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Abstract. Let C be a polygonal cycle on n vertices in the plane. A ran-
domized algorithm is presented which computes in O(n log3 n) expected
time, the edge of C whose removal results in a polygonal path of smallest
possible dilation. It is also shown that the edge whose removal gives a
polygonal path of largest possible dilation can be computed in O(n log n)
time. If C is a convex polygon, the running time for the latter problem
becomes O(n). Finally, it is shown that for each edge e of C, a (1 − ε)-
approximation to the dilation of the path C \ {e} can be computed in
O(n log n) total time.

1 Introduction

Given a (geometric) network, a natural question to ask is what happens to the
quality of the network when some connections are removed. In case some links in
a traffic network have to be shut down (e.g., due to budget considerations), we
may want to know which edges of the network should be removed so as to not
decrease the quality of the new network too much. Alternatively, we may want to
know the most critical edge in the network, i.e., the edge whose removal causes
the largest possible decrease in the quality of the new network. We consider a
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simple variant of this problem: The initial network is a polygonal cycle C in the
plane, and we have to remove one single edge from C. We measure the quality
of the resulting polygonal path P by its dilation (or stretch factor) δP .

Recall that the dilation between two distinct vertices x and y of the path
P is defined as δP (x, y) := dP (x, y)/|xy|, where dP (x, y) denotes the Euclidean
length of the subpath of P connecting x and y, and |xy| denotes the Euclidean
distance between x and y. For convenience we define δP (x, x) := 1. The dilation
between two sets X and Y of vertices of P is defined as

δP (X, Y ) := max{δP (x, y) | x is a vertex of X , y is a vertex of Y },

the dilation of a set X of vertices of P is defined as δP (X) := δP (X, X), and
the dilation of the path P is defined as

δP := δP (P ) = max{δP (x, y) | x and y are vertices of P}.

The problem we consider is the following: We are given a polygonal cycle
C = (p0, . . . , pn−1, p0) whose n vertices p0, . . . , pn−1 are points in the plane.
We want to determine the edge e of C for which the dilation of the polygo-
nal path C \ {e} is minimized or maximized. In other words, if we denote by
Pi (for 0 ≤ i < n) the polygonal path obtained by removing the edge (pi, pi+1)
from C (where indices are to be read modulo n), then our goal is to compute
δmin
C := min0≤i<n δPi and δmax

C := max0≤i<n δPi . We will prove the following
results :

Theorem 1. Given a polygonal cycle C on n vertices in the plane, we can
compute δmin

C in O(n log3 n) expected time.

Theorem 2. Given a polygonal cycle C on n vertices in the plane, we can
compute δmax

C in O(n log n) time. If C is a convex polygon, δmax
C can be computed

in O(n) time.

Theorem 3. Given a polygonal cycle C = (p0, . . . , pn−1, p0) on n vertices in
the plane and a constant ε > 0, in O(n log n) time, we can compute a se-
quence t0, . . . , tn−1, t

∗ of real numbers, such that δPi/(1 + ε) ≤ ti ≤ δPi for each
i = 0, 1, . . . , n − 1 and δmin

C /(1 + ε) ≤ t∗ ≤ δmin
C .

In Sect. 2, we prove Theorem 1. We start in Sect. 2.1 by describing an approach
of [1] to estimate the dilation of a polygonal path; see also [7]. These ideas will
play a central role in the algorithm we give in Sect. 2.2 for solving a decision
problem associated with the problem of computing δmin

C ; the algorithm solving
this decision problem runs in O(n log2 n) expected time. In Sect. 2.3, we give a
simple randomized approach which reduces the problem of computing δmin

C to an
expected number of O(log n) decision problems of Sect. 2.2. Thus, this reduction
incurs a logarithmic slowdown of the decision procedure.

In Sect. 3, we prove Theorem 2. We first show that for two fixed vertices x
and y of C, it is easy to determine the largest possible dilation between them
if one edge is removed from C. We then show that, in order to compute δmax

C ,
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it suffices to consider pairs (x, y) of vertices whose distance is at most twice the
closest-pair distance in the vertex set of C. Since there are only O(n) such pairs
(x, y), this leads to an efficient algorithm for computing δmax

C .
Theorem 3 is proved in Sect. 4. The algorithm uses the well-separated pair

decomposition of [2] and a result of [10], which states that this decomposition
can be used to reduce the problem of approximating the dilation of a Euclidean
graph to the problem of computing the shortest-path distances between O(n)
pairs of vertices. This result, together with the observation that for any two
vertices x and y of C, the sequence δP0(x, y), . . . , δPn−1(x, y) contains only two
distinct values, leads to an O(n log n)–time algorithm that approximates the
dilation of each path Pi as well as the minimum dilation δmin

C .

2 Dilation-Minimal Edge Deletion in a Polygonal Cycle

2.1 Estimating the Dilation of a Polygonal Path

Our algorithm for computing the edge of a polygonal cycle whose removal min-
imizes the dilation of the resulting path uses as a subroutine parts of the algo-
rithm of [1] that decides if the dilation of a polygonal path is less than some
given threshold κ > 1; see also [7]. We describe those parts of this algorithm
which are relevant for us.

Let P = (p0, . . . , pn−1) be a polygonal path whose n vertices are points in the
plane and let κ ≥ 1 be a real number. The idea is to use a lifting transformation
that rephrases the decision problem, i.e., the problem of deciding if δP < κ, into
a point-cone incidence-problem in R

3.
We denote the first and last vertices of a polygonal path P by f(P ) and l(P ),

respectively. Thus, f(P ) = p0. For each vertex p of P , we define the weight of
p to be ωP (p) := dP (p, f(P ))/κ. We map each vertex p = (xp, yp) of P to the
point hP (p) := (xp, yp, ωP (p)) ∈ R

3. Let C denote the three-dimensional cone
C := {(x, y, z) ∈ R

3 | z =
√

x2 + y2}. We map each vertex p of P to the cone

CP (p) := C ⊕ hP (p) = {c + hP (p) | c ∈ C}.

If p and q are vertices of P , then we say that p is before q on P , if dP (p, f(P )) <
dP (q, f(P )); this will be denoted as p <P q. We then get the following lemma.

Lemma 1. For any two vertices p and q of P with p <P q, we have

δP (p, q) < κ if and only if hP (q) lies below CP (p).

Proof. By straightforward algebraic manipulation, we have

δP (p, q) < κ ⇐⇒ dP (q, p)
|qp| < κ

⇐⇒ dP (f(P ), q) − dP (f(P ), p)
|qp| < κ

⇐⇒ dP (f(P ), q)
κ

< |qp| + dP (f(P ), p)
κ

⇐⇒ ωP (q) < |qp| + ωP (p). �	
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If X and Y are subsets of the vertex set of P , then we say that X is before
Y on P , if dP (x, f(P )) < dP (y, f(P )) for all x ∈ X and all y ∈ Y ; this will
be denoted as X <P Y . For any subset X of the vertex set of P , we define
CP (X) := {CP (p) | p ∈ X} and hP (X) := {hP (p) | p ∈ X}.

The lower envelope of a set S of bi-variate functions will be denoted as L(S).
Lemma 1 immediately gives the following result.

Lemma 2. For any two subsets X and Y of the vertex set of P with X <P Y ,
we have δP (X, Y ) < κ if and only if hP (Y ) lies below L(CP (X)).

The minimization diagram of CP (X), i.e., the projection of the lower envelope
L(CP (X)) onto the xy-plane, is the additively weighted Voronoi diagram VP (X)
of X with respect to the weight function ωP . If the point y of Y is located in the
Voronoi region of the point x of X , then hP (y) is below L(CP (X)) if and only if
hP (y) is below CP (x).

This yields an efficient algorithm to verify if δP (X, Y ) < κ for two subsets X
and Y of the vertex set of P having the property that X <P Y : The Voronoi
diagram VP (X) can be computed in O(|X | log |X |) time, c.f. [4]. Within the same
time bound, this diagram can be preprocessed into a linear size data structure
that supports O(log |X |)-time point-location queries, c.f. [6]. This structure can
now be queried with each point y of Y to determine which point x of X contains
y in its Voronoi cell. Once this is known, the check if hP (y) is below CP (x)
can be performed in O(1) time. The total running time of this algorithm is
O((|X | + |Y |) log |X |).

2.2 The Decision Problem

Let C be a polygonal cycle on a set of n vertices in the plane and let κ > 1 be a
real number. In this section, we present an algorithm that decides for each edge
e of C, whether or not the dilation of the polygonal path C \ {e} is less than κ.
We first describe the overall approach. Then, we give two implementations that
yield running times of O(n log3 n) and O(n log2 n), respectively.

If R = (r1, . . . rm) and Q = (q1, . . . , qn) are two polygonal paths having the
property that l(R) = rm = q1 = f(Q), then we denote the concatenation of R
and Q by R ⊕ Q. Thus, R ⊕ Q is the polygonal path (r1, . . . , rm, q2, . . . , qn).

In order to facilitate a recursive approach, we will consider the following more
general problem: Assume that (the edge set of) C is partitioned into two polyg-
onal paths T (the top) and B (the bottom) such that δT < κ. We want to decide
for each edge e of B, whether or not the dilation of C \ {e} is less than κ. If we
take T = {p}, where p is an arbitrary vertex of C, then we obtain the original
problem.

The details of the decision algorithm is presented in Algorithm 2.1. The cor-
rectness of Algorithm 2.1 is obvious. We will show below that after a preprocess-
ing step taking O(n log2 n) expected time, we can decide in O(|B| log n) time
if δT⊕Br < κ and δBl⊕T < κ, where |B| denotes the number of edges on B.
The expected running time t(n) of the algorithm can therefore be written as



92 H.-K. Ahn et al.

Algorithm 2.1. Decision-Algorithm

InputPaths T and B and κ > 1.
Outputyes or no for every edge of B.
if |B| = 1 then1

return yes for the edge in B;2

else3

l := the first vertex of T ; /* in counterclockwise order along C */4

r := the last vertex of T ; /* in counterclockwise order along C */5

m := the middle vertex of B;6

Br := the part of the path B between r and m;7

Bl := the part of the path B between m and l;8

if δT⊕Br < κ then Decision-Algorithm(T ⊕ Br, Bl, κ);9

else return no for each edge e of Bl;10

if δBl⊕T < κ then Decision-Algorithm(Bl ⊕ T, Br, κ);11

else return no for each edge e of Br;12

end13

t(n) = O(n log2 n) + r(n) where the function r satisfies the recurrence

r(b) ≤ 2 · r(b/2) + O(b log n).

This implies that t(n) = O(n log2 n).
Figure 1 illustrates the recursion tree of Algorithm 2.1. The nodes of the

tree are labeled according to a BFS-numbering where the first (left) child of a
node corresponds to the recursive call in Step 11 and the second (right) child
corresponds to the recursive call in Step 9. Later, we will refer to a recursive call
corresponding to the node with BFS-number i as the i-th step of the recursion.
For each node i, the current top and bottom paths are denoted by Ti and Bi,
respectively. These paths can be computed as follows. Assume that the polygonal
cycle C is given by the array C[0, . . . , n] and that B consists of b vertices. Then
B1 = C[0, . . . , b − 1] and T1 = T . For i ≥ 1, if Bi = C[l, r], then B2i :=
C[l, l+
 r−l

2 �], B2i+1 := C[l+
 r−l
2 �+1, r], T2i := B2i+1⊕Ti, and T2i+1 := Ti⊕B2i.

Observe that each top path Tj is the concatenation of O(log n) bottom paths.

A First Implementation. We will show that after an O(n log2 n)–time pre-
processing, we can decide if (i) δT⊕Br < κ and (ii) δBl⊕T < κ in O(|B| log2 n)
time. Later, we will give a faster implementation. Since (ii) is symmetric to (i),
we only show how to decide whether or not (i) holds.

Suppose we have a polygonal path T ′ with δT ′ < κ that is given as a list of k
polygonal paths (B′

1, . . . , B
′
k) such that l(B′

i) = f(B′
i+1) for 1 ≤ i < k. Thus, we

have T ′ = B′
1 ⊕ . . . ⊕ B′

k. Given a new polygonal chain B′ with f(B′) = l(T ′),
we want to decide if δT ′⊕B′ < κ.

Observe that δT ′⊕B′ < κ if and only if (a) δT ′ < κ, (b) δB′ < κ, and
(c) δT ′⊕B′(T ′, B′) < κ. We are given that (a) holds. Using the algorithm



Dilation-Optimal Edge Deletion in Polygonal Cycles 93

1

2

4 5

10 11

3

6

... ...

7

T1

T1 = T

T1

T2 T2

T5 T5

T3 T3

G4

B4

G2 B2

B1 = B

B3 G3

p0

B7

G7

G6

B6

G5

B5

B10
G10 B11

G11

Fig. 1. The recursion tree. Note that G2i := B2i+1 and G2i+1 := B2i.

of [1], we can decide in O(|B′| log |B′|) time whether or not (b) holds. Thus,
it remains to show how to verify whether or not (c) holds.

Obviously, δT ′⊕B′(T ′, B′) < κ if and only if δT ′⊕B′(B′
i, B

′) < κ for each i with
1 ≤ i ≤ k. Since B′

i <T ′⊕B′ B′, we know from Lemma 2 that δT ′⊕B′(B′
i, B

′) < κ
if and only if hT ′⊕B′(B′) lies below L(CT ′⊕B′(B′

i)).
Assume that for each path B′

i, we have the total accumulated scaled length

�i :=
i∑

j=1

dB′
j
(l(B′

j), f(B′
j))/κ

and the additively weighted Voronoi diagram VB′
i
(B′

i) that has been augmented
with a data structure to support point-location queries in tloc time per query.
Recall that VB′

i
(B′

i) is the projection of the lower envelope L(CB′
i
(B′

i)) onto the
xy-plane. It is defined with respect to the weights ωB′

i
(p) = dB′

i
(p, f(B′

i))/κ.
Since ωT ′⊕B′(p) = ωB′

i
(p)+�i−1 for all p ∈ B′

i, we have ωT ′⊕B′(p)−ωT ′⊕B′(q) =
ωB′

i
(p) − ωB′

i
(q) for all p, q ∈ B′

i. It follows that the diagram VB′
i
(B′

i) is also the
projection of the lower envelope L(CT ′⊕B′(B′

i)).
The associated point-location structure of B′

i can therefore be used to deter-
mine for each point b′ in B′, the point t in B′

i that contains b′ in its Voronoi
cell in VT ′⊕B′(B′

i). Once this is known for each point b′ in B′, we can check if
hT ′⊕B′(b′) is below CT ′⊕B′(t). To this end, we compute the weights

ωT ′⊕B′(t) = ωB′
i
(t) + �i−1 and ωT ′⊕B′(b′) = ωB′(b′) + �k.

The overall running time of this approach (excluding the preprocessing time) is
O(k|B′|tloc).

In our application, the relevant paths B′
i are the bottom paths Bi that ap-

pear in the recursive calls. As a consequence, k = O(log n), |T ′ ⊕ B′| ≤ n, and
we can precompute the required information in O(n log2 n) time by computing
all the diagrams VBi(Bi) along with the point-location data structures. Since
tloc = O(log n), it follows that the overall running time of this approach (af-
ter O(n log2 n) preprocessing time) is O(|B′| log2 n). With this implementation,
Algorithm 2.1 runs in O(n log3 n) time.
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A Faster Implementation. In the i-th step of the recursion, we split Bi

(almost evenly) into B2i and B2i+1, and compute the diagrams VB2i (B2i) and
VB2i+1(B2i+1). We then locate each point b of B2i in VB2i+1(B2i+1) to determine
which point t of B2i+1 contains b in its Voronoi cell in VB2i+1(B2i+1). We store t
in a table Tb associated with b under the key 2i + 1 that identifies the set B2i+1.
In the same way, we locate each point b of B2i+1 in VB2i(B2i) and store the
corresponding point t of B2i in a table Tb associated with b under the key 2i.

Since we perform exactly one point-location query for each point b of B1
on each level of the recursion tree, the table Tb has O(log n) entries. We can
therefore use the construction of [5] to store Tb in a perfect-hash table of size
O(log n) that supports O(1) access time. Note that in the complexity model
of [5], they assume that the entries come from a universe set and the memory is
able to randomly access each entry in constant time. Recall that the construction
of [5] is randomized and builds the hash table in O(log n) expected time.

The total time we spend on each level of the recursion tree is O(n log n), so
the total expected preprocessing time is O(n log2 n) and the total time we spend
for answering point-location queries is O(n log2 n).

In order to determine for a point b′ of B′, where B′ ⊆ B1, which point t of
B′

i contains b′ in its Voronoi cell, we find the index j for which B′
i = Bj . Then

we retrieve the entry with the key j from Tb′ . This is exactly the point t of Bj

that contains b in its Voronoi cell in VBj (Bj).
It follows that tloc = O(1), so that the overall running time of this approach

(after O(n log2 n) preprocessing time) is O(|B′| log n). With this implementation,
Algorithm 2.1 runs in O(n log2 n) expected time.

2.3 The Optimization Algorithm

We now present our algorithm that computes, for a given polygonal cycle C on
a set of n points in the plane, the value of δmin

C in O(n log3 n) expected time.
Clarkson and Shor [3] used a similar randomized approach to compute diameter
of a point set.

Step 1: Compute a random permutation of the edges of C. We denote the permutation
by e1, e2, . . . , en.
Step 2: Use the algorithm of [1] to compute the dilation of the path C \{e1} and assign
this value to κ.
Step 3: Run Algorithm 2.1 and store with each edge e of C a Boolean flag which is
true if and only if the dilation of the path C \ {e} is less than κ.
Step 4: For i = 2, 3, . . . , n, do the following: If the flag stored with ei is true , then
perform the following Steps 4.1 and 4.2:
Step 4.1: Use the algorithm of [1] to compute the dilation of the path C \ {ei} and
assign this value to κ.
Step 4.2: Run Algorithm 2.1 and store with each edge e of C a Boolean flag which is
true if and only if the dilation of the path C \ {e} is less than κ.
Step 5: Return the value of κ.
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The correctness of the algorithm follows from the fact that, after Step 4,
κ = min1≤i≤n δPi = δmin

C , where Pi is the polygonal path obtained by removing
ei from C.

Clearly, Step 1 takes O(n) time. The algorithm of [1] and, therefore, Step 2,
takes O(n log n) expected time. Each time we run Algorithm 2.1, we spend
O(n log2 n) expected time. Observe that we run this algorithm once in Step 3
and, moreover, in Step 4 each time the dilation of Pi is less than the current value
of κ. In the latter case, we also spend O(n log n) expected time to compute the
dilation of Pi. Since the edges of C are in random order, the values δP1 , . . . , δPn

are in random order as well. At the start of the i-th iteration of Step 4, the value
of κ is equal to min1≤j<i δPj . Thus, δPi < κ if and only if δPi is the minimum
of the set {δPj | 1 ≤ j ≤ i}. It follows that δPi < κ with probability 1/i. Using
the linearity of expectation, it follows that the expected number of times that
Steps 4.1 and 4.2 are performed is equal to

∑n
i=2 1/i = O(log n). Thus, the over-

all expected running time of our algorithm is O(n log3 n). This completes the
proof of Theorem 1.

3 Dilation-Maximal Edge Deletion in a Polygonal Cycle

In this section, we will prove Theorem 2. That is, we give an algorithm that
computes δmax

C = max0≤i<n δPi .
Let L be the total length of the edges of C. We define Δ(p0) := 0 and Δ(pi) :=

Δ(pi−1)+|pi−1pi| for 1 ≤ i < n. Thus, Δ(pi) is the length of the path (p0, . . . , pi)
and the shortest-path distance dC(pi, pj) between pi and pj in the cycle C is given
by dC(pi, pj) = min(|Δ(pi) − Δ(pj)|, L − |Δ(pi) − Δ(pj)|).

Consider two distinct vertices x and y of C. We obtain the largest dilation
between x and y in any path Pi, by deleting an arbitrary edge on the shorter of
the two paths in C between x and y. Thus, the following lemma holds.

Lemma 3. Let x and y be two distinct vertices of C. Then

max
0≤i<n

δPi(x, y) =
max(|Δ(x) − Δ(y)|, L − |Δ(x) − Δ(y)|)

|xy| ≥ L

2|xy| .

The next lemma states that the closest pair in the vertex set of C can be used
to obtain a 2-approximation to δmax

C .

Lemma 4. Let (p, q) be a closest pair in the vertex set of C. Then

δmax
C ≤ 2 · max

0≤i<n
δPi(p, q).

Proof. Let j be an index such that δmax
C = δPj and let x and y be two vertices

of C such that δPj = δPj (x, y). Then δmax
C =

dPj
(x,y)

|xy| ≤ L
|pq| . By Lemma 3, we

have L
|pq| ≤ 2 · max0≤i<n δPi(p, q). �	

Thus, by computing the closest pair (p, q) in the vertex set of C and then using
Lemma 3 to compute max0≤i<n δPi(p, q), we obtain a 2-approximation to δmax

C .
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We now show that a simple extension leads to an algorithm that computes the
exact value of δmax

C .
Let S be the set of all pairs (x, y) in the vertex set of C for which x 
= y and

|xy| ≤ 2|pq|. The following lemma states that it suffices to consider the elements
of S to compute δmax

C .

Lemma 5. We have δmax
C = max(x,y)∈S max0≤i<n δPi(x, y).

Proof. It is clear that

δmax
C = max

x, y vertices of C
max

0≤i<n
δPi(x, y) ≥ max

(x,y)∈S
max

0≤i<n
δPi(x, y).

Let j be an index such that δmax
C = δPj and let a and b be two vertices of C such

that δPj = δPj (a, b). If we can show that (a, b) ∈ S (i.e., |ab| ≤ 2|pq|), then the
proof is complete.

By Lemma 3, we have the following inequality, which follows that

L

2|pq| ≤ max
0≤i<n

δPi(p, q)

≤ max
x, y vertices of C

max
0≤i<n

δPi(x, y)

= δmax
C

= δPj (a, b)
= dPj (a, b)/|ab|
≤ L/|ab|.

This implies that |ab| ≤ 2|pq|. �	

The discussion above leads to the following algorithm for computing the value
of δmax

C .

Step 1: Compute the total length L of the cycle C and compute the values Δ(pi)
(0 ≤ i < n) as defined above.
Step 2: Compute the closest pair (p, q) in the vertex set of C.
Step 3: Compute the set S of all pairs (x, y) in the vertex set of C for which x �= y and
|xy| ≤ 2|pq|.
Step 4: For each element (x, y) in S, compute

max(|Δ(x) − Δ(y)|, L − |Δ(x) − Δ(y)|)
|xy| .

Step 5: Return the largest value computed in Step 4.

By Lemma 3, each value computed in Step 4 is equal to max0≤i<n δPi(x, y).
By Lemma 5, the largest of the values computed in Step 4 is equal to δmax

C .
This proves the correctness of the algorithm. To analyze the running time of the
algorithm, it is clear that Step 1 takes O(n) time. The closest-pair computation
in Step 2 takes O(n log n) time; see [12]. In [9], it is shown that the size of the
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set S is O(n). It is also shown there that if the points in the vertex set of C are
stored in two lists X and Y , where the points in X are sorted by x-coordinates
and the points in Y are sorted by y-coordinates, and if there are cross-pointers
between these two lists, then the set S can be computed in O(n) time. Therefore,
Step 3 takes O(n log n) time. In Step 4, the algorithm spends O(1) time for each
element of S. Since the size of S is O(n), the total time for Step 4 is O(n). Thus,
the total time of the algorithm is O(n log n).

If the cycle C is a convex polygon, then we can improve the running time: In
[8], it is shown that the closest pair can be computed in O(n) time. Since C is a
convex polygon, we can obtain the lists X and Y in O(n) time. It follows that
the entire algorithm runs in O(n) time.

4 Approximating the Dilation of All Paths Pi

Consider again the polygonal cycle C = (p0, . . . , pn−1, p0) whose vertices are
points in the plane. Let ε > 0 be a constant. In this section, we prove Theorem 3.
That is, we show that an approximation to the dilation of each path Pi (0 ≤
i < n), as well as an approximation to δmin

C , can be computed in O(n log n) total
time.

Our algorithm uses the well-separated pair decomposition (WSPD) of [2]. More
specifically, we use the following lemma from [10], which states that the WSPD of
the vertex set of any Euclidean graph G can be used to approximate the dilation
of G. The statement of the lemma as we present it appears in Section 13.2.1 of
[11].

Lemma 6. Let V be a set of n points in the plane and let {A1, B1}, {A2, B2}, . . . ,
{Am, Bm} be a WSPD for V with separation ratio 4(2 + ε)/ε. For each j with
1 ≤ j ≤ m, let aj be an arbitrary point in Aj, and let bj be an arbitrary point
in Bj. For any connected Euclidean graph G with vertex set V , the following holds:
For each j with 1 ≤ j ≤ m, let δG(aj , bj) be the dilation between aj and bj in G,
and let

t := max
1≤j≤m

δG(aj , bj).

Then δG/(1 + ε) ≤ t ≤ δG, where δG denotes the dilation of G.

Thus, in order to approximate the dilation of a Euclidean graph, it is sufficient
to compute the dilation between O(n) pairs of vertices. Moreover, the choice of
these vertices depends only on the vertex set of the graph, it does not depend
on the edges of the graph.

In a preprocessing step, we use the algorithm of [2] to compute, in O(n log n)
time, a WSPD {Aj , Bj}, 1 ≤ j ≤ m = O(n), for the vertex set {p0, . . . , pn−1}
of the cycle C, with separation ratio 4(2 + ε)/ε. For each j with 1 ≤ j ≤ m, we
pick an arbitrary point aj in Aj , and an arbitrary point bj in Bj . Our algorithm
will compute, for each i with 0 ≤ i < n, the value ti := max1≤j≤m δPi(aj , bj).
Observe that, by Lemma 6, δPi/(1 + ε) ≤ ti ≤ δPi .

Lemma 7. Let t∗ := min(t0, t1, . . . , tn−1). Then δmin
C /(1 + ε) ≤ t∗ ≤ δmin

C .
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Proof. Let i be an index such that t∗ = ti and let j be an index such that δmin
C =

δPj . Then t∗ ≤ tj ≤ δPj = δmin
C and δmin

C = δPj ≤ δPi ≤ (1 + ε)ti = (1 + ε)t∗. �	

We remark that, by a similar argument, t∗∗ := max(t0, t1, . . . , tn−1) can be
shown to satisfy δmax

C /(1 + ε) ≤ t∗∗ ≤ δmax
C . In other words, the algorithm that

will be presented below can also be used to compute an approximation to δmax
C

in O(n log n) time. We have seen in Sect. 3, however, that the exact value of
δmax
C can be computed within the same time bound.

As mentioned above, our algorithm computes ti for i = 0, 1, . . . , n − 1. The
main idea is to maintain, for the current value of i, the m dilations δPi(aj , bj)
(1 ≤ j ≤ m) in a balanced binary search tree T . Observe that, for any fixed
index j, the value of δPi(aj , bj) changes at most twice when i is increased from
0 to n − 1. As a result, the total number of updates in T will be at most 2m.
We now present the details.

Let P denote the path (p0, p1, . . . , pn−1). Recall the relation <P of Sect. 2.1.
We may assume without loss of generality that aj <P bj for each j with
1 ≤ j ≤ m.

In the preprocessing step, we compute, in O(n) time, the values Δ(pi) =
dP (p0, pi) (0 ≤ i < n) and the total length L of the cycle C. Observe that, for
0 ≤ i < n, the distance dPi(aj , bj) between aj and bj in the path Pi satisfies

dPi(aj , bj) =
{

Δ(bj) − Δ(aj) if i = n − 1 or pi <P aj or bj <P pi+1,
L − (Δ(bj) − Δ(aj)) otherwise.

(1)
In the final part of the preprocessing step, we compute, for each i with 0 <

i < n, the set Si := {j | 1 ≤ j ≤ m, aj = pi or bj = pi}. Obviously, all these
sets can be computed in O(m) = O(n) time. After the preprocessing step, the
algorithm proceeds as follows.

Step 1: Initialize an empty balanced binary search tree T (e.g., a red-black tree).
Step 2: For j = 1, 2, . . . , m, use (1) to compute dP0(aj , bj), compute Dj := δP0(aj , bj)
and insert it into T .
Step 3: Compute the maximum element t0 in the tree T .
Step 4: For i = 1, 2, . . . , n − 1, perform the following Steps 4.1–4.2. (Observe that, at
this moment, Dj = δPi−1(aj , bj), 1 ≤ j ≤ m.)

Step 4.1: For each element j in Si, delete Dj from the tree T , use (1) to compute
dPi(aj , bj), compute the new value Dj := δPi(aj , bj) and insert it into T .

Step 4.2: Compute the maximum element ti in the tree T .
Step 5: Compute t∗ := min0≤i<n ti, and return the sequence t0, t1, . . . , tn−1, t

∗.

The correctness of the algorithm follows from the discussion above. We have
seen already that the preprocessing step takes O(n log n) time. Steps 1–3 take
O(m log m) = O(n log n) time. The total time for Step 4 is proportional to

n−1∑

i=1

(|Si| + 1) log m ≤ (2m + n) log m = O(n log n).

This completes the proof of Theorem 3.
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5 Concluding Remarks and Acknowledgments

Recently, there has been a fair amount of work on the problem of computing
the optimal dilation of a given (geometric) graph. In this paper we considered a
variation of the problem where we are given a polygonal cycle and are supposed
to choose one edge to remove such that the resulting polygonal path gives the
smallest (or the largest) possible dilation.

We would like to thank Jan Vahrenhold for fruitful discussions on the subject.
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