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Abstract: Prebiotic carbohydrates are added as functional ingredients to a variety of 
processed foods. Data on the stability of prebiotics during food processing in complex 
matrices remain limited. The objective of this project was to determine the stability 
of fructooligosaccharides (FOS), inulin, galactooligosaccharides (GOS), and resistant 
starch (RS2), when added as ingredients (1% w/w) to an extruded cereal and a low pH 
drink. The cereal was prepared using different screw speeds and barrel temperatures. 
GOS was not affected by any of the extrusion conditions, whereas inulin decreased 
significantly at 140 and 170°C. FOS levels decreased in all extrusion conditions, while 
resistant starch (RS) unexpectedly increased for each of the parameters. The low pH 
drink was prepared with different sucrose to corn syrup solids (S:CSS) ratios (1:2, 1:1, 
2:1) at pH 3.0, 3.5, and 4.0. The 1:1 S:CSS drink at pH 3.0, negatively impacted FOS 
and inulin. Moreover, FOS levels decreased when exposed to 1:2 S:CSS (pH 3.5 and 
4.0) and 1:1 S:CSS (pH 3.0). GOS and RS were unaffected by any drink formulations. As 
different conditions impact the stability of prebiotics differently, this study addresses 
the importance of developing product specific processes for each prebiotic when 
supplemented into a processed food.
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1. Introduction
Prebiotics are defined as non-digestible carbohydrates that upon consumption confer beneficial effects 
to the host by selectively inducing changes in the makeup and/or activity of the intestinal microbiota 
(Gibson, Probert, Loo, Rastall, & Roberfroid, 2004). Several potential health benefits have been attributed 
to these carbohydrates, including improving bowel function, preventing of colon cancer, promoting 
growth of selective beneficial microorganisms of the microbiota, lowering of serum cholesterol, 
improving mineral absorption, and enhancing immune function (Crittenden & Playne, 2006; Roberfroid 
et al., 2010). As an outcome, there is an increased interest in the use of prebiotics as preventative and 
potentially therapeutic interventions for various diseases such as ulcerative colitis, colon cancer, 
coronary heart disease, allergy, and osteoporosis. The mechanisms by which these health-promoting 
events occur are not entirely understood and are still under scientific debate (Roberfroid et al., 2010). 
Further studies in human subjects are therefore needed to substantiate these claims, as declared by 
the European Food Safety Authority (2010). Nonetheless, inulin, fructooligosaccharides (FOS) and 
galactooligosaccharides (GOS) are currently classified as prebiotics (Roberfroid, 2007). Resistant starch 
(RS) is considered a potential prebiotic as its consumption has been associated with changes in the 
composition of the gut microbiota (Martínez, Kim, Duffy, Schlegel, & Walter, 2010) and several health 
benefits have been documented in animal models (Nugent, 2005).

Prebiotics carbohydrates must resist hydrolysis by human digestive enzymes and reach the large 
intestine intact to be fermented by the colonic bacteria into short chain fatty acids (Roberfroid  
et al., 2010). From a structural point of view, inulin and fructooligosaccharides (FOS) are composed 
of β-(2→1) linked D-fructofuranose monomers with an α-(1→2) linked D-glucosyl residue at the end of 
the chain. The degree of polymerization (DP) of commercial inulin and FOS ranges from 20–60 units to 
2–10 units, respectively (Niness, 1999). GOS are composed of galactose monomers linked by β-(1→3), β-
(1→4), or β-(1→6) bonds with a terminal glucose (Nauta, Bakker-Zierikze, & Schoterman, 2009). Lastly, RS 
is the portion of starch that is not broken down by digestive enzymes within 120 min of consumption, 
making it available for fermentation in the colon (Englyst & Kingman, 1990). RS is classified into four 
subtypes, including RS1, RS2, RS3, and RS4. Types 1, 2, and 3 occur naturally in foods, while type 4 is 
produced synthetically (Nugent, 2005).

Prebiotics have attracted considerable interest in the food industry and are incorporated into dairy 
products, fruit juices, baked goods, and other foods (Charalampopoulos & Rastall, 2012). Published 
reports remain limited on the interaction of probiotics with complex food matrices and their stability 
when exposed to food-processing conditions, such as extrusion, high temperatures, and low pH. Stabi-
lity of prebiotics during food processing is an essential requirement given that their biological activity 
likely depends on their structural integrity. For example, hydrolyzed or degraded prebiotics caused 
by processing may no longer be active (Huebner, Wehling, Parkhurst, & Hutkins, 2008). Therefore, 
the objective of this study was to determine the impact of two very different processes (extrusion 
and low pH) on the total levels of four prebiotic carbohydrates when added as ingredients into two 
types of processed foods (low pH drink and an extruded cereal). It is expected that the results 
presented herein will be helpful to select prebiotics that could be added to extruded foods and low 
pH beverages.

2. Materials and methods

2.1. Prototype foods
Processed foods used for this study included an extruded breakfast cereal and a low pH drink. These 
products were chosen as they represent foods typically subjected to relatively severe, but distinct 
processing treatments. All products were prepared at 1% w/w final concentration each of the 
following prebiotics: (1) Purimune™ GOS 92%, (2) NutraFlora® P-95 FOS from GTC Nutrition (Colorado 
USA), (3) Orafti® inulin ≥ 92% oligofructose from BENEO (Tienen, Belgium), and (4) Hi-maize™260 ≥ 60% 
RS2 from National Starch Food Innovation (New Jersey, USA). The backbone of RS2 was composed of 
approximately 260 monosaccharide units. The degree of polymerization (DP) of inulin and GOS ranged 
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between 3–60 and 3–6, respectively. FOS contained 1-kestose 33.8%, DP 3; nystose 50.1%, DP 4; and 
fructosyl nystose 11.6%, DP 5.

The breakfast cereal contained oat flour (800  g), corn flour (1010  g), sucrose (140  g), sodium 
chloride (20 g), calcium carbonate (10 g), and the prebiotic (20 g). The mix was equilibrated overnight 
with appropriate additions of distilled water to a final moisture content of 17% prior to extrusion. A 
conical twin-screw laboratory extruder with a barrel diameter of 1.9 cm and a length–diameter ratio 
of 20:1 was used for the extrusion process (C.W. Brabender Model 2003 GR-8). To achieve optimal 
expansion, the screw speed and barrel temperature were adjusted to 170  rpm and to 140°C, 
respectively. The stability of the prebiotics to extrusion was evaluated by subjecting the breakfast 
cereal at two additional barrel temperatures and screw speeds using a completely randomized 
design. Temperature was adjusted to 120 and 170°C, while holding the screw speed at 170  rpm. 
Likewise, screw speeds of 120 and 220 rpm were tested at 140°C. Product batch formulations were 
prepared in triplicate.

To determine the effects of reducing sugars and pH on the stability of each prebiotic, the drink was 
prepared at various ratios of sucrose to corn syrup solids (S:CSS, 1:2, 1:1, 2:1) and adjusted to pH to 
3.0, 3.5, and 4.0 with citric acid using a randomized 23 factorial split plot design. The drink mixture 
was prepared in 10 L batches at a final sweetener concentration of 50 g/L. The prebiotic was added 
with the other remaining ingredients, which included sodium chloride (10 g), sodium citrate (1 g), 
and red food coloring. The ingredients were stirred and heated to a temperature of 79 ± 1°C using a 
stir/hot plate. The drink product was hot-filled into PET bottles and allowed to cool prior to analysis. 
Product batch formulations were prepared in triplicate.

2.2. Prebiotics extraction and analysis
Different analytical methods are reported throughout the literature to detect non-digestible 
carbohydrates. The vast majority have only been applied to the analysis of pure prebiotics (Courtin, 
Swennen, Verjans, & Delcour, 2009). The objective of this project was to evaluate the stability of 
FOS, GOS, inulin, and RS2 when added to an extruded breakfast cereal and a low pH drink by 
measuring total yields before and after the process. For this purpose, we selected robust analytical 
methods capable of accurately measuring these prebiotics in the presence of complex matrices. 
Prebiotics were measured with optimized and validated extraction and analytical methods that 
included UV-Vis spectroscopy (inulin and RS2), GC (GOS), and HPLC (FOS). Each method was 
validated in terms of accuracy, precision, ruggedness, and linearity for a given matrix according 
the US Pharmacopia (1995).

FOS was extracted from the cereal by stirring 10.0 ± 0.05 g product with 50% ethanol for 30 min at 
22–25°C. The suspension was then centrifuged (10,000  ×  g for 20  min) to remove large particles. 
Extracts were vacuum-dried and resuspended in distilled water to a final volume of 1.0 ml. A specific 
procedure was not needed to extract FOS from the low pH drink. Samples were filtered (0.45 μm) and 
analyzed by HPLC as described by Sheu, Lio, Chen, Lin, & Duan (2001) with some modifications. FOS was 
identified and quantified using a 3.9 × 300 mm amino-bonded phase carbohydrate column (Waters, 
Massachusetts, USA) heated to 35°C and interfaced to a refractive index detector. Carbohydrates were 
eluted in 75% acetonitrile in order of increasing monosaccharide chain length. The concentration of 
FOS was calculated based on calibration curves constructed from standards.

Inulin was measured using an adapted version of the Total Fructan AACC Method 32-32 (2001), with 
a kit purchased from Megazyme International© (K-FRUC 5/2008, Ireland Ltd., County Wicklow Ireland). 
Briefly, inulin was extracted from 1.0 ± 0.05 g of cereal or 1.0 ± 0.05 ml of drink with 50 ± 0.1 ml of water 
at 80°C for 15 min followed by enzymatic hydrolysis as indicated by the manufacturer. Total fructose 
derived from inulin was measured spectrometrically at 410 nm after reaction with p-hydroxybenzoic 
acid hydrazide and calculated against a standard curve constructed with known amounts on inulin and 
prepared the same as the samples.
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To determine GOS levels, the breakfast cereal (0.50 ± 0.05 g) was combined with 50 ± 0.1 ml of 
water and stirred for 30 min at 25–30°C. The sample was then centrifuged at 10,000 × g for 20 min 
and pellet discarded. GOS was extracted from the supernantant according to AACC Method 32-25.01 
method (1994). To extract GOS from the drink, 1.00 ± 0.05 ml of sample was mixed with 10.0 ± 0.1 ml 
of water at 25–30°C for 30 min with no other additional steps. Residues of GOS were determined as 
alditol acetates by gas liquid chromatography (GC) as described by Courtin, Van den Broeck, and 
Delcour (2000). The derivatized sugars were resolved on an Elite 225 30 m × 0.25 mm × 0.25 μm film 
column (Perkin Elmer, Waltham, MA) interfaced to a gas chromatograph (Agilent Technologies 7820A, 
Santa Clara, CA) with splitter injection port (split ratio 1:20) and flame ionization detector. Helium 
served as the carrier gas, and the separation and detection temperatures were 220 and 240°C, 
respectively.

Sugar losses due to hydrolysis, derivatization, and to different GC responses were accounted by 
using an internal standard (myo-inositol) and calculating the following correction factor (CF) obtained 
from external standards of glucose and galactose:

where AMS is the peak area and WMS is the weight (mg) of the monosaccharide (glucose and galactose). 
AStd and WStd are the peak area and weight (mg) of internal standard, respectively.

GOS was calculated from galactose as anhydrosugar (AS) based on the following equation:

where Fm is the calculation factor for individual monosaccharides to polysaccharide residues (0.90 
for hexoses), and S is the weight (mg dry matter) of original sample.

The amount of galactose derived from GOS was determined by analyzing standards of known 
concentrations analyzed with the same procedure used for the food samples. The content of free 
galactose (non-derived from GOS) was also determined for both control and prebiotic-containing 
prototype food samples. It should be noted that this GC method was used instead of the official 
AOAC 2001.1 method for determining trans-galactooligosaccharides in food, which is based on high-
performance anion-exchange chromatography with pulsed amperometric detection, because salts 
and other components present in the food matrices greatly affected method accuracy.

RS content was measured using a kit purchased from Megazyme International© (K-RSAR 08/11) based 
on the AACC Method 32-40.01. In brief, non-resistant starch was solubilized and hydrolyzed into glucose 
and discarded. RS was obtained in the pellet by centrifugation and subsequently solubilized with 2 M 
KOH. Finally, RS was enzymatically hydrolyzed to glucose with amyloglucosidase followed by the addition 
of glucose oxidase–peroxidase. The absorbance of each solution was measured at 510 nm against a 
D-glucose standard curve. RS content (% dry weight basis) was calculated as follows:

where RS is the amount in mg/mL calculated from the calibration curve, V is the final volume in ml, 
F is the 162/180 factor to convert from free D-glucose to anhydro-D-glucose as occurs in starch, and 
M is the moisture content of the sample.

As the complexity of the food matrix may affect the ability to detect a given prebiotic, the 
previously cited tests were validated and optimized using prototype foods spiked with known 
amounts of a given prebiotic according to the United States Pharmacopeial Convention (1995) (data 
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not provided). Percent recovery was calculated as the percent change in probiotic concentration in 
the a test sample relative to a control sample spiked with prebiotic at 1% w/w and analyzed under 
the same conditions.

2.3. Statistical analysis
All data are shown as the mean ± standard errors of the mean (SEM). Percent recoveries were calculated 
from three independent analyses. Treatments were compared to each other by ANOVA and Tukey’s 
post hoc test at 5% level of significance. Statistical analyses were completed using GraphPad Prism® 
version 6.04 (GraphPad Software California, USA).

3. Results
The stability of the prebiotics in the breakfast cereal during extrusion was evaluated using different 
screw speeds and barrel temperatures. As shown in Figure 1, extrusion in general resulted in reduced 
FOS levels. The lowest amounts were recovered from the process using the highest temperature 
(170°C). More than 50% of the supplemented FOS was degraded during optimum expansion conditions 
(170 rpm and 140°C). Inulin levels supplemented in the breakfast cereal were not significantly affected 
by either the optimal or the low-temperature extruding conditions. However, variations in the screw 
speed resulted in recoveries, 25% at low (120 rpm) and 34% at high speed (170 rpm), respectively 
(Figure 2). Low levels of inulin (35%) were also recovered from high-temperature (170°C) extrusion. 
GOS showed a high stability at all the extrusion conditions tested. As shown in Figure 3, recoveries of 
115, 105, 102, and 99% were obtained using the high speed, low speed, low barrel temperature, and 
the optimal conditions, respectively. The lowest levels of GOS (81%) were recovered when the breakfast 
cereal was extruded at the highest temperature; however, the results were not significantly different 
(p > 0.05) from the optimal conditions. Recovery of RS2 in the breakfast cereal resulted in percentages 

Figure 1. Percent recovery 
of FOS supplemented into 
extruded breakfast cereal 
prepared under different screw 
speeds and barrel temperature.

Notes: Results are shown as 
mean ± standard error of 
the mean (n = 3). Bars with 
different letters are statistically 
different (p > 0.05).
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Figure 2. Percent recovery 
of inulin supplemented into 
extruded breakfast cereal 
prepared under different screw 
speeds and barrel temperature.

Notes: Results are shown as 
mean ± standard error of 
the mean (n = 3). Bars with 
different letters are statistically 
different (p > 0.05).
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higher than expected, i.e. ~200% for all the parameters used (Figure 4). Analysis of the non-
supplemented cereal subjected to the extrusion process contained only approximately 0.24% w/w RS2 
(data not shown), whereas the prebiotic-supplemented extruded products resulted in RS2 levels of 
approximately 2.30 ± 0.33%.

The effects of temperature, pH, and reducing sugars on the prebiotic stability were also analyzed. FOS 
was stable at the highest pH (4.0), regardless of the sweeter composition (Figure 5). However, recoveries 
of less than 70% were obtained at pH 3.0 and 3.5 independent of the sweetener composition. In 
particular, FOS decreased significantly (to 37%) when exposed to pH 3.0 and 1:1 sucrose and corn syrup 
solids. Inulin was stable regardless of the pH or sweetener composition (Figure 6). The lowest inulin was 

Figure 3. Percent recovery 
of GOS supplemented into 
extruded breakfast cereal 
prepared under different screw 
speeds and barrel temperature.

Notes: Results are shown as 
mean ± standard error of 
the mean (n = 3). Bars with 
different letters are statistically 
different (p > 0.05).
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Figure 4. Percent recovery of 
RS supplemented into extruded 
breakfast cereal prepared 
under different screw speeds 
and barrel temperature.

Notes: Results are shown as 
mean ± standard error of 
the mean (n = 3). Bars with 
different letters are statistically 
different (p > 0.05).
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recovered (90%) at 1:1 sucrose and corn syrup solids ratio, pH 3.0, which was statistically different 
(p > 0.05) from the results obtained for the pH 3.5 and pH 4.0 formulations at the same sweetener 
compositions. GOS was stable at all pH values and sweetener conditions with recoveries greater than 
95% at pH 3.0 and pH 3.5 (Figure 7). Although lower levels were obtained at pH 4.0, this outcome was 
not significantly different (p > 0.05) from the other treatments. Lastly, RS was relatively stable to the 
different low pH drink preparations. As shown in Figure 8, the lowest RS recovery (90%) occurred at pH 
4.0 and a 1:1 sucrose and corn syrup solids ratio.

4. Discussion
Interest in prebiotics as added ingredients in processed foods is increasing due to their potential to 
modulate specific members of the intestinal microbiota and confer health benefits. During processing, 
carbohydrates can undergo different changes, such as Maillard-reaction, caramelization, and 
hydrolysis. Oligosaccharides that have been enzymatically or chemically hydrolyzed are not expected 
to retain prebiotic activity considering that released sugars would be absorbed in the gastrointestinal 
tract or metabolized by the general commensal microbiota (Huebner et al., 2008). As such, it is essential 

Figure 6. Percent recovery of 
inulin supplemented in low pH 
drink prepared under different 
pH and sweetener ratios 
(sucrose:corn syrup solids 
(S:CSS)).

Notes: Results are shown as 
mean ± standard error of 
the mean (n = 3). Bars with 
different letters are statistically 
different (p > 0.05). S:CSS 1:1 S:CSS 1:2 S:CSS 2:1
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Figure 7. Percent recovery of 
GOS supplemented in low pH 
drink prepared under different 
pH and sweetener ratios 
(sucrose:corn syrup solids 
(S:CSS)).

Notes: Results are shown as 
mean ± standard error of the 
mean (n = 3).
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that prebiotics remain stable under typical food-manufacturing conditions. Thus, the interaction of the 
prebiotic with the surrounding matrix and the effect that processing might have on their stability must 
be considered in food applications.

Several studies have evaluated the chemical stability of various oligosaccharides during thermal 
and acidic conditions (Courtin et al., 2009; Huebner et al., 2008; Klewicki, 2007; L’homme, Arbelot, 
Puigserver, & Biagini, 2003; Matusek, Merész, Le, & Örsi, 2008; Wang, Sun, Cao, Tian, & Wang, 2009). For 
example, Courtin et al. (2009) studied the kinetics of glycosidic bond hydrolysis at low pH and high 
temperature, and during long-term stability for arabinoxylooligosaccharides, xylooligosaccharides 
(XOS), and FOS. However, published data remain limited on the stability of prebiotics exposed to 
different processes in a complex food matrix. In this study, we determined the processing stability of 
FOS, inulin, GOS, and RS2 during extrusion, high temperature, presence of reducing sugars, and low pH. 
Stability was determined by applying optimized extraction and analytical methods to prototype food 
products supplemented with 1% w/w prebiotic.

Extrusion is a widely utilized process to manufacture, cereals, snacks, pasta, etc. The combination of 
heat and pressure produces significant conformational changes to molecules in the food product 
(Harper & Clark, 2009). This study indicates that FOS underwent substantial degradation during this 
process, while inulin was only affected with variations in the screw speed. Several mechanisms could be 
involved in the degradation of carbohydrates during these processes. The high screw speed exposes the 
polymers to sheer stress. At lower speeds, the pressure within the extruder increases due to a higher 
screw fill exposing the molecules to high temperature and pressure for a longer time. This can result in 
chemical bond breakage (Gualberto, Bergman, Kazemzadeh, & Weber, 1997). High-temperature 
degradation of inulin (Böhm, Kaiser, Trebstein, & Henle, 2004) and FOS (Courtin et al., 2009) has been 
previously reported. However, information is limited regarding the chemical stability of FOS and inulin 
during extrusion.

High-temperature heating is a typical process used in the food industry to pasteurize beverages 
and food products. Collective data from this study and previously published reports substantiate the 
liability of FOS at typical pasteurization temperatures, especially in combination with low pH 
(Huebner et al., 2008; Wang et al., 2009). Breakage of the glycosidic bonds β-(2→1) between fructose 
units in FOS occurs rapidly at low pH and high temperature (Courtin et al., 2009). Hydrolysis is most 
likely caused by oxygen protonation in the glycosidic bond during acid hydrolysis (Voragen, 1998). 
Thermolysis of inulin in the presence of citric acid has been reported to occur at 160°C, while FOS 
completely degrades at 120°C (Christian, Manley-Harris, Field, & Parker, 2000; L’homme et al., 2003). 
In accordance, our results indicate that inulin has a higher thermostability at low pH compared to 
FOS.

GOS was stable at both high temperature and low pH when supplemented in the cereal and drink. 
Other researchers have reported on GOS stability in response to heat and acid conditions. For example, 
Klewicki (2007) showed that GOS does not undergo hydrolysis at pH 3.0 with heating at 100°C for 
10 min, and only low losses occur (5%) at a pH of 2.0. The thermostability GOS at low pH has been 
attributed to the presence of the β-glycosidic linkages (Voragen, 1998).

Although RS was not affected by either high temperature or low pH as an ingredient in the drink, the 
extrusion process itself resulted in unexpected high levels, which is not clearly understood at this point. 
We hypothesize that this unexpected increase in RS could be due to gelatinization of the high-amylose 
starches at high temperatures, such as those reached during extrusion. Upon cooling, starch undergoes 
a retrogradation process where the molecules re-associate and form tightly packed structures by 
hydrogen bonding. This form of starch is thermally stable and resistant to amylase, which is known as 
RS3 (Haralampu, 2000). Previous studies conducted in our laboratory have shown that the test method 
used for detecting RS2 is unreliable for RS3. As such, the higher numbers could be an artifact of the 
analytical method used, albeit more studies are needed to test this hypothesis. Another possibility is 
that RS1 encapsulated in the plant structure was liberated during the extrusion process (Alsaffar, 2011). 
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However, the grains used for this study were milled flour, which typically reconfigures the RS1 structure 
to the RS2 (Alsaffar, 2011). Nonetheless, these results indicate that process did affect the RS2 prebiotic, 
either in total amount and/or conformation.

This work provides important insights into the effects of processing on prebiotics supplemented 
into two very different food systems. However, further studies are needed with extended time periods 
and storage conditions commonly used for an extruded product and a low pH drink to derive shelf life 
durations. Nonetheless, it is expected that the information presented herein together with previously 
published reports will aid manufacturers in to develop suitable food processes and to select adequate 
prebiotics for the manufacture of foods with health-promoting purposes.
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