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ABSTRACT 

The problem of self-reconfiguration of modular robots is 
discussed, and an algorithm for efficient parallel self-
reconfiguration is presented.  While much of the previous work 
has been focused on the lattice-type modular robots, this paper 
addresses the self-reconfiguration of chain-type robots.  
Relatively little attention has heretofore been given to this sub-
problem, and of the existing work, none incorporates the 
kinematic limitations of real-life robots into the reconfiguration 
algorithm itself.  The method presented here is based on 
understanding a robot’s physical “composition” using a graph-
theoretic robot representation, and it sheds new light on self-
reconfiguration of chain-type modular robots by incorporating 
elements of the robot kinematics as part of the criteria in 
choosing reconfiguration steps.   
 
INTRODUCTION 

Unit-modular robots are defined as robots composed of 
identical, standard component modules [1].  This type of robot 
is preferred for its fault tolerance, versatility to different tasks, 
and simplified kinematics and dynamics.  Due to the uniformity 
of the modules, such a robot can be reconfigured into a large 
number of useful forms and topologies and assume a variety of 
locomotion modes through changing the module 
interconnections.  A special class of modular robots are called 
self-reconfiguring, since they are able to achieve such 
reconfiguration without human aid or interaction.   

Robotic reconfiguration can be thought of as an abstraction 
of certain phenomena occurring in natural systems.  Two 
examples are blood clotting and chemical reactions.  In the 
process of blood clotting, platelet cells come together to form 
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interwoven chains, trapping the rest of the blood and preventing 
it from escaping.  In chemical reactions, bonds are broken and 
formed between atoms, giving rise to different chemical 
species.   In a similar way, a randomly arranged uniform set of 
robotic modules can rearrange to form chains or molecule-like 
structures. 

The majority of the research in self-reconfiguring modular 
robots has been centered on the so-called lattice robots.  These 
are robots whose modules can assume finite positions in a grid, 
either in planar or three-dimensional Cartesian space.  A 
common example of this type of robotic module is a cube 
which can expand and form interconnections along each of its 
six cardinal directions.  Locomotion and reconfiguration in 
lattice robots are achieved by motion of modules from one set 
of grid locations to another.  Several reconfiguration algorithms 
for this type of robot have been proposed.  Pamecha et al. [2] 
used the technique of simulated annealing to minimize a 
distance metric between configurations.  Yoshida et al. [3] used 
a technique involving potential fields and weighted 
probabilities called stochastic relaxation to guide modules 
toward a goal configuration.  Vassilvitskii et al. [4] presented a 
rule-based approach for planning and ordering reconfiguration 
steps.  Rule-based algorithms for self-replication (division), 
locomotion, and recombination of lattice robots were given by 
Butler et al. [5].  Reconfiguration control algorithms based on 
“goal ordering” were explored by Yim et al. [6], and Bojinov et 
al. [7] investigated biologically inspired approaches to 
reconfiguration in which the final robot configuration is not 
known a priori.  Locomotion of lattice-type robots through 
reconfiguration has also been explored [8], and a lattice-robot 
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reconfiguration strategy involving “tunneling” has been 
presented by Nguyen et al. [9].   

The present work focuses on chain-type modular robots 
having one rotational degree of freedom per module, two 
configurations of which are shown in Figure 1.  The 
reconfiguration problem for chain-type robots is somewhat 
different from that of lattice-type robots.  Chain-type modular 
robots are not defined by their position in a grid.  Instead, due 
to serial and/or parallel connections of modules using 
continuous joints such as revolute or spherical joints, they exist 
in a continuous rather than a discrete space and can form loops, 
chains, or truss-type structures.  However, their various 
configurations are discretely different from each other.  By 
their nature, chain-type robots generally locomote through 
continuous joint motions and reconfigure through discrete 
“connect” and “disconnect” operations at the joints.  Thus the 
reconfiguration problem, instead of being very discrete in 
nature, is a combination of a continuous kinematics problem 
and a discrete connection-state problem.  For this reason, the 
previous research in lattice-type reconfiguration is not very 
useful in addressing the problem of chain-type reconfiguration. 
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Figure 1.  Two planar chain-type robot 
configurations: (a) walker, and (b) tank tread. 

 
   
Casal and Yim [1] presented two rule-based 

reconfiguration algorithms, and Yim et al. [10] presented a 
third algorithm for self-reconfiguration in this type of robot.  
The first of these involves reducing the robot from its initial 
configuration to a simple “canonical form” and then building in 
complexity toward the goal shape.  The second algorithm 
involves identifying substructures within the goal configuration 
(e.g. loops and open-ended chains) and then choosing 
reconfiguration steps so as to match the number and location of 
these substructures.  The third algorithm is essentially an 
improved form of the first, where the canonical form is a tree 
structure (a graph with no closed cycles).  These three 
algorithms, while adequate in solving the reconfiguration 
problem, have some important limitations.  The first two are in 
fact rather inefficient by their nature.  The third, because of a 
wise choice of canonical form, does better in this respect.  None 
of them are parallel algorithms, which severely decreases the 
speed at which they can be executed.   

Durna et al. [11] demonstrated the use of the Hungarian 
algorithm, popular in transport theory, for the self-
reconfiguration problem.  This algorithm, while popular and 
proven, is not parallel, and in some other ways is not well 
suited for the chain-robot reconfiguration problem.  These same 
researchers also used the robot's eigenvalue and eigenspace 
information to steer a colony of robotic modules toward a goal 
configuration [12].  While this approach is distributed and 
parallel, the manner in which the control is distributed severely 
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limits the number of choices of reconfiguration steps, hence 
rendering it ineffective for certain reconfiguration tasks.   

The aim of this paper is to present a new strategy for self-
reconfiguration of chain-type unit-modular robots.  Its 
effectiveness and uniqueness stem from two characteristics of 
the strategy.  First, the algorithm takes into account the 
limitations of the robot kinematics in its choice of 
reconfiguration steps.  This is done by first using the robot’s 
graph-theoretic representation to approximate the feasibility of 
potential reconfiguration steps, and then performing the 
kinematic calculations necessary to execute these steps.  
Second, the algorithm finds compatible groups of 
reconfiguration steps and then performs these steps in parallel, 
thus reducing the time required to complete the reconfiguration.   

The following description of the strategy addresses several 
sub-problems.  First, a set of rules for mathematical 
representation of robots is presented.  This representation is 
compared and contrasted to existing representation techniques 
for closed-loop mechanisms.  A technique for determining the 
mechanical composition of robots is presented, and the initial 
sub-problem of “matching” two dissimilar robotic 
configurations is investigated.  Finally, the reconfiguration 
algorithm is detailed and examples given to demonstrate its use. 

GRAPH REPRESENTATION OF MODULAR ROBOTS 
Because a modular robot is a set of identical components 

connected by joints, it is well suited to representation using 
graph theory [11-12].  A graph consists of n vertices joined by 
m edges.  It is said to be connected if there exists a path along 
the graph's edges which connects any arbitrary pair of vertices.  
If a single robotic module is represented by a vertex and its 
joint with another module is represented by an edge, the entire 
robot is represented by a connected graph.   

The graph of a robot can also be represented in matrix 
form.  The adjacency matrix A of a graph is a symmetric n×n 
matrix in which each of the n vertices (robotic link modules) is 
represented by its own row (and column).  If vertex i is incident 
on vertex j by an edge, then entry aij = 1; otherwise, aij = 0.  
Another useful matrix representation of modular robots is the 
edge-vertex (joint-link) incidence matrix (IM).  For a robot 
with m joints, each row of the m×n incidence matrix represents 
a joint between robotic modules, and the columns correspond to 
the link modules.  In this way, IMij = 1 if joint i contains link j; 
otherwise  IMij = 0. 

For example, the adjacency and incidence matrices for the 
robot shown in Figure 1(a) are 

0 1 0 0 0 0 0
1 0 1 0 0 0 1
0 1 0 1 0 0 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 1 1 1 1 0 0

A

 
 
 
 
 =  
 
 
 
  

, 

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 1
0 0 1 1 0 0 0
0 0 0 1 1 0 1
0 0 0 0 1 1 0

0 0 0 0 0 1 0

IM

 
 
 
 
 =  
 
 
 
  

(1) 

and the matrices corresponding to Figure 1(b) are 
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0 1 0 0 0 0 1
1 0 1 0 0 0 0

0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0

A

 
 
 
 
 =  
 
 
 
  

, 

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 1

IM

 
 
 
 
 =  
 
 
 
  

(2) 

Both the adjacency matrix and incidence matrix representations 
are useful for describing modular robots in mathematical form. 

GRAPH REPRESENTATION OF CLOSED-LOOP 
MECHANISMS 

Previous investigators [13-14] have used graph theory to 
represent closed-loop mechanisms in order to systematically 
analyze their motion and governing dynamic equations.  It is 
important to note the differences between these methods and 
the technique of graph representation of modular robots.  For 
closed-loop mechanisms, joints are modeled as graph edges, 
and links as vertices.  Based on the cycles of the resulting graph 
(closed paths beginning and ending at the same vertex), the 
mobility and motion properties of the mechanism can be 
determined.  The information from the graph can ultimately be 
used to generate kinematic and dynamic equations describing 
the mechanism.  However, modular robots can form closed-
loop mechanisms, open chains, or combinations of the two.  For 
this reason, the graph “bookkeeping” is slightly different.   
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(a)       (b) 

Figure 2.  Single-DOF mechanism made of uniform 
link modules: (a) with and (b) without special joint-

location geometry. 
 

Consider the example of Figure 2, in which the mechanism 
has mobility 1.  The equation for mobility of planar 
mechanisms with single-DOF joints is 

M = 3(n – 1) – 2j     (3) 
where n is the number of links and j is the number of joints.  
For this equation to give the correct result for the mechanism in 
Figure 2(a), the (2,3,4) joint must only count as two joints.  
This is because the second joint need not occur at the same 
location as the first, i.e. the (3,4) joint could occur in the middle 
of link 4, as shown in Figure 2(b).  However, if the same 
mechanism were constructed of uniform robotic modules, the 
robot's adjacency matrix would show a joint between links 2 
and 3, a joint between links 2 and 4, and a joint between links 3 
and 4, for a total of three joints at the (2,3,4) connection.  This 
is because the joints necessarily occur at the link endpoints, and 
because the possibility for open-chain robots exists.  This 
“extra” piece of information contained in the robot's adjacency 
matrix is essential for extracting geometric information about 
the robot, i.e. which modules are connected at which endpoints.  
From this point, the physical embodiment of the robot can be 
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visualized or simulated, since the use of uniform-length 
modules gives the rest of the necessary geometric information.  

DETERMINING THE MECHANICAL COMPOSITION OF 
THE ROBOT CONFIGURATION 

As mentioned above, a modular robot can contain truss-
like substructures, open-ended chains, and closed-loop 
mechanisms.  The occurrence of loops and chains has been 
recognized and capitalized on to some extent in the self-
reconfiguration studies of Casal and Yim [1] and Yim et al. 
[10].  For the purposes of robotic reconfiguration, it is 
important to know which robot modules belong to each of these 
three groups.  Most importantly, one must discern between 
substructures and mobile portions of the robot.   

The easiest way to identify structural parts of the robot is 
to search for triangles, since the most basic immobile subset of 
uniform robotic modules is an equilateral triangle.  This search 
can be done using the adjacency matrix and/or the joint-link 
incidence matrix.  Once a triangle is identified, it represents a 
substructure.  By searching for pairs of links which are each 
incident on the substructure at different locations and which are 
also incident on each other, the recognized bounds of the 
substructure grow until no more links can be added to it.  This 
process is repeated until all of the robot's substructure parts are 
identified.  Because this search technique begins at the center of 
each substructure and moves outward, the modules forming the 
perimeter of each substructure are also identified. 

THE DIFFERENCE MATRIX AND SUBGRAPH 
MATCHING 

Given two dissimilar robot configurations, it is useful to 
have a way of measuring or quantifying to what extent and in 
what ways the configurations differ.  This information can 
serve as a guide to the reconfiguration process.  For two 
different configurations of n robotic modules, an n×n difference 
matrix D can be defined as  

D = Afinal – Ainitial     (4) 
in which the nonzero entries in D represent dissimilarities 
between the initial and final graph configurations.  For 
example, given the two robots in Figure 1, 

0 1 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0 0 1
0 0 1 0 1 0 0 0 0 1 0 1 0 1
0 0 0 1 0 1 0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1 1 1 1 0 0

0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1

D

   
   
   
   
   = −   
   
   
   
      

−
−

= −
−

− − − −1 1 0

 
 
 
 
 
 
 
 
 
  

 (5) 

This definition of D depends on proper ordering of the 
modules.  The difference matrix is only useful for guiding 
reconfiguration when the modules of the initial and final 
3 Copyright © 2004 by ASME 

: http://www.asme.org/about-asme/terms-of-use



Downlo
configurations are ordered in such a way that the norm of the 
difference matrix is minimum.  In graph-theoretic terms, this is 
called finding the maximal common subgraph of the graphs 
corresponding to Afinal and Ainitial.   

Sometimes the robotic modules are ordered “nicely” such 
that the norm of D is relatively small, as is the case in Figure 1 
and Eqs. (1-2, 5).  For arbitrary module ordering in the 
adjacency matrices, the norm of D is not necessarily a 
minimum, and it does not accurately describe the “difference” 
between two robotic configurations.  This would result in 
wasted motion if it were used as a guide for reconfiguration 
steps.  In the case of arbitrary module ordering, this problem of 
finding the difference matrix can be formulated as an 
optimization problem of the form [11] 

min || PAfinal PT – Ainitial ||    (6) 
where P is an n×n permutation matrix which effectively 
switches the order of the rows and columns of the final 
configuration's adjacency matrix, hence renumbering the links 
in the final configuration.  Algorithms exist to perform this 
matching such that ||D|| is minimum.  For labeled graphs, such 
as those used to represent chemical reactions, relatively 
efficient algorithms can be used.  For general graphs, however, 
such as those which represent uniform robotic modules, the 
problem is slightly more difficult.  Although convergence to the 
solution is guaranteed, the problem is NP-complete; in fact, its 
complexity is O(n!).  In order to make it more manageable, 
McGregor [15] suggests using a depth-first tree search of 
partial matchings with branch elimination based on comparison 
of the partial solutions against the best-to-date full solution 
candidate.  Additionally, an initial guess at the module ordering 
can help accelerate convergence of the algorithm.  This is the 
approach which is adopted in step 1 of the algorithm to be 
described below. 

THE SELF-RECONFIGURATION ALGORITHM 
Determination of the difference matrix D is the first step in 

the self-reconfiguration process.  In terms of modules and 
joints, dij = -1 implies that modules i and j need to be 
disconnected during the process of self-reconfiguration, and dij 
= 1 implies that modules i and j need to be connected with a 
new joint during reconfiguration.  To find the difference matrix, 
the procedure suggested by McGregor [15] is used, as 
described above. 

Although in theory the reconfiguration is as simple as 
performing the set of disconnect and connect operations as 
given in the D matrix, in practice these operations cannot 
necessarily be performed at the same time or at all.  The 
possibility of performing a disconnect operation is reliant on 
the overall connectivity of the robot's graph, and the possibility 
of making a new connection is reliant on factors such as robot 
workspace and environmental or internal obstacles.  While the 
kinematics and path planning for robotic links is not 
specifically addressed in this paper, the goal of the algorithm is 
to order these robotic motions in such a way as to minimize the 
time and energy required to complete the reconfiguration.  The 
following steps are proposed for self-reconfiguration while 
taking into account such kinematic limitations.   

1. Find the difference matrix D using Eq. (4). 
2. Judge the feasibility of the disconnect operations 

indicated in D.  Perform all feasible disconnect 
operations in parallel, and update D. 
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3. Judge the feasibility of the connection operations 
indicated in D.  Perform all feasible connection 
operations in parallel, and update D.  Return to step 2 
and repeat until there are no feasible connections to be 
made in step 3. 

4. Remaining connections cannot be made directly.  Use 
intermediate mobile links to “pass” modules to goal 
connection points.  Update D and return to step 2, or 
continue to step 5 if no beneficial passing module is 
found. 

5. If necessary, disconnect joints which are not marked for 
disconnecting in D; this improves the workspace of 
mobile links and allows more efficient “passing” in 
step 4.  Update D and return to step 2. 

The reconfiguration is finished when D contains all zero 
entries. 
 

Find D

Perform feasible disconnect 
operations in parallel

Perform feasible connection 
operations in parallel

Use passing modules to 
facilitate connections

Use temporary disconnect 
operations to improve mobility 
and facilitate connections

(No new connections)

(No beneficial passing modules)

1

2

3

4

5

 
Figure 3.  Flowchart for the reconfiguration algorithm. 
 

A flowchart for these steps is shown in Figure 3, and their 
details are illustrated in a series of examples. 

EXAMPLE 1: WALKER TO TANK TREAD 
The robots shown in Figure 1 are used as a simple case 

study to illustrate steps (1-3) of the algorithm.  This example 
involves no module “passing” and is the simplest scenario 
encountered with the above algorithm. 

(1) The entries of D serve as a guide for the rest of the 
reconfiguration steps.  From Eq. (5), the difference matrix is 
4 Copyright © 2004 by ASME 
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0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0

D

 
 − 

− 
 = − 
 −
 
 
 − − − − 

   (7) 

 (2) A feasibility judgment for disconnect operations could 
include factors such as maintaining connectivity of the robot 
and staying within force limits of the joint actuators (for static 
stability).  Here we consider only robot connectivity.  Feasible 
sets of disconnect operations to be performed on the walker of 
Figure 1(a), which are indicated in D, are {(2,7),(3,7)} or 
{(4,7),(5,7)}.  Performing all of these disconnect operations at 
once is not allowed, since it can be seen from Eq. (1) that doing 
so would result in an all-zero row/column, indicating a 
disconnected robot. 
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Figure 4.  Disconnecting joints of the walker robot. 

 
Arbitrarily we choose the former as shown in Figure 4.  The 
new difference matrix is 

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 0 0 1 1 1 0

D

 
 
 
 
 = − 
 −
 
 
 − − 

   (8) 

 (3) The next step involves performing sets of connection 
operations after first judging their feasibility.  Here feasibility is 
determined using an approximation of the robot kinematics, 
taking into account possible internal interference in the robot.  
To do this, for each 2-module connection indicated in the D 
matrix, find a path through the robot's graph which connects the 
free ends of the two modules and passes only through mobile 
links and substructure perimeters, not through the center of 
substructures.  For all the modules included in this path, 
subtract the number of substructure modules from the number 
of mobile modules.  If the resulting quantity is positive, the 
connection is considered feasible.  This represents an 
approximation of mobile links' capability to reach or wrap 
around structural parts of the robot in order to connect the 
desired modules.  Note that modules “buried” inside a 
substructure cannot connect feasibly to other modules, since a 
path between the two modules does not exist which satisfies the 
constraints mentioned above.  The “quality” of each potential 
connection is measured by the magnitude of the computed 
quantity based on the path through the robot (the larger that 
quantity the better).  We call this the “connection quality 
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index,” or qc.  For the disconnected walker of Figure 4, the path 
from link 1 to link 7 is (1,2,3,4), and the path from link 6 to link 
7 is (6,5,7).  (Note that since a connection between links 1 and 
6 is not indicated in D, the path starting at link 1 and the path 
starting at link 6 end at opposite ends of link 7.)  Since the 
entire robot is composed of mobile chains, the quality indices 
of these paths are qc = 4 and qc = 3 respectively, the former 
having higher “quality.”  Now for the “best quality” potential 
connection, compute the robot kinematics (joint position 
solution) necessary for the connection and make a virtual 
connection; i.e. perform all future calculations as if this 
connection was actually made, but do not physically make the 
connection yet.  This “virtual connection” step is repeated until 
there are no more feasible (virtual) direct connections to be 
made.  This ensures that the maximum number of direct 
connections can be made at once.  Now in parallel, perform this 
set of connections.  This should be easy, since the joint position 
information is retained from the calculations performed during 
this step.  For the example at hand, there are no substructures in 
the robot, and all the connections indicated in D are feasible.  
The result of making the (1,7) and (6,7) connections is shown 
in Figure 5.  The updated difference matrix is 

0 0 0 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1

0 0 0 0 0 0 0
0 0 0 1 1 0 0

D

− − 
 
 
 
 = − − 
 − −
 
 
 − − 

   (9) 
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Figure 5.  Feasible connections performed on the 

modified walker robot. 
 
Note that connecting link 1 to links 4 and 5 is acceptable 
temporarily because link 7 is marked for disconnecting from 
these two links, so the (1,7) joint will separate from (4,5) as a 
single step. 
(2) All the remaining disconnect operations are feasible, and 
the result is the goal configuration as shown in Figure 6. 
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Figure 6.  Tank-tread robot resulting from 

reconfiguration. 
5 Copyright © 2004 by ASME 

: http://www.asme.org/about-asme/terms-of-use



Downl
EXAMPLE 2: “PASSING” ROBOTIC MODULES 
As shown in Figure 7, the task is to reconfigure the 9-link 

robot such that link 1 moves to the other side of the robot and 
connects to the (7,8,9) joint.   
 

1 2 3 4
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9 1

2 3 4
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Figure 7.  Initial and final configurations of the robot 
in Example 2. 

 
(1) The adjacency matrices and difference matrix are 

0 1 0 0 1 0 0 0 0
1 0 1 0 1 1 1 0 0
0 1 0 1 0 1 1 1 0
0 0 1 0 0 0 0 1 0
1 1 0 0 0 1 0 0 1
0 1 1 0 1 0 1 0 1
0 1 1 0 0 1 0 1 1
0 0 1 1 0 0 1 0 1
0 0 0 0 1 1 1 1 0

initialA

 
 
 
 
 
 
 =
 
 
 
 
 
  

   (10) 

0 0 0 0 0 0 1 1 1
0 0 1 0 1 1 1 0 0
0 1 0 1 0 1 1 1 0
0 0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 0 1
0 1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1 1
1 0 1 1 0 0 1 0 1
1 0 0 0 1 1 1 1 0

finalA

 
 
 
 
 
 
 =
 
 
 
 
 
  

   (11) 

0 1 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

D

− − 
 − 
 
 
 
 = −
 
 
 
 
 
  

  (12) 

(2) There are no feasible disconnect operations indicated in 
D since disconnecting the (1,2) joint or (1,5) joint still leaves 
links 2 and 5 connected, and disconnecting both the (1,2) and 
(1,5) joints results in a disconnected graph.   

(3) The difference matrix indicates a connection to be 
made involving link 1 and joint (7,8,9).  The shortest path from 
the end of link 1 to the (7,8,9) joint passes through one mobile 
link (1) and two links belonging to the robot's structural portion 
(5 and 9), giving a connection quality of qc = -1.  As shown in 
Figure 8, this does not result in a possible connection of link 1 
with joint (7,8,9). 
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Figure 8.  Check of the workspace of link 1. 
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Figure 9.  Check of mobile-link workspace overlap. 
 

(4) The remaining connections cannot be made directly, so 
intermediate or “passing” modules must be used.  To do this, 
use the path through the robot which was found in step 3.  Note 
all the joints along the path where mobile portions of the robot 
attach to substructure perimeters.  The “most mobile” of these 
mobile portions is used as a passing module.  The number of 
robotic modules in a mobile portion can be used as an 
approximate measure of the quality of its mobility, so the 
mobile portion with the most modules is chosen as the passing 
module.  The link module to be “passed” is connected to the 
link module on the mobile portion having the largest workspace 
(typically the end of a chain or middle link of a closed loop) 
and then connected to the goal link as indicated in the 
difference matrix.  Multiple passing steps may be necessary.  
Since the path through the robot found in step 3 does not pass 
through any mobile sub-portions except link 1 itself, it is 
necessary to try a different path between link 1 and joint 
(7,8,9).  (Link 1 could “pass itself” via the (5,6,9) joint, but this 
is impractical.)  The other possible path includes links 2, 3, and 
8, and passes by link 4, which is a mobile chain off of the 
substructure.  Link 4 is chosen as a passing module.  As shown 
in Figure 9, the workspaces of links 1 and 4 overlap, and link 1 
can be passed (or connected temporarily) to link 4, as indicated 
in Figure 10(a).  The path from link 1 to link 4 is (1,2,3,4) with 
a quality of qc = 0 (barely feasible). 

(2) Disconnect link 1 from links 5 and 2 as shown in 
Figure 10(b). 

(3) Rotating the (1,4) sub-chain, connect link 1 to the joint 
at links (7,8,9). 

(2) Disconnect links 1 and 4 as shown in Figure 10(c). 
These final steps complete the reconfiguration. 
 

1,2 3,4

8765

9

2 3 4

8765

9

1

1

2 3 4

8765

9

(a) (b)

(c)  
Figure 10.  Final reconfiguration steps in Example 2. 
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EXAMPLE 3: IMPROVING PASSING MODULE 
MOBILITY THROUGH DISCONNECTING 

As shown in Figure 11, the reconfiguration task is similar 
to that in Example 2, except that the robot's span is longer, 
leaving a larger distance for link 1 to traverse. 
 

1 2 3 4

8765

9 10

11 12

13

1

2 3 4

8765

9 10

11 12

13

 
Figure 11.  Initial and final robot configurations for 

Example 3. 
 

(1) The difference matrix is similar to that in Example 2: 
0 1 0 0 1 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

D

− − 
 − 



−


=








 


















(13) 

(2) As in Example 2, there are no feasible disconnect 
operations indicated in D. 

(3) The shortest path from the end of link 1 to the 
(10,11,12) joint passes through one mobile link (1) and three 
links belonging to the robot's structural portion (5,9,10), giving 
a connection quality of qc = -2.  As shown in Figure 12, this 
does not result in a possible connection with joint (10,11,12). 
 

1 2 3 4

8765

9 10

11 12

13

 
Figure 12.  Check of workspace of link 1. 

 
 (4) The only chains attached to the substructure are link 13 
and link 1 itself.  However, as shown in Figure 13, the 
workspaces of links 1 and 13 are not close to overlapping.  So it 
is advantageous to perform a temporary disconnect in order to 
increase the workspace of link 1.   
 

1 2 3 4

8765

9 10

11 12

13

 
Figure 13.  Check of mobile-link workspace overlap. 
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(5) In some cases, it may be necessary to temporarily 
disconnect some joints (which are not marked for disconnecting 
in the difference matrix D) in order to improve mobility (or 
workspace area) and facilitate passing of modules.  This occurs 
in particular when multiple passing steps were found in step 4.  
If this point is reached, a judgment must be made as to which 
feasible disconnect would most improve the workspace and 
mobility properties and thus decrease or eliminate the passing 
steps (step 4).  After performing this most advantageous 
disconnect operation, return to step 2.  In this case, since link 5 
is closer to the (10,11,12) joint than link 2, separating links 1 
and 5 from link 2 is deemed most advantageous, and link 5 is 
used as an extension of link 1.   

(2) Disconnect link 2 from links 5 and 1 as shown in 
Figure 14. 
 

1

2 3 4

8765

9 10

11 12

13

 
Figure 14.  Temporary disconnect operation uses link 

5 as a passing module. 
 

(3) With these new disconnect operations performed, the 
path from link 1 to the (10,11,12) joint contains 2 mobile links 
and 2 structural links, giving a connection quality of qc = 0.  
Since the two mobile links (1 and 5) form a simple chain, this 
indicates a “barely feasible” connection.  Make this connection 
as shown in Figure 15(a). 

(2) Disconnect links 1 and 5 as shown in Figure 15(b). 
(3) Due to the temporary disconnect of link 5, there 

remains a connection to be made between links 2 and 5.  The 
path between the two link endpoints contains 1 structural link 
and two mobile links, so the connection can be made as shown 
in Figure 15(c). 

These final steps complete the reconfiguration. 
 

2 3 4

876

9,5 10,1

11 12

13

1

2 3 4

8765

9 10

11 12

13

1

2 3 4

8765

9 10

11 12

13
(a) (b)

(c)  
Figure 15.  Final reconfiguration steps in Example 3. 

EXAMPLE 4: DEMONSTRATION OF PARALLEL 
RECONFIGURATION STEPS 

Two arbitrarily labeled 16-link robots are shown in Figure 
16.  Starting with an initial relabeling guess, a subgraph-
matching algorithm was used to improve on that guess, 
resulting in the relabeled robots shown in Figure 17.   
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Figure 16.  Initial and final robot configurations for 

Example 4. 
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13 10
4

11
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7

52
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1

914

 
Figure 17.  Initial and final robot configurations for 

Example 4 after relabeling. 
 

(1) The norm of the difference matrix using this labeling 
scheme is 18.  The disconnection entries in the lower triangular 
half of D are at {(12,10), (16,11), (15,11), (16,15), (16,14), 
(16,12), (16,4), (15,14), (15,6), (13,12), (12,4)}, and the 
connection entries in the lower triangular half of D are at 
{(16,8), (15,2), (15,3), (15,7), (14,9), (6,4), (5,4)}. 

   

13 14

9 8

16

4
10

12

15
11

5 6

7

2

3

1

 
Figure 18.  Parallel disconnect operations. 

 
(2) As shown in Figure 18, link 12 can be disconnected 

from links 10 and 13, link 16 from links 15 and 14, and link 11 
from links 5, 6, and 15, all in parallel.  Note that the temporary 
(11,5) and (11,6) disconnects are not indicated in D.  However, 
they are necessary in order to perform the (15,11) disconnect, 
which is chosen in order to preserve the (4,11) chain since the 
(4,5,6,11) joint occurs in the final robotic configuration.  
Although this type of logical decision-making is not discussed 
explicitly as part of step (2) of the algorithm, it is an example of 
how step (2) of the algorithm could potentially be refined. 

(3) While link 16 can feasibly reach link 8, there is 
potential interference from the other links, especially 14 and 15.  
Also, connecting link 4 to links 5 and 6 results in several 
unwanted connections.  So these direct connections are not 
made at this time.  
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5 6
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Figure 19.  Using a passing module to circumvent 

internal interference. 
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(4) As shown in Figure 19, the (14,15) chain is used as a 
passing module to circumvent this internal interference problem 
and join links 16 and 8. 
 

13
14

9
8
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4
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15

11

5 6

7

2

3

1

 
Figure 20.  Parallel connections at (12,11) and 

(4,5,6,11,12). 
 

(2) As depicted in Figure 20, the (15,14,16,8) chain is 
disconnected from (5,6).   

(3) The (4,11,12) joint is also merged with the (5,6) joint 
after this last disconnect operation, as shown in Figure 20.  
Links 11 and 12 are also joined in order to move link 12 to the 
end of the chain. 

(2) Link 12 is unfolded to form the (11,12) chain. 
(4) Links 15 and 14 are passed to their final connection 

points using the (8,16) chain as a passing module, as shown in 
Figure 21. 

 
 

13 10
4

11

168

6

12

7

52

15
3

1

9

14  
Figure 21.  Passing module used for transport of links 

14 and 15. 

BENEFITS OF THE RECONFIGURATION ALGORITHM 
The use of simple, matrix-based graph representations of 

robots (for example, the adjacency matrix, incidence matrix, 
and difference matrix) is a key tool for automation of the 
reconfiguration process.  Because the data structures involved 
are simple, and all of the algorithm steps can be accomplished 
using only these matrices, this representation lends itself well to 
self-reconfiguration as opposed to assisted reconfiguration. 

The algorithm proposed here has several advantages over 
other reconfiguration algorithms.  First, because it uses the 
difference matrix D, the first attempts at reconfiguration steps 
are aimed at those operations which are most efficient, or lead 
most directly toward the goal configuration.   

Second, the algorithm allows for parallel execution of the 
reconfiguration steps.  This is made possible through the 
technique of “virtual connection,” which enables the algorithm 
to find a set of operations which can feasibly be done at the 
same time.  Many reconfiguration algorithms based solely in 
graph theory are serial.  While parallelization of serial 
algorithms is possible, it may not be the best solution or the 
most efficient.  It is certainly an easier and more direct 
approach to begin with an algorithm which by its nature allows 
reconfiguration steps to be performed in parallel.   

The final and most novel advantage of the proposed 
strategy is the incorporation of elements of the robot kinematics 
8 Copyright © 2004 by ASME 
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in the choice of reconfiguration steps.  Because real-life robotic 
systems are highly constrained by their kinematics, a purely 
graph-theoretic approach is not ideal for the reconfiguration 
problem.  This type of approach would lead to inefficiency due 
to selected reconfiguration steps being eliminated in the path-
planning stage because of infeasible kinematics.  Incorporation 
of the robot sub-chain workspace in the choice of 
reconfiguration steps reduces the load of path-planning 
calculations at a later stage, and greatly streamlines the process. 

SUMMARY AND CONCLUSIONS 
The strategy presented in this paper is an improvement 

over existing methods of self-reconfiguration in chain-type 
unit-modular robotic systems.  Its consideration of the robot 
kinematics in the choice of reconfiguration steps makes it more 
efficient, as does its ability to perform multiple operations in 
parallel.   

In addition to the reconfiguration algorithm itself, a new 
graph-theoretic approach to determining a robot’s “mechanical 
composition” is summarized, along with a solution strategy for 
the preliminary subgraph-matching problem. 

The discussion in this paper is limited to planar robotic link 
modules with a single rotational degree of freedom.  Future 
work may include an extension of these methods to three 
dimensions, as well as adaptation for robotic modules having 
more (or different types of) degrees of freedom.  Also 
remaining to be explored are incorporation of static-force and 
dynamic effects as criteria in the choice of reconfiguration 
steps, the effects of using different criteria for determining 
advantageous temporary disconnect operations, and the 
possibility of using the robot composition information in 
simplified mobility and kinematic analyses, as well as more in-
depth experimentation into computer implementation of the 
proposed algorithm.   
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