
Downloa
Proceedings of DETC’04
ASME 2004 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
September 28-October 2, 2004, Salt Lake City, Utah, USA

DETC2004-57488

AN ALGORITHM FOR EFFICIENT SELF-RECONFIGURATION OF CHAIN-TYPE UNIT-MODULAR
ROBOTS

Carl A. Nelson
Purdue University

School of Mechanical Engineering
585 Purdue Mall

West Lafayette, Indiana 47907-2088
USA

carln@purdue.edu

Raymond J. Cipra
Purdue University

School of Mechanical Engineering
585 Purdue Mall

West Lafayette, Indiana 47907-2088
USA

cipra@ecn.purdue.edu

Keywords: modular robots, reconfigurable robots, reconfiguration algorithms, chain-type robots.

Proceedings of DETC’04
ASME 2004 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
September 28-October 2, 2004, Salt Lake City, Utah, USA

DET C20 04-5 7488

ABSTRACT

The problem of self-reconfiguration of modular robots is
discussed, and an algorithm for efficient parallel self-
reconfiguration is presented. While much of the previous work
has been focused on the lattice-type modular robots, this paper
addresses the self-reconfiguration of chain-type robots.
Relatively little attention has heretofore been given to this sub-
problem, and of the existing work, none incorporates the
kinematic limitations of real-life robots into the reconfiguration
algorithm itself. The method presented here is based on
understanding a robot’s physical “composition” using a graph-
theoretic robot representation, and it sheds new light on self-
reconfiguration of chain-type modular robots by incorporating
elements of the robot kinematics as part of the criteria in
choosing reconfiguration steps.

INTRODUCTION

Unit-modular robots are defined as robots composed of
identical, standard component modules [1]. This type of robot
is preferred for its fault tolerance, versatility to different tasks,
and simplified kinematics and dynamics. Due to the uniformity
of the modules, such a robot can be reconfigured into a large
number of useful forms and topologies and assume a variety of
locomotion modes through changing the module
interconnections. A special class of modular robots are called
self-reconfiguring, since they are able to achieve such
reconfiguration without human aid or interaction.

Robotic reconfiguration can be thought of as an abstraction
of certain phenomena occurring in natural systems. Two
examples are blood clotting and chemical reactions. In the
process of blood clotting, platelet cells come together to form

ded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
interwoven chains, trapping the rest of the blood and preventing
it from escaping. In chemical reactions, bonds are broken and
formed between atoms, giving rise to different chemical
species. In a similar way, a randomly arranged uniform set of
robotic modules can rearrange to form chains or molecule-like
structures.

The majority of the research in self-reconfiguring modular
robots has been centered on the so-called lattice robots. These
are robots whose modules can assume finite positions in a grid,
either in planar or three-dimensional Cartesian space. A
common example of this type of robotic module is a cube
which can expand and form interconnections along each of its
six cardinal directions. Locomotion and reconfiguration in
lattice robots are achieved by motion of modules from one set
of grid locations to another. Several reconfiguration algorithms
for this type of robot have been proposed. Pamecha et al. [2]
used the technique of simulated annealing to minimize a
distance metric between configurations. Yoshida et al. [3] used
a technique involving potential fields and weighted
probabilities called stochastic relaxation to guide modules
toward a goal configuration. Vassilvitskii et al. [4] presented a
rule-based approach for planning and ordering reconfiguration
steps. Rule-based algorithms for self-replication (division),
locomotion, and recombination of lattice robots were given by
Butler et al. [5]. Reconfiguration control algorithms based on
“goal ordering” were explored by Yim et al. [6], and Bojinov et
al. [7] investigated biologically inspired approaches to
reconfiguration in which the final robot configuration is not
known a priori. Locomotion of lattice-type robots through
reconfiguration has also been explored [8], and a lattice-robot
1 Copyright © 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use

Downlo
reconfiguration strategy involving “tunneling” has been
presented by Nguyen et al. [9].

The present work focuses on chain-type modular robots
having one rotational degree of freedom per module, two
configurations of which are shown in Figure 1. The
reconfiguration problem for chain-type robots is somewhat
different from that of lattice-type robots. Chain-type modular
robots are not defined by their position in a grid. Instead, due
to serial and/or parallel connections of modules using
continuous joints such as revolute or spherical joints, they exist
in a continuous rather than a discrete space and can form loops,
chains, or truss-type structures. However, their various
configurations are discretely different from each other. By
their nature, chain-type robots generally locomote through
continuous joint motions and reconfigure through discrete
“connect” and “disconnect” operations at the joints. Thus the
reconfiguration problem, instead of being very discrete in
nature, is a combination of a continuous kinematics problem
and a discrete connection-state problem. For this reason, the
previous research in lattice-type reconfiguration is not very
useful in addressing the problem of chain-type reconfiguration.

1

1

3 4

7

7

6

5

4
2

6

5

2 3

(a) (b)

Figure 1. Two planar chain-type robot
configurations: (a) walker, and (b) tank tread.

Casal and Yim [1] presented two rule-based

reconfiguration algorithms, and Yim et al. [10] presented a
third algorithm for self-reconfiguration in this type of robot.
The first of these involves reducing the robot from its initial
configuration to a simple “canonical form” and then building in
complexity toward the goal shape. The second algorithm
involves identifying substructures within the goal configuration
(e.g. loops and open-ended chains) and then choosing
reconfiguration steps so as to match the number and location of
these substructures. The third algorithm is essentially an
improved form of the first, where the canonical form is a tree
structure (a graph with no closed cycles). These three
algorithms, while adequate in solving the reconfiguration
problem, have some important limitations. The first two are in
fact rather inefficient by their nature. The third, because of a
wise choice of canonical form, does better in this respect. None
of them are parallel algorithms, which severely decreases the
speed at which they can be executed.

Durna et al. [11] demonstrated the use of the Hungarian
algorithm, popular in transport theory, for the self-
reconfiguration problem. This algorithm, while popular and
proven, is not parallel, and in some other ways is not well
suited for the chain-robot reconfiguration problem. These same
researchers also used the robot's eigenvalue and eigenspace
information to steer a colony of robotic modules toward a goal
configuration [12]. While this approach is distributed and
parallel, the manner in which the control is distributed severely

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use:
limits the number of choices of reconfiguration steps, hence
rendering it ineffective for certain reconfiguration tasks.

The aim of this paper is to present a new strategy for self-
reconfiguration of chain-type unit-modular robots. Its
effectiveness and uniqueness stem from two characteristics of
the strategy. First, the algorithm takes into account the
limitations of the robot kinematics in its choice of
reconfiguration steps. This is done by first using the robot’s
graph-theoretic representation to approximate the feasibility of
potential reconfiguration steps, and then performing the
kinematic calculations necessary to execute these steps.
Second, the algorithm finds compatible groups of
reconfiguration steps and then performs these steps in parallel,
thus reducing the time required to complete the reconfiguration.

The following description of the strategy addresses several
sub-problems. First, a set of rules for mathematical
representation of robots is presented. This representation is
compared and contrasted to existing representation techniques
for closed-loop mechanisms. A technique for determining the
mechanical composition of robots is presented, and the initial
sub-problem of “matching” two dissimilar robotic
configurations is investigated. Finally, the reconfiguration
algorithm is detailed and examples given to demonstrate its use.

GRAPH REPRESENTATION OF MODULAR ROBOTS
Because a modular robot is a set of identical components

connected by joints, it is well suited to representation using
graph theory [11-12]. A graph consists of n vertices joined by
m edges. It is said to be connected if there exists a path along
the graph's edges which connects any arbitrary pair of vertices.
If a single robotic module is represented by a vertex and its
joint with another module is represented by an edge, the entire
robot is represented by a connected graph.

The graph of a robot can also be represented in matrix
form. The adjacency matrix A of a graph is a symmetric n×n
matrix in which each of the n vertices (robotic link modules) is
represented by its own row (and column). If vertex i is incident
on vertex j by an edge, then entry aij = 1; otherwise, aij = 0.
Another useful matrix representation of modular robots is the
edge-vertex (joint-link) incidence matrix (IM). For a robot
with m joints, each row of the m×n incidence matrix represents
a joint between robotic modules, and the columns correspond to
the link modules. In this way, IMij = 1 if joint i contains link j;
otherwise IMij = 0.

For example, the adjacency and incidence matrices for the
robot shown in Figure 1(a) are

0 1 0 0 0 0 0
1 0 1 0 0 0 1
0 1 0 1 0 0 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 1 1 1 1 0 0

A

 =

,

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 1
0 0 1 1 0 0 0
0 0 0 1 1 0 1
0 0 0 0 1 1 0

0 0 0 0 0 1 0

IM

 =

(1)

and the matrices corresponding to Figure 1(b) are
2 Copyright © 2004 by ASME

 http://www.asme.org/about-asme/terms-of-use

Downlo
0 1 0 0 0 0 1
1 0 1 0 0 0 0

0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 1 0

A

 =

,

1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 0 0 0 0 0 1

IM

 =

(2)

Both the adjacency matrix and incidence matrix representations
are useful for describing modular robots in mathematical form.

GRAPH REPRESENTATION OF CLOSED-LOOP
MECHANISMS

Previous investigators [13-14] have used graph theory to
represent closed-loop mechanisms in order to systematically
analyze their motion and governing dynamic equations. It is
important to note the differences between these methods and
the technique of graph representation of modular robots. For
closed-loop mechanisms, joints are modeled as graph edges,
and links as vertices. Based on the cycles of the resulting graph
(closed paths beginning and ending at the same vertex), the
mobility and motion properties of the mechanism can be
determined. The information from the graph can ultimately be
used to generate kinematic and dynamic equations describing
the mechanism. However, modular robots can form closed-
loop mechanisms, open chains, or combinations of the two. For
this reason, the graph “bookkeeping” is slightly different.

1

3

4

6
52

1

3

4

6
52

(a) (b)

Figure 2. Single-DOF mechanism made of uniform
link modules: (a) with and (b) without special joint-

location geometry.

Consider the example of Figure 2, in which the mechanism
has mobility 1. The equation for mobility of planar
mechanisms with single-DOF joints is

M = 3(n – 1) – 2j (3)
where n is the number of links and j is the number of joints.
For this equation to give the correct result for the mechanism in
Figure 2(a), the (2,3,4) joint must only count as two joints.
This is because the second joint need not occur at the same
location as the first, i.e. the (3,4) joint could occur in the middle
of link 4, as shown in Figure 2(b). However, if the same
mechanism were constructed of uniform robotic modules, the
robot's adjacency matrix would show a joint between links 2
and 3, a joint between links 2 and 4, and a joint between links 3
and 4, for a total of three joints at the (2,3,4) connection. This
is because the joints necessarily occur at the link endpoints, and
because the possibility for open-chain robots exists. This
“extra” piece of information contained in the robot's adjacency
matrix is essential for extracting geometric information about
the robot, i.e. which modules are connected at which endpoints.
From this point, the physical embodiment of the robot can be

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
visualized or simulated, since the use of uniform-length
modules gives the rest of the necessary geometric information.

DETERMINING THE MECHANICAL COMPOSITION OF
THE ROBOT CONFIGURATION

As mentioned above, a modular robot can contain truss-
like substructures, open-ended chains, and closed-loop
mechanisms. The occurrence of loops and chains has been
recognized and capitalized on to some extent in the self-
reconfiguration studies of Casal and Yim [1] and Yim et al.
[10]. For the purposes of robotic reconfiguration, it is
important to know which robot modules belong to each of these
three groups. Most importantly, one must discern between
substructures and mobile portions of the robot.

The easiest way to identify structural parts of the robot is
to search for triangles, since the most basic immobile subset of
uniform robotic modules is an equilateral triangle. This search
can be done using the adjacency matrix and/or the joint-link
incidence matrix. Once a triangle is identified, it represents a
substructure. By searching for pairs of links which are each
incident on the substructure at different locations and which are
also incident on each other, the recognized bounds of the
substructure grow until no more links can be added to it. This
process is repeated until all of the robot's substructure parts are
identified. Because this search technique begins at the center of
each substructure and moves outward, the modules forming the
perimeter of each substructure are also identified.

THE DIFFERENCE MATRIX AND SUBGRAPH
MATCHING

Given two dissimilar robot configurations, it is useful to
have a way of measuring or quantifying to what extent and in
what ways the configurations differ. This information can
serve as a guide to the reconfiguration process. For two
different configurations of n robotic modules, an n×n difference
matrix D can be defined as

D = Afinal – Ainitial (4)
in which the nonzero entries in D represent dissimilarities
between the initial and final graph configurations. For
example, given the two robots in Figure 1,

0 1 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 1 0 0 1
0 0 1 0 1 0 0 0 0 1 0 1 0 1
0 0 0 1 0 1 0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 1 1 1 1 0 0

0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1

D

 = −

−
−

= −
−

− − − −1 1 0

 (5)

This definition of D depends on proper ordering of the
modules. The difference matrix is only useful for guiding
reconfiguration when the modules of the initial and final
3 Copyright © 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use

Downlo
configurations are ordered in such a way that the norm of the
difference matrix is minimum. In graph-theoretic terms, this is
called finding the maximal common subgraph of the graphs
corresponding to Afinal and Ainitial.

Sometimes the robotic modules are ordered “nicely” such
that the norm of D is relatively small, as is the case in Figure 1
and Eqs. (1-2, 5). For arbitrary module ordering in the
adjacency matrices, the norm of D is not necessarily a
minimum, and it does not accurately describe the “difference”
between two robotic configurations. This would result in
wasted motion if it were used as a guide for reconfiguration
steps. In the case of arbitrary module ordering, this problem of
finding the difference matrix can be formulated as an
optimization problem of the form [11]

min || PAfinal PT – Ainitial || (6)
where P is an n×n permutation matrix which effectively
switches the order of the rows and columns of the final
configuration's adjacency matrix, hence renumbering the links
in the final configuration. Algorithms exist to perform this
matching such that ||D|| is minimum. For labeled graphs, such
as those used to represent chemical reactions, relatively
efficient algorithms can be used. For general graphs, however,
such as those which represent uniform robotic modules, the
problem is slightly more difficult. Although convergence to the
solution is guaranteed, the problem is NP-complete; in fact, its
complexity is O(n!). In order to make it more manageable,
McGregor [15] suggests using a depth-first tree search of
partial matchings with branch elimination based on comparison
of the partial solutions against the best-to-date full solution
candidate. Additionally, an initial guess at the module ordering
can help accelerate convergence of the algorithm. This is the
approach which is adopted in step 1 of the algorithm to be
described below.

THE SELF-RECONFIGURATION ALGORITHM
Determination of the difference matrix D is the first step in

the self-reconfiguration process. In terms of modules and
joints, dij = -1 implies that modules i and j need to be
disconnected during the process of self-reconfiguration, and dij
= 1 implies that modules i and j need to be connected with a
new joint during reconfiguration. To find the difference matrix,
the procedure suggested by McGregor [15] is used, as
described above.

Although in theory the reconfiguration is as simple as
performing the set of disconnect and connect operations as
given in the D matrix, in practice these operations cannot
necessarily be performed at the same time or at all. The
possibility of performing a disconnect operation is reliant on
the overall connectivity of the robot's graph, and the possibility
of making a new connection is reliant on factors such as robot
workspace and environmental or internal obstacles. While the
kinematics and path planning for robotic links is not
specifically addressed in this paper, the goal of the algorithm is
to order these robotic motions in such a way as to minimize the
time and energy required to complete the reconfiguration. The
following steps are proposed for self-reconfiguration while
taking into account such kinematic limitations.

1. Find the difference matrix D using Eq. (4).
2. Judge the feasibility of the disconnect operations

indicated in D. Perform all feasible disconnect
operations in parallel, and update D.

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
3. Judge the feasibility of the connection operations
indicated in D. Perform all feasible connection
operations in parallel, and update D. Return to step 2
and repeat until there are no feasible connections to be
made in step 3.

4. Remaining connections cannot be made directly. Use
intermediate mobile links to “pass” modules to goal
connection points. Update D and return to step 2, or
continue to step 5 if no beneficial passing module is
found.

5. If necessary, disconnect joints which are not marked for
disconnecting in D; this improves the workspace of
mobile links and allows more efficient “passing” in
step 4. Update D and return to step 2.

The reconfiguration is finished when D contains all zero
entries.

Find D

Perform feasible disconnect
operations in parallel

Perform feasible connection
operations in parallel

Use passing modules to
facilitate connections

Use temporary disconnect
operations to improve mobility
and facilitate connections

(No new connections)

(No beneficial passing modules)

1

2

3

4

5

Figure 3. Flowchart for the reconfiguration algorithm.

A flowchart for these steps is shown in Figure 3, and their
details are illustrated in a series of examples.

EXAMPLE 1: WALKER TO TANK TREAD
The robots shown in Figure 1 are used as a simple case

study to illustrate steps (1-3) of the algorithm. This example
involves no module “passing” and is the simplest scenario
encountered with the above algorithm.

(1) The entries of D serve as a guide for the rest of the
reconfiguration steps. From Eq. (5), the difference matrix is
4 Copyright © 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use

Downlo
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0

D

 −

−
 = −
 −

 − − − −

 (7)

 (2) A feasibility judgment for disconnect operations could
include factors such as maintaining connectivity of the robot
and staying within force limits of the joint actuators (for static
stability). Here we consider only robot connectivity. Feasible
sets of disconnect operations to be performed on the walker of
Figure 1(a), which are indicated in D, are {(2,7),(3,7)} or
{(4,7),(5,7)}. Performing all of these disconnect operations at
once is not allowed, since it can be seen from Eq. (1) that doing
so would result in an all-zero row/column, indicating a
disconnected robot.

1

3 4

72

6

5

Figure 4. Disconnecting joints of the walker robot.

Arbitrarily we choose the former as shown in Figure 4. The
new difference matrix is

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 0 0 1 1 1 0

D

 = −
 −

 − −

 (8)

 (3) The next step involves performing sets of connection
operations after first judging their feasibility. Here feasibility is
determined using an approximation of the robot kinematics,
taking into account possible internal interference in the robot.
To do this, for each 2-module connection indicated in the D
matrix, find a path through the robot's graph which connects the
free ends of the two modules and passes only through mobile
links and substructure perimeters, not through the center of
substructures. For all the modules included in this path,
subtract the number of substructure modules from the number
of mobile modules. If the resulting quantity is positive, the
connection is considered feasible. This represents an
approximation of mobile links' capability to reach or wrap
around structural parts of the robot in order to connect the
desired modules. Note that modules “buried” inside a
substructure cannot connect feasibly to other modules, since a
path between the two modules does not exist which satisfies the
constraints mentioned above. The “quality” of each potential
connection is measured by the magnitude of the computed
quantity based on the path through the robot (the larger that
quantity the better). We call this the “connection quality

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
index,” or qc. For the disconnected walker of Figure 4, the path
from link 1 to link 7 is (1,2,3,4), and the path from link 6 to link
7 is (6,5,7). (Note that since a connection between links 1 and
6 is not indicated in D, the path starting at link 1 and the path
starting at link 6 end at opposite ends of link 7.) Since the
entire robot is composed of mobile chains, the quality indices
of these paths are qc = 4 and qc = 3 respectively, the former
having higher “quality.” Now for the “best quality” potential
connection, compute the robot kinematics (joint position
solution) necessary for the connection and make a virtual
connection; i.e. perform all future calculations as if this
connection was actually made, but do not physically make the
connection yet. This “virtual connection” step is repeated until
there are no more feasible (virtual) direct connections to be
made. This ensures that the maximum number of direct
connections can be made at once. Now in parallel, perform this
set of connections. This should be easy, since the joint position
information is retained from the calculations performed during
this step. For the example at hand, there are no substructures in
the robot, and all the connections indicated in D are feasible.
The result of making the (1,7) and (6,7) connections is shown
in Figure 5. The updated difference matrix is

0 0 0 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 1
1 0 0 0 0 0 1

0 0 0 0 0 0 0
0 0 0 1 1 0 0

D

− −

 = − −
 − −

 − −

 (9)

1

3 4

72
6

5

Figure 5. Feasible connections performed on the

modified walker robot.

Note that connecting link 1 to links 4 and 5 is acceptable
temporarily because link 7 is marked for disconnecting from
these two links, so the (1,7) joint will separate from (4,5) as a
single step.
(2) All the remaining disconnect operations are feasible, and
the result is the goal configuration as shown in Figure 6.

1

7

6

5

4

2 3

Figure 6. Tank-tread robot resulting from

reconfiguration.
5 Copyright © 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use

Downl
EXAMPLE 2: “PASSING” ROBOTIC MODULES
As shown in Figure 7, the task is to reconfigure the 9-link

robot such that link 1 moves to the other side of the robot and
connects to the (7,8,9) joint.

1 2 3 4

8765

9 1

2 3 4

8765

9

Figure 7. Initial and final configurations of the robot
in Example 2.

(1) The adjacency matrices and difference matrix are

0 1 0 0 1 0 0 0 0
1 0 1 0 1 1 1 0 0
0 1 0 1 0 1 1 1 0
0 0 1 0 0 0 0 1 0
1 1 0 0 0 1 0 0 1
0 1 1 0 1 0 1 0 1
0 1 1 0 0 1 0 1 1
0 0 1 1 0 0 1 0 1
0 0 0 0 1 1 1 1 0

initialA

 =

 (10)

0 0 0 0 0 0 1 1 1
0 0 1 0 1 1 1 0 0
0 1 0 1 0 1 1 1 0
0 0 1 0 0 0 0 1 0
0 1 0 0 0 1 0 0 1
0 1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1 1
1 0 1 1 0 0 1 0 1
1 0 0 0 1 1 1 1 0

finalA

 =

 (11)

0 1 0 0 1 0 1 1 1
1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

D

− −
 −

 = −

 (12)

(2) There are no feasible disconnect operations indicated in
D since disconnecting the (1,2) joint or (1,5) joint still leaves
links 2 and 5 connected, and disconnecting both the (1,2) and
(1,5) joints results in a disconnected graph.

(3) The difference matrix indicates a connection to be
made involving link 1 and joint (7,8,9). The shortest path from
the end of link 1 to the (7,8,9) joint passes through one mobile
link (1) and two links belonging to the robot's structural portion
(5 and 9), giving a connection quality of qc = -1. As shown in
Figure 8, this does not result in a possible connection of link 1
with joint (7,8,9).

oaded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: h

1 2 3 4

8765

9

Figure 8. Check of the workspace of link 1.

1 2 3 4

8765

9

Figure 9. Check of mobile-link workspace overlap.

(4) The remaining connections cannot be made directly, so
intermediate or “passing” modules must be used. To do this,
use the path through the robot which was found in step 3. Note
all the joints along the path where mobile portions of the robot
attach to substructure perimeters. The “most mobile” of these
mobile portions is used as a passing module. The number of
robotic modules in a mobile portion can be used as an
approximate measure of the quality of its mobility, so the
mobile portion with the most modules is chosen as the passing
module. The link module to be “passed” is connected to the
link module on the mobile portion having the largest workspace
(typically the end of a chain or middle link of a closed loop)
and then connected to the goal link as indicated in the
difference matrix. Multiple passing steps may be necessary.
Since the path through the robot found in step 3 does not pass
through any mobile sub-portions except link 1 itself, it is
necessary to try a different path between link 1 and joint
(7,8,9). (Link 1 could “pass itself” via the (5,6,9) joint, but this
is impractical.) The other possible path includes links 2, 3, and
8, and passes by link 4, which is a mobile chain off of the
substructure. Link 4 is chosen as a passing module. As shown
in Figure 9, the workspaces of links 1 and 4 overlap, and link 1
can be passed (or connected temporarily) to link 4, as indicated
in Figure 10(a). The path from link 1 to link 4 is (1,2,3,4) with
a quality of qc = 0 (barely feasible).

(2) Disconnect link 1 from links 5 and 2 as shown in
Figure 10(b).

(3) Rotating the (1,4) sub-chain, connect link 1 to the joint
at links (7,8,9).

(2) Disconnect links 1 and 4 as shown in Figure 10(c).
These final steps complete the reconfiguration.

1,2 3,4

8765

9

2 3 4

8765

9

1

1

2 3 4

8765

9

(a) (b)

(c)
Figure 10. Final reconfiguration steps in Example 2.
6 Copyright © 2004 by ASME

ttp://www.asme.org/about-asme/terms-of-use

Downlo
EXAMPLE 3: IMPROVING PASSING MODULE
MOBILITY THROUGH DISCONNECTING

As shown in Figure 11, the reconfiguration task is similar
to that in Example 2, except that the robot's span is longer,
leaving a larger distance for link 1 to traverse.

1 2 3 4

8765

9 10

11 12

13

1

2 3 4

8765

9 10

11 12

13

Figure 11. Initial and final robot configurations for

Example 3.

(1) The difference matrix is similar to that in Example 2:
0 1 0 0 1 0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

D

− −
 −

−

=

(13)

(2) As in Example 2, there are no feasible disconnect
operations indicated in D.

(3) The shortest path from the end of link 1 to the
(10,11,12) joint passes through one mobile link (1) and three
links belonging to the robot's structural portion (5,9,10), giving
a connection quality of qc = -2. As shown in Figure 12, this
does not result in a possible connection with joint (10,11,12).

1 2 3 4

8765

9 10

11 12

13

Figure 12. Check of workspace of link 1.

 (4) The only chains attached to the substructure are link 13
and link 1 itself. However, as shown in Figure 13, the
workspaces of links 1 and 13 are not close to overlapping. So it
is advantageous to perform a temporary disconnect in order to
increase the workspace of link 1.

1 2 3 4

8765

9 10

11 12

13

Figure 13. Check of mobile-link workspace overlap.

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
(5) In some cases, it may be necessary to temporarily
disconnect some joints (which are not marked for disconnecting
in the difference matrix D) in order to improve mobility (or
workspace area) and facilitate passing of modules. This occurs
in particular when multiple passing steps were found in step 4.
If this point is reached, a judgment must be made as to which
feasible disconnect would most improve the workspace and
mobility properties and thus decrease or eliminate the passing
steps (step 4). After performing this most advantageous
disconnect operation, return to step 2. In this case, since link 5
is closer to the (10,11,12) joint than link 2, separating links 1
and 5 from link 2 is deemed most advantageous, and link 5 is
used as an extension of link 1.

(2) Disconnect link 2 from links 5 and 1 as shown in
Figure 14.

1

2 3 4

8765

9 10

11 12

13

Figure 14. Temporary disconnect operation uses link

5 as a passing module.

(3) With these new disconnect operations performed, the
path from link 1 to the (10,11,12) joint contains 2 mobile links
and 2 structural links, giving a connection quality of qc = 0.
Since the two mobile links (1 and 5) form a simple chain, this
indicates a “barely feasible” connection. Make this connection
as shown in Figure 15(a).

(2) Disconnect links 1 and 5 as shown in Figure 15(b).
(3) Due to the temporary disconnect of link 5, there

remains a connection to be made between links 2 and 5. The
path between the two link endpoints contains 1 structural link
and two mobile links, so the connection can be made as shown
in Figure 15(c).

These final steps complete the reconfiguration.

2 3 4

876

9,5 10,1

11 12

13

1

2 3 4

8765

9 10

11 12

13

1

2 3 4

8765

9 10

11 12

13
(a) (b)

(c)
Figure 15. Final reconfiguration steps in Example 3.

EXAMPLE 4: DEMONSTRATION OF PARALLEL
RECONFIGURATION STEPS

Two arbitrarily labeled 16-link robots are shown in Figure
16. Starting with an initial relabeling guess, a subgraph-
matching algorithm was used to improve on that guess,
resulting in the relabeled robots shown in Figure 17.

7 Copyright © 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use

Download
1 2

3 4

8

76

5

910

11 12

13

14

15

16

1 2
3

4

87

6

5

9

1011

12
13

14

1516

Figure 16. Initial and final robot configurations for

Example 4.

13 14

9 8

16

410

12

1511

5 6

7

2

3

1

13 10
4

11

168

6

12

7

52

15
3

1

914

Figure 17. Initial and final robot configurations for

Example 4 after relabeling.

(1) The norm of the difference matrix using this labeling
scheme is 18. The disconnection entries in the lower triangular
half of D are at {(12,10), (16,11), (15,11), (16,15), (16,14),
(16,12), (16,4), (15,14), (15,6), (13,12), (12,4)}, and the
connection entries in the lower triangular half of D are at
{(16,8), (15,2), (15,3), (15,7), (14,9), (6,4), (5,4)}.

13 14

9 8

16

4
10

12

15
11

5 6

7

2

3

1

Figure 18. Parallel disconnect operations.

(2) As shown in Figure 18, link 12 can be disconnected

from links 10 and 13, link 16 from links 15 and 14, and link 11
from links 5, 6, and 15, all in parallel. Note that the temporary
(11,5) and (11,6) disconnects are not indicated in D. However,
they are necessary in order to perform the (15,11) disconnect,
which is chosen in order to preserve the (4,11) chain since the
(4,5,6,11) joint occurs in the final robotic configuration.
Although this type of logical decision-making is not discussed
explicitly as part of step (2) of the algorithm, it is an example of
how step (2) of the algorithm could potentially be refined.

(3) While link 16 can feasibly reach link 8, there is
potential interference from the other links, especially 14 and 15.
Also, connecting link 4 to links 5 and 6 results in several
unwanted connections. So these direct connections are not
made at this time.

13 14

9 8

16

4
10

12

15
11

5 6

7

2

3

1

Figure 19. Using a passing module to circumvent

internal interference.

ed From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
(4) As shown in Figure 19, the (14,15) chain is used as a
passing module to circumvent this internal interference problem
and join links 16 and 8.

13
14

9
8

16

4
10

12

15

11

5 6

7

2

3

1

Figure 20. Parallel connections at (12,11) and

(4,5,6,11,12).

(2) As depicted in Figure 20, the (15,14,16,8) chain is
disconnected from (5,6).

(3) The (4,11,12) joint is also merged with the (5,6) joint
after this last disconnect operation, as shown in Figure 20.
Links 11 and 12 are also joined in order to move link 12 to the
end of the chain.

(2) Link 12 is unfolded to form the (11,12) chain.
(4) Links 15 and 14 are passed to their final connection

points using the (8,16) chain as a passing module, as shown in
Figure 21.

13 10
4

11

168

6

12

7

52

15
3

1

9

14
Figure 21. Passing module used for transport of links

14 and 15.

BENEFITS OF THE RECONFIGURATION ALGORITHM
The use of simple, matrix-based graph representations of

robots (for example, the adjacency matrix, incidence matrix,
and difference matrix) is a key tool for automation of the
reconfiguration process. Because the data structures involved
are simple, and all of the algorithm steps can be accomplished
using only these matrices, this representation lends itself well to
self-reconfiguration as opposed to assisted reconfiguration.

The algorithm proposed here has several advantages over
other reconfiguration algorithms. First, because it uses the
difference matrix D, the first attempts at reconfiguration steps
are aimed at those operations which are most efficient, or lead
most directly toward the goal configuration.

Second, the algorithm allows for parallel execution of the
reconfiguration steps. This is made possible through the
technique of “virtual connection,” which enables the algorithm
to find a set of operations which can feasibly be done at the
same time. Many reconfiguration algorithms based solely in
graph theory are serial. While parallelization of serial
algorithms is possible, it may not be the best solution or the
most efficient. It is certainly an easier and more direct
approach to begin with an algorithm which by its nature allows
reconfiguration steps to be performed in parallel.

The final and most novel advantage of the proposed
strategy is the incorporation of elements of the robot kinematics
8 Copyright © 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use

Downlo
in the choice of reconfiguration steps. Because real-life robotic
systems are highly constrained by their kinematics, a purely
graph-theoretic approach is not ideal for the reconfiguration
problem. This type of approach would lead to inefficiency due
to selected reconfiguration steps being eliminated in the path-
planning stage because of infeasible kinematics. Incorporation
of the robot sub-chain workspace in the choice of
reconfiguration steps reduces the load of path-planning
calculations at a later stage, and greatly streamlines the process.

SUMMARY AND CONCLUSIONS
The strategy presented in this paper is an improvement

over existing methods of self-reconfiguration in chain-type
unit-modular robotic systems. Its consideration of the robot
kinematics in the choice of reconfiguration steps makes it more
efficient, as does its ability to perform multiple operations in
parallel.

In addition to the reconfiguration algorithm itself, a new
graph-theoretic approach to determining a robot’s “mechanical
composition” is summarized, along with a solution strategy for
the preliminary subgraph-matching problem.

The discussion in this paper is limited to planar robotic link
modules with a single rotational degree of freedom. Future
work may include an extension of these methods to three
dimensions, as well as adaptation for robotic modules having
more (or different types of) degrees of freedom. Also
remaining to be explored are incorporation of static-force and
dynamic effects as criteria in the choice of reconfiguration
steps, the effects of using different criteria for determining
advantageous temporary disconnect operations, and the
possibility of using the robot composition information in
simplified mobility and kinematic analyses, as well as more in-
depth experimentation into computer implementation of the
proposed algorithm.

ACKNOWLEDGMENTS
While the content of this paper reflects uniquely the views

of the authors, they wish to thank the National Science
Foundation for supporting this research.

REFERENCES
[1] Casal, A., and Yim, M., 1999. “Self-Reconfiguration

Planning for a Class of Modular Robots,” Proceedings of SPIE,
3839:246-257.

aded From: https://proceedings.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use
[2] Pamecha et al., 1997. “Useful Metrics for Modular
Robot Motion Planning,” IEEE Transactions on Robotics and
Automation, 13:531-545.

[3] Yoshida, E., et al., 1998. “Distributed Reconfiguration
Method for 3-D Homogeneous Structure,” IEEE International
Conference on Intelligent Robots and Systems, 2:852-859.

[4] Vassilvitskii, S., et al., 2002. “A Complete, Local and
Parallel Reconfiguration Algorithm for Cube Style Modular
Robots,” IEEE International Conference on Robotics and
Automation, 1:117-122.

[5] Butler, Z., et al., 2002. “Distributed Replication
Algorithms for Self-Reconfiguring Modular Robots,”
Distributed Autonomous Robotic Systems, 5:37-48.

[6] Yim, M., et al., 2001. “Distributed Control for 3D
Metamorphosis,” Autonomous Robots, 10:41-56.

[7] Bojinov, H., et al., 2000. “Emergent Structures in
Modular Self-Reconfigurable Robots,” IEEE International
Conference on Robotics and Automation, 2:1734-1741.

[8] Kotay, K., et al., 2000. “Using Modular Self-
Reconfiguring Robots for Locomotion,” Proceedings of
Experimental Robotics IV, 259-269.

[9] Nguyen, A., et al., 2000. “Controlled Module Density
Helps Reconfiguration Planning,” Fourth International
Workshop on Algorithmic Foundations of Robotics.

[10] Yim, M., et al., 2000. “Connectivity Planning for
Closed-Chain Reconfiguration,” Proceedings of SPIE,
4196:402-412.

[11] Durna, M., et al., 2000(a). “The Self-Reconfiguration
of a Holonic Hand: The Holonic Regrasp,” IEEE International
Conference on Intelligent Robots and Systems, 3:1993-1998.

[12] Durna, M., et al., 2000(b). “Self-Reconfiguration in
Task Space of a Holonic Structure,” IEEE International
Conference on Intelligent Robots and Systems, 3:2366-2373.

[13] Sheth, P. N., and Uicker, J. J. Jr., 1972. “IMP
(Integrated Mechanisms Program), A Computer-Aided Design
Analysis System for Mechanisms and Linkage,” ASME Journal
of Engineering for Industry, May 1972.

[14] Smith, D. A., 1973. “Reaction Force Analysis in
Generalized Machine Systems,” ASME Journal of Engineering
for Industry, May 1973.

[15] McGregor, J. J., 1982. “Backtrack Search
Algorithms and the Maximal Common Subgraph Problem,”
Software – Practice and Experience, 12:23-34.

9 Copyright © 2004 by ASME

: http://www.asme.org/about-asme/terms-of-use

