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This paper considers extremal systems of points on the unit sphere Sr ⊆ R
r+1, related

problems of numerical integration and geometrical properties of extremal systems. Extremal
systems are systems of dn = dim Pn points, where Pn is the space of spherical polynomials
of degree at most n, which maximize the determinant of an interpolation matrix. Extremal
systems for S2 of degrees up to 191 (36,864 points) provide well distributed points, and are
found to yield interpolatory cubature rules with positive weights. We consider the worst case
cubature error in a certain Hilbert space and its relation to a generalized discrepancy. We also
consider geometrical properties such as the minimal geodesic distance between points and
the mesh norm. The known theoretical properties fall well short of those suggested by the
numerical experiments.
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1. Introduction

In this paper we consider geometrical properties of point systems on the unit
sphere, and related questions of numerical integration, for so-called extremal fundamen-
tal systems. These are sets of points {x1, . . . , xd} ⊆ Sr ⊆ R

r+1 obtained by maximizing
the determinant of the interpolation matrix with respect to an arbitrary basis of Pn(S

r).

Here Sr is the unit sphere in r + 1 dimensions and Pn(S
r) is the space of spherical poly-

nomials on Sr of degree � n, or equivalently, the restriction to Sr of the polynomials on
R
r+1 of total degree �n. The requirement on d in order to make the interpolation matrix

square is d = dim Pn(S
r). For the case r = 2, which we shall especially emphasize, we

have

d = dn = (n+ 1)2
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(see, for example, [19]). The system of points {x1, . . . , xdn} is said to be fundamental
if the only polynomial in Pn(S

r) that vanishes at each point is the zero polynomial, or
equivalently, if the determinant of the interpolation matrix is nonzero. Of course it is
obvious that a system of points can be fundamental but still of very poor quality.

Our study combines theory and experiment. A general conclusion is that extremal
fundamental systems have surprisingly good integration properties if the points are used
to determine an interpolatory integration rule and also excellent geometrical properties.

The interpolatory cubature rule associated with the system of points x1, . . . , xdn ∈Sr
is the rule

Qn(f ) :=
dn∑
j=1

wjf (xj ) (1.1)

obtained by integrating exactly the (spherical) polynomial that interpolates f ∈ C(Sr) at
x1, . . . , xdn . For the case n = 2 it is known theoretically from the work of Reimer [20]
that all of the cubature weights of the rule Qn(f ) are positive, but nothing is known
theoretically for larger values of n. In the present study we shall present numerical ev-
idence leading to a conjecture that for r = 2 all the cubature weights associated with
the interpolatory rule Qn(f ) for an extremal system are positive for all n. (We study all
values of n up to n = 50, then n = 56, 63, 64, 72, 96, 127, 128 and 191. For the largest
value of n the number of different weights, all positive, is 36,864.)

An interpolatory cubature rule with all weights positive is of intrinsic interest for
numerical integration, and as well allows us to obtain an upper bound on the mesh norm.

Positive weight cubature rules for scattered data on spheres have been discussed
in [13]; for a survey see [12]. The emphasis in that work is to show that positive
weight rules with specified polynomial accuracy can exist even if the choice of the points
x1, . . . , xd is not under the control of the user. Our objective is more limited, in that for
us the point systems are determined by an algorithm, and hence are fixed. On the other
hand, because our rules are interpolatory we have no freedom in choosing the weights,
whereas in [13] there is some freedom in the choice of weights, which is exploited there
to make the weights positive.

In section 2 we discuss extremal systems, and describe briefly the computations
we employ to construct them. Section 3 describes interpolatory cubature, explains the
computation of the cubature weights wj , and discusses the error I (f ) − Qn(f ) for
interpolatory cubature, where

I (f ) :=
∫
Sr
f (x) ds(x),

with ds(x) denoting surface measure on Sr .
In section 4 we discuss the worst case cubature error for all functions f in the unit

ball B(H) of a certain Hilbert space H . The Hilbert space in question has a natural
association with the Cui–Freeden generalized discrepancy [3]. Indeed, we shall show
that the generalized discrepancy is (apart from a factor of 4π ) precisely the worst-case
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error, over all f ∈ B(H), for the special case of an equal-weight (or quasi-Monte Carlo)
cubature rule

En(f ) := 4π

dn

dn∑
j=1

f (xj ). (1.2)

Other notions of discrepancy on the sphere have been proposed (see, for example, [8]),
of which the most common is the ‘spherical cap discrepancy’. However, the generalized
discrepancy of [3] has at least one advantage over all other versions we know of, namely
that it can be easily computed, even for point systems with many thousands of points.

In our case, where the points x1, . . . , xdn are the points of an extremal system,
it seems natural to study the worst-case error also for the interpolatory cubature rule
Qn(f ). We establish experimentally that the worst-case errors with Qn(f ) and En(f )
are very similar for values of n up to n = 191.

Some geometrical properties of extremal systems are already known. One such
property, which for the case of the circle S1 traces back to Marcel Riesz [25], is that
the minimal geodesic distance between two points of an extremal fundamental system
cannot be less than π/(2n). The minimal geodesic distance between points is twice
the packing radius for identical spherical caps centered at the points. The numerical
experiments for r = 2 suggest a stronger result, in that for large n the minimal geodesic
distance approaches π/n, twice the lower bound.

A second geometrical quantity of interest is the ‘mesh norm’ of the points, which
can be defined as the smallest (spherical) radius of a covering of the sphere by spherical
caps centered at x1, . . . , xd . We are not aware of any general results for the mesh norm
of extremal fundamental systems, but one result follows from a covering theorem of
Yudin [31] as extended by Reimer [22], namely that the mesh norm is no larger than
cos−1 zn,where zn is the largest zero of P	n/2
, the Legendre polynomial of degree 	n/2
,
provided that the interpolatory cubature rule associated with the points x1, . . . , xd has all
its weights positive.

The minimum geodesic distance between pairs of points and the mesh norm are
discussed in section 5. Finally, in section 6 we give brief conclusions.

2. Extremal systems on Sr

Let {φ1, . . . , φdn} be a basis for Pn(S
r), the space of spherical polynomials on Sr

of degree �n. Then the system {x1, . . . , xdn} of points on Sr is said to be extremal
(see [19]) if it maximizes |�n|, where �n is the determinant

�n(x1, . . . , xdn) = det
(
φi(xj )

)dn
i,j=1.

The extremal system is independent of the choice of basis.
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The interest in such systems stems from the association with Lagrange interpola-
tion. Let �j be the fundamental Lagrange polynomial associated with the j th point xj of
the fundamental system {x1, . . . , xdn}, which can be written as

�j ∈ Pn

(
Sr
)
, �j (xk) = δjk, j, k = 1, . . . , dn.

It is easily seen that

�j (x) = �n(x1, . . . , xj−1, x, xj+1, . . . , xdn)

�n(x1, . . . , xj−1, xj , xj+1, . . . , xdn)
,

implying that for an extremal fundamental system we have |�j (x)| � 1 for all x ∈ Sr .
The concept appears to go back to Fekete [4] and Auerbach (see [28]), and for the spe-
cific case of the sphere to be due to Reimer [19].

Given a function f ∈ C(Sr), the unique polynomial �nf ∈ Pn(S
r) that interpo-

lates f at the points of the fundamental system {x1, . . . , xdn} can be written as

�nf =
dn∑
j=1

f (xj )�j . (2.1)

An immediate consequence is that the norm ‖�n‖∞ of the interpolation operator as a
map from C(Sr) to C(Sr), given by

‖�n‖∞ = max
x∈Sr

dn∑
j=1

∣∣�j (x)∣∣,
for the case of an extremal system satisfies ‖�n‖∞ � dn.

2.1. Reproducing kernel basis

In this subsection we restrict attention to r = 2. Let Y�,k for � = 0, . . . , n and
k = 1, . . . , 2�+ 1 denote an orthonormal real spherical harmonic basis for Pn (see [14],
for example). The ‘reproducing kernel’

Gn(x, y) =
n∑
�=0

2�+1∑
k=1

Y�,k(x)Y�,k(y), x, y ∈ S2, (2.2)

has the reproducing kernel property [19](
p,Gn(·, x)

) = p(x) for all p ∈ Pn

(
S2),

where (p, q) denotes the inner product

(p, q) =
∫
S2
p(x)q(x) ds(x).

Given a fundamental system {x1, . . . , xdn}, the reproducing kernel basis is

gj (x) = Gn(xj , x), j = 1, . . . , dn, x ∈ S2, (2.3)
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The functions gj , j = 1, . . . , dn, belong to Pn(S
2), and are linearly independent, because

the Gram matrix with elements

Gij = (gi, gj ) = Gn(xi, xj ) (2.4)

is nonsingular if {x1, . . . , xdn} is a fundamental system.
The addition theorem (see [14])

2�+1∑
k=1

Y�,k(x)Y�,k(y) = 2�+ 1

4π
P�(x · y), (2.5)

where x · y is the usual inner product in R
3, shows that Gn(x, y) is ‘bizonal’, that is its

value depends only on the angle between x and y, and that Gn(x, y) = G̃n(x · y) where

G̃n(z) = 1

4π

n∑
�=0

(2�+ 1)P�(z), z ∈ [−1, 1], (2.6)

where P�( · ) is the usual Legendre polynomial. The sum can be written in closed form
in terms of Jacobi polynomials (see [7]), but can also be conveniently computed from
(2.6) by upward recurrence of the Legendre polynomials.

The value of G̃n(1) is [19],

Gn(x, x) = G̃n(1) = dn

4π
∀x ∈ S2. (2.7)

Thus the matrix G in (2.4) has equal diagonal elements, Gii = dn/(4π) for i =
1, . . . , dn, and

trace(G) =
dn∑
j=1

λj =
dn∑
j=1

Gjj = d2
n

4π
,

where λ1, . . . , λdn are the eigenvalues of G. The mean eigenvalue of G is λavg =
dn/(4π). An upper bound on the determinant of G is achieved by G = λavgI , giving

det(G) �
(
dn

4π

)dn
. (2.8)

A lower bound is available from the work of Reimer [21], who computed the average of
det(G) over all choices of the points x1, . . . , xdn . Since our extremal systems must give
a better than average value of the determinant, this gives a lower bound of

dn!
(4π)dn

� det(G), (2.9)

where the quantity on the left is Reimer’s average. It has been observed, see [30], that
calculated values of det(G) for extremal systems are much closer to the upper than the
lower bounds.
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2.2. Calculating extremal systems

Reimer and Sündermann [24] proposed a Remez-like algorithm based on finding
maxx∈S2 �j (x) for calculating extremal systems, and give results for n = 1, . . . , 6. For
the present computation of extremal systems it seems convenient, following [30], to
proceed in a different way. It follows from (2.2) that the matrix G defined by (2.4)
can be written as G = ATA, where A is the basis matrix obtained from the spherical
harmonic basis, see [30]. Clearly G is positive semi-definite for any point set, and
det(G) = det(A)2 � 0, so an extremal system can be obtained by maximizing the
determinant of the symmetric positive definite matrix G.

Instead of maximizing det(G) we maximize

ψ(x1, . . . , xdn) = log det(G), (2.10)

where log denotes the natural logarithm, in this way avoiding problems of overflow. As
G is rotationally invariant, the first point x1 is conveniently fixed at the north pole and
the second point x2 on the prime meridian, as in [5,30]. A spherical parametrization
θj ∈ [0, π ] and φj ∈ [0, 2π) of the points xj , j = 1, . . . , dn, then has 2dn − 3 variables.
The gradient of ψ can be calculated through the use of

∇xjψ(x1, . . . , xdn) = 2
dn∑
k=1

xkG
−1
kj Ġkj ,

where Ġkj = G̃′
n(xk · xj ). The function G̃n(z) in (2.6) is only defined for z ∈ [−1, 1],

so the points xj must lie on the unit sphere. Optimization methods for problems with
nonlinear constraints (such as xj · xj = 1) often make better progress by allowing vari-
ables to move off the constraints, but that is not allowable in this case. Working with
the spherical parametrization of the points xj , j = 1, . . . , dn, avoids this difficulty.
An unconstrained problem is produced by ignoring the simple bounds θj ∈ [0, π ] and
φj ∈ [0, 2π) and using periodicity to map the spherical parameters back to these ranges.
Care must be exercised in doing this when using an optimization method that updates
information based on differences in iterates (for example, quasi-Newton methods).

Both a restarted conjugate gradient algorithm, followed by a Newton method using
a finite difference approximation to the Hessian and a limited memory BFGS method
([15] for example) were used to maximize ψ . This only finds a local maximizer. The
algorithm is then tried from several different starting points including the equal area
points [18], the generalized spiral points [26], the minimum energy points of Fliege and
Maier [5], the spherical designs of Hardin and Sloane [9,10], and randomly generated
points, and the best final value selected. We have observed many different local maxima
with relatively little difference in the values of ψ . Deterministic methods for global
optimization, for example, [11], can be tried for small numbers of points, as in [27], but
are not realistic for large numbers of points.

The calculated values of log det(G) for a typical sample of degrees, along with the
lower and upper bounds from (2.8) and (2.9), are given in table 1. The column labelled
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Table 1
Log det(G) for some of the computed extremal systems, and bounds.

n dn log(dn!/(4π)dn) R & S log det(G) log((dn/4π)dn)
lower bound upper bound

1 4 −6.95 −4.58 −4.58 −4.58
2 9 −9.98 −3.21 −3.00
3 16 −9.82 3.39 3.39 3.87
4 25 −5.27 16.00 16.14 17.20
5 36 4.60 35.96 36.17 37.89
6 49 20.55 63.39 64.09 66.68
7 64 43.18 100.69 104.18
8 81 73.05 146.19 150.94
9 100 110.64 201.56 207.41

10 121 156.35 266.32 274.04
16 289 620.88 885.26 906.13
32 1089 3774.52 4768.27 4859.11
48 2401 10215.34 12399.56 12611.53
64 4225 20360.09 24203.22 24579.99
96 9409 52869.00 61398.34 62272.50

128 16641 102990.28 118065.05 119625.50
191 36864 257463.11 290802.67 294320.94

R & S are the values for the point systems reported by Reimer and Sündermann [24]. The
present values are all at least as large, and therefore at least as good as those calculated
by Reimer and Sündermann, and are better for n = 4, 5, 6.

Figure 1 gives a picture of the calculated point set for n = 64, with dn = 4225
points. A Delaunay triangulation (see [2,16]) has been added to make the picture easier
to comprehend. Clearly the triangles are remarkably regular in size and shape.

The computed points and cubature weights of the (approximate) extremal systems
are given at the web site http://www.maths.unsw.edu.au/~rsw/Sphere for
all the values of n from 1 to 51, then for n = 56, 63, 64, 72, 96, 127, 128, and 191. It
should be noted that the computations for the larger values of n are extremely demanding
on computer resources, especially memory. For the largest value of n, n = 191, the
matrixG is a dense 36,864 by 36,864 symmetric matrix, whose determinant is optimized
as a function of more than 73,000 variables. Only very limited attempts have been made
to find the global maximum for the larger values of n. The calculated values always
provide lower bounds on the true global maxima.

3. Interpolatory cubature

The interpolatory cubature rule corresponding to the fundamental system {x1,

. . . , xdn} ⊆ Sr can be written

Qn(f ) =
∫
Sr
(�nf )(x) ds(x) =

dn∑
j=1

wjf (xj ),
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Figure 1. Computed extremal system for n = 64, dn = 4225.

where from (2.1)

wj =
∫
Sr
�j (x) ds(x).

The practical computation of the weights proceeds differently. The reproducing
kernel basis functions gj (x) = Gn(xj , x), where Gn(x, y) is the reproducing kernel for
Pn(S

r) [19], satisfy ∫
Sr
gj (x) ds(x) = 1 for j = 1, . . . , dn,

so the condition that the cubature rule (1.1) is exact for all polynomials in Pn can be
written as

Gw = e, (3.1)

wherew is the vector of cubature weights, e is the vector of 1’s in R
dn andG is the matrix

defined in (2.4). In particular the cubature rule is exact for the constant polynomial
1 ∈ Pn, so

∑dn
j=1wj = |Sr |. Hence the average weight is wavg = |Sr |/dn = 1/λavg,

or wavg = 4π/dn for r = 2. The computed minimum and maximum values of the ratio
of the cubature weights to the average weight for the extremal systems of section 2 are
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Figure 2. Scaled minimum and maximum cubature weights for the computed extremal systems.

plotted in figure 2. It is notable that all the computed weights lie between 1/2 and 3/2
of the mean weight.

It should be said that for other point systems and for the larger values of n in table 1
it is often impossible to solve for the weights using (3.1), because of ill-conditioning of
the matrix G. It is a feature of extremal systems that the matrix G is remarkably well
conditioned. For example, the 1-norm condition numbers κ1(G) of the final matrix G
for n = 64, 96, 128 and 191 respectively are only 3.2 × 103, 1.4 × 104, 2.8 × 104 and
1.2 × 105.

We have already noted that the average eigenvalue of G is given by λavg = dn/4π ,
and so is fixed in advance for any point system. The process of maximizing the log
of the determinant of G (and hence of maximizing the determinant itself) can therefore
be interpreted as trying to make all the eigenvalues as close as possible to the average
eigenvalue. In the case n = 1 this can be achieved: for in this case the extremal system
is a regular tetrahedron, and the matrix G is diagonal. It is known that for r � 2 and
n � 3 that the matrix G cannot be diagonal [19], since otherwise one would have a
contradiction to a famous theorem of [1] on the non-existence of tight spherical designs.
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The error for an interpolatory cubature rule is

I (f )−Qn(f ) =
∫
Sr
(f −�nf ) ds(x),

where �nf is the interpolant of f . Let

En(f ) = inf
p∈Pn(Sr )

‖f − p‖∞

denote the error of best uniform approximation. For any polynomial p in Pn(S
r) we see

that

‖f −�nf ‖∞ �
∥∥(I −�n

)
(f − p)∥∥∞ �

(
1 + ‖�n‖∞

)
En(f ),

where I is the identity operator. This gives a bound∣∣I (f )−Qn(f )∣∣ �
∣∣Sr ∣∣(1 + ‖�n‖∞

)
En(f ). (3.2)

The growth of the interpolation operator norm ‖�n‖∞ was studied in [30]. The numer-
ical experiments suggest that the growth in ‖�n‖∞ is much less than the upper bound
dn = (n+1)2 for n up to 50. Estimates of En(f ) are available from the so-called Jackson
theorems for the sphere, see [17].

A better bound follows from the property that Qn(f ) is exact for all polynomials
of degree �n:∣∣I (f )−Qn(f )∣∣ = ∣∣(I −Qn)(f − p)∣∣ �

(‖I‖ + ‖Qn‖
)‖f − p‖∞,

giving

∣∣I (f )−Qn(f )∣∣ �
(∣∣Sr ∣∣+ dn∑

j=1

|wj |
)
En(f ),

or if the weights are all positive∣∣I (f )−Qn(f )∣∣ � 2
∣∣Sr∣∣En(f ).

4. Worst-case cubature error bound in a Hilbert space

The most convenient version of the generalized discrepancy of a set of points
x1, . . . , xd ∈ S2 has the explicit form

D(x1, . . . , xd) = 1

2
√
πd

[
d∑
j=1

d∑
k=1

(
1 − 2 log

(
1 +

√
1 − xj · xk

2

))]1/2

(4.1)

given by Cui and Freeden [3]. We show that D(x1, . . . , xd) has a natural interpreta-
tion, as the worst-case error (apart from a constant factor) for the equal-weight cubature
rule (1.2) applied to a function f ∈ B(H), where B(H) is the unit ball in a certain
Hilbert space H.
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In this section we define the Hilbert space H, and show how the worst-case er-
ror can be computed for any cubature rule (1.1) with x1, . . . , xd ∈ Sr . At the end we
establish the connection with the generalized discrepancy (4.1).

We fix r = 2, and let B0, B1, . . . be a sequence of positive real numbers with the
property that there exist constants c1, c2 > 0 such that

B0 = 1, c1�
3 � B� � c2�

3 for � � 1. (4.2)

Then for f, g ∈ C∞(S2) we may define the inner product

(f, g)H =
∞∑
�=0

2�+1∑
k=1

B�f̂�kĝ�k, (4.3)

and norm

‖f ‖H = (f, f )1/2H =
( ∞∑
�=0

2�+1∑
k=1

B�f̂
2
�k

)1/2

,

where

f̂�k =
∫
S2
f (x)Y�,k(x) ds(x).

The Hilbert space H may then be defined as the completion of C∞(S2) with respect to
this inner product. The norm ‖f ‖H is clearly equivalent to the H 3/2(S2) norm, where
the Hs(S2) norm is defined (following [6]) by

‖f ‖s =
( ∞∑
�=0

2�+1∑
k=1

(
�+ 1

2

)2s

f̂ 2
�k

)1/2

.

Later we shall make a specific choice for B�, following [3], to simplify the calcu-
lations.

Associated with the inner product (4.3) and the Hilbert space H is the kernel

K(x, y) =
∞∑
�=0

2�+1∑
k=1

1

B�
Y�,k(x)Y�,k(y) =

∞∑
�=0

2�+ 1

4πB�
P�(x · y), (4.4)

where in the last step we used the addition theorem (2.5). Note that the assumption (4.2)
ensures that the sum in (4.4) exists for all x, y ∈ S2.

The kernel K(x, y) is in fact the reproducing kernel in the Hilbert space H, that is
to say, for each f ∈ H and each y ∈ S2 we have

K(·, y) ∈ H, (
f,K(·, y))

H
= f (y). (4.5)

The latter property follows because by definition the left side of this equation is

∞∑
�=0

2�+1∑
k=1

B�f̂�k
Y�,k(y)

B�
=

∞∑
�=0

2�+1∑
k=1

f̂�kY�,k(y) = f (y).
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For a given f ∈ H, the reproducing kernel property (4.5) allows us to express the
error for a given cubature rule Qn(f ) as

I (f )−Qn(f ) = (f, ξ)H ,
where ξ (the ‘representer’ of the error) is given by

ξ(x) =
∫
S2
K(x, y) ds(y) −

dn∑
j=1

wjK(x, xj ). (4.6)

In turn it follows that the worst-case error for all f in B(H) is

e(Qn) : = sup
{|I (f )−Qn(f )|: ‖f ‖H � 1

}
= sup

{|(f, ξ)H | : ‖f ‖H � 1
}

= ‖ξ‖H
= (ξ, ξ)1/2H
=
[ ∫

S2

(∫
S2
K(x, x′) ds(x)

)
ds(x′)− 2

dn∑
j=1

wj

∫
S2
K(x, xj ) ds(x)

+
dn∑
j ′=1

dn∑
j=1

wjwj ′K(xj , xj ′)

]1/2

,

where in the last step we used (4.6) and the reproducing kernel property (4.5). The last
expression can be simplified, using∫

S2
K(x, x′) ds(x) = 1, for x′ ∈ S2,

giving, with
∑dn
j=1wj = 4π ,

e(Qn) =
[
−4π +

dn∑
j ′=1

dn∑
j=1

wjwj ′K(xj , xj ′)

]1/2

. (4.7)

Following [3], we now make a special choice for the sequence (B�), namely

B� =
{

1 if � = 0,

(2�+ 1)�(�+ 1) for � = 1, 2, . . . ,
(4.8)

for the very good reason that this choice leads to a closed form expression for the repro-
ducing kernel K: for (4.4) now gives

K(x, y) = 1

4π
+ 1

4π

∞∑
�=1

P�(x · y)
�(�+ 1)

,
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which with the identity

∞∑
�=1

P�(z)

�(�+ 1)
= 1 − 2 log

(
1 +

√
1 − z

2

)
becomes

K(x, y) = 1

2π

(
1 − log

(
1 +

√
1 − x · y

2

))
.

With this simple formula, the worst-case error e(Qn) for the cubature rule Qn can be
computed easily from (4.7).

For the special case of the equal weight rule given by (1.2) it is easily checked that
the worst-case error is related to the generalized discrepancy by

e(En) = 4πD(x1, . . . , xd). (4.9)

A theoretical bound on e(Qn) is easily obtained for any ruleQn which is exact for
polynomials of degree � n, and which has positive weights.

Theorem 4.1. For n � 1, let Qn be a positive weight cubature rule on S2 which inte-
grates exactly all p ∈ Pn.With B� defined by (4.8),

e(Qn) �
√

4π

(n+ 1)1/2
=

√
4π

d
1/4
n

.

Proof. From (4.7) and (4.4) we have

e(Qn)
2 = −4π +

∞∑
�=0

2�+1∑
k=1

1

B�

(
dn∑
j=1

wjY�,k(xj )

)2

.

Now for � � n we have

dn∑
j=1

wjY�,k(xj ) = Qn(Y�,k) = I (Y�,k) = δ�0I (Y0,k) = √
4πδ�0,

while for � � n+ 1 the addition theorem (2.5) and P�(x · y) � 1 ∀x,y give

2�+1∑
k=1

(
dn∑
j=1

wjY�,k(xj )

)2

=
dn∑
j=1

wj

dn∑
j ′=1

wj ′
2�+ 1

4π
P�(xj · xj ′)

� (2�+ 1)4π.

We therefore obtain, using (4.8),

e(Qn)
2 �

∞∑
�=n+1

(2�+ 1)4π

B�
= 4π

∞∑
�=n+1

1

�(�+ 1)
= 4π

n+ 1
. �
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Table 2
Worst case errors for the interpolatory rule Qn and equal-weight rule En, and generalized discrepancy for

some computed extremal systems.

n dn e(Qn) e(En) Cui and Freeden
discrepancy D

1 4 1.146686 1.146686 0.09125
2 9 0.620391 0.619657 0.04931
4 25 0.287603 0.287061 0.02284
8 81 0.118700 0.118600 0.00944

16 289 0.045816 0.045690 0.00364
32 1089 0.016924 0.016890 0.00134
48 2401 0.009360 0.009347 0.00074
64 4225 0.006129 0.006118 0.00049
96 9409 0.003361 0.003361 0.00027

128 16641 0.002194 0.002190 0.00017
191 36864 0.001210 0.001208 0.00009

Table 2 gives, for typical n, the worst-case errors for the interpolatory rule Qn and
the equal-weight rule En. Clearly there is very little difference. It also gives the Cui
and Freeden generalized discrepancy D for the computed extremal systems, related to
e(En) by (4.9). These values are better than all the values reported by Cui and Freeden
for values of d up to about 450 and for a variety of point systems. They are close to, but
still better than, the best results in [3], which are those for a Hammersley point sequence
with respect to cos θ and φ.

The present discussion allows us to express these conclusions in terms of worst-
case errors: the interpolatory cubature rules based on extremal systems have smaller
worst-case errors in B(H) than all of the quasi-Monte Carlo rules considered in [3].

The error bound in theorem 4.1 can be used for the interpolatory cubature rule
based on the extremal systems of section 2, because all the weights wj were found to be
positive. On the other hand, the bound in theorem 4.1 greatly overestimates the error:
it gives a bound of order O(d−1/4

n ), whereas a least squares fit accurately approximates
e(Qn) by 3.217d−0.7503

n , with an exponent of approximately −3/4.

5. Geometric properties

This section discusses two geometric properties of point systems on the sphere,
namely the minimum geodesic distance between points (twice the packing radius) and
the mesh norm (covering radius).

5.1. Minimum geodesic distance between points

The geodesic distance between points x and y on Sr is dist(x, y) = cos−1(x · y),
where x · y is the usual inner product in R

r+1.
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Reimer [19] has established the following result for the minimum distance between
pairs of points of an extremal system.

Theorem 5.1. For n � 1, let {x1, . . . , xdn} ⊆ Sr be the points of an extremal system for
Pn(S

r). Then

cos−1(xj · xk) � π

2n
for j �= k.

The proof proceeds by observing that �j (the fundamental Lagrange polynomial
associated with xj ), when restricted to the great circle defined by xj and xk (on the
assumption that xj · xk �= −1), is a trigonometric polynomial of degree n, which takes
a maximum at xj (since �j (xj ) = 1 and |�j (x)| � 1 for all x ∈ Sr) and vanishes at xk.
The result then follows from an analogous result by Marcel Riesz [25] for trigonometric
polynomials of degree � n on the circle S1.

In figure 3 we show the minimum geodesic distance between pairs of points in our
extremal systems as a function of n. For n = 1 the points of the regular tetrahedron have

Figure 3. Minimum angle between points for the computed extremal systems.
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xj · xk = −1/3 for j �= k or cos−1(xj · xk) ≈ π/1.644. We see that the theorem holds
without much room to spare for small values of n, but that as n increases the minimum
geodesic distance between pairs appears to approach π/n. We have no explanation of
this result, but perhaps the following observation gives some insight. The proof in effect
makes use of the fact that the most extreme behaviour of a trigonometric polynomial of
degree n or less on the great circle defined by xj and xk is that exhibited by the restriction
of cos(n(cos−1(x ·xj ))) to the great circle. However, this trigonometric polynomial does
not at all have the character of the fundamental Lagrange (trigonometric) polynomial for
the circle S1 with equally spaced interpolation points, which is given by

Lj(θ) = sin(n+ 1/2)θ

(2n+ 1) sin(1/2)θ
,

and which has its first zero at θ = cos−1(x · xj ) = π/n. The numerical results in
figure 3 seem to suggest that for large n the fundamental Lagrange polynomial �j , when
restricted to the great circle defined by xj and xk, behaves for x near xj more like Lj(θ)
than like cos(n(θ)).

5.2. Mesh norm

The ‘mesh norm’ of a set of points x1, . . . , xd ∈ Sr may be defined as

h(x1, . . . , xd) := max
x∈Sr

min
j=1,...,d

cos−1(x · xj ).

In words, it is the largest geodesic distance from a point x ∈ Sr to the nearest mesh
point xj . An equivalent definition is that h(x1, . . . , xd) is the minimum (spherical) radius
of a covering of Sr by spherical caps of equal spherical radius centred at x1, . . . , xd .

The mesh norms for the calculated extremal systems are plotted in figure 4.
We are not aware of any theoretical results for the mesh norms of extremal funda-

mental systems, but recently Reimer [22, theorem 4.1] obtained an upper bound on the
mesh norm of any system associated with a positive-weight cubature rule which inte-
grates exactly all polynomials up to some specified degree. Reimer’s result is applicable
to all of the extremal fundamental systems reported in section 2, because in every case
the interpolatory cubature rule associated with these systems (which integrates exactly
all polynomials of degree up to n) was found to have positive weights. Reimer’s result,
adapted to the present circumstances, is as follows.

Theorem 5.2. For n � 1, let x1, . . . , xdn be a fundamental system of points on S2 such
that the associated interpolatory cubature rule has all its weights positive. Then

h(x1, . . . , xdn) � cos−1 zn,

where zn is the largest zero of P	n/2
.
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Figure 4. Mesh norm h(x1, . . . , xd ) for the computed extremal systems.

Reimer’s result is a slight generalization of a result of Yudin [31] for spherical
designs, which may be defined as point systems for which equal-weight cubature rules
integrate exactly all spherical polynomials up to some degree.

Reimer [23] notes the result [29, p. 186] that the largest zero of Pµ behaves asymp-
totically like cos j0/µ, where j0 is the smallest positive zero of the Bessel function J0.
This gives h(x1, . . . , xd) ∼ 2j0/n ≈ 4.8097/n. From figure 4 we observe that this
bound overestimates the true mesh norm by something less than a factor of 2.

6. Conclusions

The extremal systems computed here, for n as large as 191, turn out to have ex-
cellent geometrical properties. The associated interpolatory integration rules have all
weights positive and good approximation properties. Some properties are known theo-
retically (such as the positivity of the weights for the case n = 2), but many properties
suggested by the numerical experiments are not known. The most current points and
weights are available from http://www.maths.unsw.edu.au/~rsw/Sphere.
Further research on extremal systems is clearly needed.
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