,a,prc,c]

a/prc

60,

10,

20,

γ1

γ3

γ1

90

ε

ε

s1{p,inf}
t3{inf,a prc}r1{}
[p,a,prc]

s1{p,inf}
t1{inf,a,prc,c}r1{}
[p,a,prc,c]

s1{p,inf}
t2{inf,a,prc,c}r1{}
[p,a,prc,c]

s1{p,inf}
t3{inf,a,prc,c}r1{}
[p,a,prc,c]

a/prc

40,

30,

10,

γ1

γ1

80

γ2

c/

p/ε

ε

0 0

g3

g1 g1

g2 g2

g3 g3

g3

30

20
30

Initialization (k=0)

0

s1{}
t1{}r1{}
[]p/ε

s1{p,inf} s1{p,inf}
t2{inf}r1{}
[p]

t1{}r2{inf}
[p]

s1{p,inf}
t1{}r3{inf,a,prc}
[p,a,prc]

a/prc

s1{p,inf}
t3{inf,a prc}r1{}
[p,a,prc]

γ310,

20,

p/ε 10,

a/prc 30,

γ2

γ1 γ1

0

30

40,γ1

s1{p,inf}
t1{inf,a,prc,c}r1{}
[p,a,prc,c]

s1{p,inf}
t3{inf,a prc}r1{}
[p,a,prc]

p/

s1{p,inf}
t2{inf,a,prc,c}r1{}
[p,a,prc,c]

s1{p,inf}
t3{inf,a,prc,c}r1{}
[p,a,prc,c]

a/prc 30,γ1

10,γ2

c/ε

ε

g1

g2

g3g3 g3

g2

g2

g3

g3

g1

8
8

40
80

40

30

Iteration 1 (k=1)
Figure 5: Iterations of Algorithm 1

4.2 Synthesizing optimum choreographers
Starting from a subautomaton C of A0×U representing

an optimum choreography scheme, our objective is to syn-
thesize choreographers at each site such that the transduced
closure of their product replicates C. In addition to nor-
mal i/o-behavior at each transition, a site-specific choreog-
rapher also needs to record information regarding the i/o’s
that must be sent from one choreographer to another for
minimal cost communication. Site-specific choreographers
are obtained using the algorithm presented in [13].

Figure 6(a, b, c, d) shows the various site-specific chore-
ographers as obtained from optimum choreography in Fig-
ure 3(d). The labeling of states as implied by the En func-
tion is shown within 〈〉. In Figure 6(a), we obtain the chore-
ographer C0 at the client-site. C0 communicates p to the
choreographer C1 at site-1, and a and c to the site-2 chore-
ographer C2 from the initial and the next successor states,
respectively. Note that, choreographer at site 3 does not do
anything as service 3 does not participate in the minimum
cost choreography in our example.

7

a/prc
g1 g2 g3

<p:1> <a:2>

εp/

<c:2>

εc/ p/inf

p/inf
s1{p,inf}

<inf:2>
s1{}

ε

r1{}

(a) (b) (c)

(d)

ε

t1 t3{inf,a,prc}

ε

inf/ε a/prc
t2

{inf} <prc:0>

t1{inf,a,prc,c}

c/

ε

εinf/
t2{inf,a,prc,c}

a/prc
t3{inf,a,prc,c}

c/

<prc:0>

ε

Figure 6: Site specific Choreography Automata: (a) C0, (b) C1,
(c) C3 and (d) C2

5 Related Work
Automated composition of Web Services has been well

researched both in the industry and academia for a few years
now (See representative work [16, 5, 6, 14]). Decentraliza-
tion of computation aims to move away from the simple
mediator based approach to a more sophisticated scheme.
[1] gives an overview of recent and ongoing approaches,
such as BondFlow, Symphony, OSIRIS. Decentralization of
composition has been researched in authors in [9] based on
program dependence and graph partitioning. The industry
standard workflow models are moving from simple central-
ized scheme towards a more loosely coupled approach by
distributing the workflow, more suited to lightweight mo-
bile technologies [2, 10, 17]. [19] discusses late binding
of services for communication optimization. To this effect,
[3] proposes a hybrid model specifying centralized control-
flow and distributed data-flow. [18] introduces a peer-to-
peer approach of service communication, from a centralized
specification. In contrast, our approach guarantees the min-
imization of the overall cost, the valuation of which can be
generic and context based. No manual intervention for ob-
taining the optimal solution is necessary as our approach is
automated. In [13], we introduced the optimal decentraliza-
tion scheme, goals being restricted to be loop-free. Here,
the algorithm we introduced can be applied to a generalized
class of services and a goal with loops.

6 Conclusion
We studied the problem of optimum decentralized chore-

ography with the objective of minimizing the computation
and communication overhead required to realize a goal ser-
vice from the existing services. A universal service au-
tomaton is obtained to capture all possible decentralized-
choreographed behaviors as well as the associated costs
(of computation and communication). To the best of our
knowledge, this is the first automated technique for solving
the optimum decentralized choreography problem, in which
the goal service is allowed to have loops. The extension

from the loop-free case to the case with loops is non-trivial,
where in the former case a straightforward backward search
starting from the terminating states suffices.

References
[1] J. Balasooriya. Distributed Web Service Coordination for Collabo-

rative Applications and Biological Workflows. PhD thesis, Georgia
State University, 2006.

[2] L. Baresi, A. Maurino, and S. Modafferi. Towards distributed bpel
orchestration. Electronic Communications of the EASST, 3, 2006.

[3] A. Barker, J. Weissman, and J. van Hemert. Eliminating the mid-
dleman: Peer-to-peer dataflow. In 17th International Symposium
on High-Performance Distributed Computing, pages 191–200, MA,
USA, 2008.

[4] B. Benatallah, F. Casati, D. Grigori, H. Nezhad, and F. Toumani.
Developing adapters for web services integration. In International
Conference on Advanced Information Systems Engineering, Berlin,
Germany, 2005.

[5] B. Benatallah, Q. Sheng, and M. Dumas. The self-serv environment
for web services composition. IEEE Intelligent Systems, 7(1):40–
48, 2003.

[6] D. Berardi, D. Calvanese, G. Giacomo, R. Hull, and M. Mecella.
Automatic composition of transition-based semantic web services
with messaging. In Conference on Very large data bases, Trond-
heim, Norway, 2005.

[7] W. Binder, I. Constantinescu, and B. Faltings. Decentralized or-
chestration of composite web services. In IEEE International Con-
ference on Web Services (ICWS’06), Chicago, IL, September 2006.

[8] T. Bultan, J. Su, and X. Fu. Analyzing conversations of web ser-
vices. IEEE Internet Computing, 10(1):18–25, 2006.

[9] G. Chafle, S. Chandra, V. Mann, and M. Nanda. Decentralized or-
chestration of composite web services. In International World Wide
Web Conference on Alternate track papers and posters, New York,
NY, 2004.

[10] R. Jiménez-Peris, M. Patino-Martı́nez, and E. Martel-Jordán. De-
centralized web service orchestration: A reflective approach. In
23rd Annual ACM Symposium on Applied Computing, pages 494–
498, March 2008.

[11] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., 1982.

[12] S. Mitra, R. Kumar, and S. Basu. Automated choreographer syn-
thesis for web services composition using i/o automata. In IEEE
International Conference on Web Services (ICWS), Salt Lake City,
2007.

[13] S. Mitra, R. Kumar, and S. Basu. Decentralized choreography for
web service composition. In IEEE Services Computing Conference
(SCC), Honolulu, 2008.

[14] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Parallel web ser-
vice composition in moscoe: A choreography-based approach. In
ECOWS ’06: Proceedings of the European Conference on Web Ser-
vices, pages 3–12. IEEE Computer Society, 2006.

[15] J. Peer. Web service composition as ai planning - a survey, technical
report. Technical report, University of St. Gallen, 2005.

[16] M. Trainotti, M. Pistore, G. Calabrese, G. Zacco, G. Lucchese,
F. Barbon, P. Bertoli, and P. Traverso. Astro: Supporting compo-
sition and execution of web services. In International Conference
on Automated and Planning Sheduling (ICAPS’05), 2005.

[17] Q. Xiaoqiang and W. Jun. A decentralized services choreography
approach for business collaboration. In IEEE Services Computing
Conference (SCC), Honolulu, 2008.

[18] U. Yildiz and C. Godart. Centralized versus decentralized
conversation-based orchestrations. In The 9th IEEE International
Conference on E-Commerce Technology and The 4th IEEE Inter-
national Conference on Enterprise Computing, E-Commerce and
E-Services((CEC-EEE), 2007.

[19] M. Zaremba, T. Vitvara, and M. Moran. Towards optimized data
fetching for service discovery. In Fifth European Conference on
Web Services, pages 191–200, 2007.

8

