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Abstract
This paper describes an alternative approach based on LabVIEW 

that solves the critical plasma shape and position control problems 

in tokamaks. Input signals from magnetic probes and flux loops are 

the constraints for a non-linear Grad-Shafranov PDE solver to 

calculate the magnetic equilibrium. An architecture based on off-

the-shelf multi-core hardware and graphical software is described 

with an emphasis on seamless deployment from development 

system to real-time target. A number of mathematical challenges 

were addressed and several generally applicable numerical and 

mathematical strategies were developed to achieve the timing goals. 

Several benchmarks illustrate what can be achieved with such an 

approach.

 commercial-off-the-shelf (COTS) multi-core computers

 Grad-Shafranov PDE

 real-time algorithm
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Implementation

 Algorithm

• In the first step, compute reduced iDST instead of full iDST.

• In the second step, use optimized DST leveraging sparsity.

 Hardware and Software

Grad-Shafranov PDE

• Ψ is the poloidal flux function;

• j is the current density;

• R is the radial component;

• Z is the axial component.

• 33x65 grid

Benchmarks

Benchmarks for the real-time Grad-Shafranov solver and simultaneous 

function paramerisation and Grad-Shafranov solvers using 8 cores:
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G-S Solver in Bounded Domain (Fast Solver)

 Dirichlet Boundary Condition: given Ψ(R, Z) on boundary.

 Spectral Method:

1. Multi-channel DST

2. Tri-diagonal Solver

3. Multi-channel Inverse DST

 An alternative of  Cyclic Reduction Algorithm [1, 2, 3].

 Easy to program and parallelize in LabVIEW.

DST

(x31)

Tri-diag

Solver

(x63)

iDST

(x31)

Ψ(R, Z)-μ0Rj(R, Z)

G-S Solver in Unbounded Domain

 Two fast solver steps [1]:

1. Fast solver with zero Dirichlet  BC;

2. Compute BC based on the solution from step 1;

3. Another fast solver with Dirichlet  BC from step 2.

 Take advantage of linearity:

0 BC
A x v

Fast Solver Fast Solver

-μ0Rj(R, Z)

Ψ(R, Z)

BC

Platform GS (ms) FP+GS Time (ms)

Xeon X5365 @ 3.0 GHz 1.13 2.78

Xeon X5677 @ 3.46 GHz 0.63 1.03

-μ0Rj(R, Z) = 0

Dell T5500 and LabVIEW RT 2009
2 quad-core Intel Xeon X5677 (3.46 GHz)

PCIe VMIC 5565 Reflective Memory

NI PCIe-8362 MXI extension to PXI chassis

18 slot PXI-1045 chassis

16 National Instruments PXI 6143 S 

Series cards with 16 bit ADC’s

128 channels sampled at 10 kHz


