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The Onset of Tear Propagation 
at Slits in Stressed Uncoated 
Plain Weave Fabrics 
A simple micromechanical model is developed to predict the onset of tear propagation at 
slit-like damage sites (i.e., a series of consecutive aligned yarn breaks) in biaxially 
stressed plain weave fabrics under increasing loading. A crucial aspect of  the model is the 
treatment of the frictional slip of yarns near the damage site. Although the actual 
configuration of slipping regions is complex, the onset of tear propagation in large slits 
(i.e., more than, say, 35 breaks) is dominated by slip occurring on the first few intact yarns 
adjacent to the breaks. The assumptions in the mathematical model were motivated by 
both experimental observations and calculations for key configurations. Analytical results 
obtained for this simple model exhibit good agreement with experimental results, which 
are presented 3'or a variety of fabrics with initial slits of  35 and 45 breaks. 

Introduction 

Bi-axially stressed woven fabrics are used in inflatable and 
tension structures, parachute canopies, and, increasingly, in 
geotextile-rein~brced geotechnical structures. In end-use, fabrics 
are often accidentally cut or punctured by a sharp edge or by 
impact with projectiles. Under sufficiently high remote tension, the 
local damage provides the starting point for a rapidly propagating 
tear that results in catastrophic failure of the fabric structure. The 
problem was recognized in connection with early fabric-covered 
military aircraft and was addressed by investigators empirically 
using the wounded tensile test (Harrison, 1960). Although the 
phenomenon has long been known, it has not been the subject of 
intense fundamental study (i.e., involving multiple investigators 
over a period of years) and, therefore, progress has been modest. 

Installed geotextiles contain holes created by accidental damage, 
e.g., during compaction of the backfill (Troost and Ploeg, 1990), as 
well as purposefully made holes to incorporate specific design 
features of the project. The growth of tears arising from one of 
these damage sites can lead to sudden failure of the geotechnical 
structure (Koerner et al., 1987). Given the impact the proper 
functioning of these structures (e.g., municipal landfills, hazardous 
waste landfills, levees, etc.) has on the safety and health of local 
human populations, study of the tear propagation phenomenon is 
now extremely relevant to the national interest. 

Hedgepeth (1961) provided the first micromechanical analysis 
of a damaged filamentary structure. His analysis, based on shear 
lag theory, has been applied to fiber/matrix composites, where the 
matrix transfers the load from broken to unbroken fibers by means 
of shear. The original work has been the basis of numerous 
extensions and modifications (see review by Rossettos and God- 
frey, 1998). Hedgepeth regarded his shear lag model, where the 
fibers carry axial loads and the matrix is assumed to carry only 
shear, to apply to coated woven fabrics as well, where the coating 
transfers shear between yarns. In bi-axially stressed uncoated 
woven fabrics, load transfer between yarns of a given yarn set is 
accomplished by rotation of the tensioned crossing yarns in the 
fabric plane. In this regard, the fabric acts mechanically like a 
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remotely stressed plane pin-jointed net and the shear stiffness is 
stress-induced, rather than an intrinsic property of the fabric. This 
stress-stiffening effect has been noted by Christoffersen (1980) 
and by Topping (196l). The ultimate transfer of load to a given 
yarn arises through frictional contact between warp and fill yarns 
at the crossover point. 

Christoffersen (1980) derived a general theory for a continuum 
model of the fabric as a deformable orthotropic plate that allows 
for elastic stretching along two orthotropic directions and is capa- 
ble of stress-free deformation in shear. He applied his general 
theory to the problem of an isolated slit and demonstrated that 
harmonic problems (Laplace's equation) arise when yarn rotations 
are small and normal stress is constant in one of the orthotropic 
directions, as in the case of for the slit interrupting only a single 
yarn system. It is assumed that sufficient friction or other means 
prevents yarn slippage at crossover points. This latter assumption 
is appropriate for coated fabrics, but not for most uncoated fabrics, 
where yarn slip appears to have an important toughening effect. To 
capture the frictional slip of discrete yarns, a micromechanical 
approach is necessary. 

The experimental results of Abbott and Skelton (1972) suggest 
that yarn slip at crossover points may significantly toughen slit- 
damaged woven fabrics against tear propagation. Abbott and Skel- 
ton considered slit damage introduced suddenly into uniaxially 
loaded fabrics, measuring the critical tension at which tear prop- 
agation from the initial slit occurs. In tests of otherwise identical 
coated and uncoated fabrics, critical tensions for the uncoated 
specimens were higher by as much as a factor of two. Popova and 
Iliev (1993) remark on the significant yarn slippage exhibited in 
experiments on uncoated slitted fabric specimens under uniaxial 
loading as compared to the behavior of the same fabrics after 
application of an elastomeric coating. 

Godfrey and Rossettos (1998) have introduced a micromechani- 
cal modeling approach that addresses the tendency of individual 
yarns to slip near the damage region. They identify two types of 
frictional slip that occur near the damage site: type 1 involves slip 
occurring on yarns broken in the initial slit, and type 2 involves 
slip occurring on intact yarns in the damage growth path near the 
tip of the slit. Tear propagation is assumed to occur when the 
maximum yarn tension in the intact yarn adjacent to the last yarn 
break approaches the yarn breaking load. Although the basic 
governing equations are simple, implementing the approach to 
address a damage configuration involving a practical number of 
breaks involves considerable difficulty in defining regions on each 
yarn where slip is occurring. Nonetheless, preliminary experimen- 
tal results (Godfrey and Rossettos, 1999) demonstrate, through 
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correlation with dimensionless parameters in the model, that the 
present approach captures the essential physics of the phenome- 
non. 

In this work, we adopt a micromechanical modeling approach 
(Godfrey and Rossettos, 1998) for considering large slits where 
type 2 slip is assumed to occur on the first few intact yarns at the 
tip of the slit. For clarity of exposition, some of the original 
development given in Godfrey and Rossettos (1998) will be sum- 
marized here. It will be shown that type 2 slip occurring on the first 
few intact yarns exerts a dominant influence over the onset of tear 
propagation in fabrics containing large slits. Experimental results 
for the onset of tear propagation at 35 and 45 break slits in a 
variety of biaxially stressed plain weave fabrics are presented and 
exhibit good agreement with the analytical predictions. 

Micromechanical  Model 
In this section, we summarize the main features of a 

micromechanics-based mathematical model originally developed 
in more detail by Godfrey and Rossettos (1998). Consider a plain 
weave fabric with damage consisting of a slit-like series of con- 
secutive yarn breaks arrayed parallel to the x2-coordinate direction 
at xt = 0, where the x~x2-coordinate system is aligned with the 
yarn directions. The microstructural geometry and nomenclature 
pertaining to the damaged fabric is indicated in Fig. 1. The slit 
interrupts only number one (# 1) yarns, referring to yarns parallel 
to the x, and x2-directions as # 1 and number two (# 2) yarns, 
respectively. The plain weave unit cell dimensions are y0~ along 
the xraxis  (the spacing of the # 2 yarns) and Y02 along the x2-axis 
(the spacing of the # 1 yarns). Remote biaxial membrane stresses 
(i.e., having dimensions of force/length) are applied to the fabric 
such that the stress in the x2 direction, T~_, is held constant while 
the stress in the x, direction, T~, is increased quasi-statically. The 
global configuration of the damage and remote loading is shown in 
Fig. 2. At the microstructural level, the membrane stresses are 
viewed as individual remote yarn tensions such that # 2 yarns are 
under constant remote tensions F*2 and # 1 yarns are under qua- 
sistatically increasing remote tensions p (i.e., T~ = P/Yo> T2 = 
F ~ / y m ) .  As x~-direction loading increases, the # 1 yarns exhibit 
displacements in the &-direction and the # 2 yarns exhibit x~- 
direction displacements and small rotations in the fabric plane 
(Fig. 3). With continued increasing loading, the # 1 and # 2 yarns 
may be observed to slip at crossover points in a region near the 
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Fig. 1 Microstructural geometry of fabric containing five break slit-like 
damage 
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Configuration of biaxlal remote stresses on damaged fabric 

breaks (Fig. 4). When p reaches a critical value pr, the initial slit 
damage propagates through rupture of the intact # I yarns on either 
side of the breaks roughly along the line x~ = 0. 

Appropriate differential equations that describe the equilibrium 
of yarns in regions where slip at crossover points occurs, and in the 
region where slip does not occur, can easily be derived (Godfrey 
and Rossettos, 1998). For instance, in the region where crossover 
point slip does not occur, equilibrium of the # 1 yarns can be 
derived by taking into account the load transfer to the # l yarns 
that occurs due to the rotated tensioned # 2 yarns in the fabric 
plane. For small rotations, the angles are indicated in Fig. 3(b). The 
component of the # 2 yarn tension along the # 1 yarn can then be 
written. Introduce u~ as the x~-displacement of the j th crossover 
point on the nth # 1 yarn, where the reference state for displace- 
ments are the positions of points on an otherwise identical stressed 
fabric w i thou t  damage .  In the development of the mathematical 
model, analytical and experimental curves (Godfrey and Rossettos, 
1998) of yarn force versus strain in the xrdirection for Kevlar® 
and Dacron® fabrics have shown good agreement, thereby lending 
validity to the crimp interchange mechanics used in the model. For 
sufficiently high values of the loading, p, the # 1 yarns are 
assumed to be in a nearly straightened out condition, and display 
an effective constant axial stiffness property (EA)ef~ having the 
dimension of force. Rotation of the # 2 yarns is represented by 
relative displacements at points on adjacent # 1 yarns. Considering 
the crossover point unit cell as a free body, Fig. 3(b), the compo- 
nent of force in the x,-direction acting on the # 2 yarn entry and 
exit boundaries will be F*(u{,_~ - u{,)/Yo2 and - F * ( u { ,  - u~,<)/ 
Y02. Therefore, equilibrium of the jth crossover unit cell in the 
x,-direction is written as 

a{a , - -  2U{,  + U{l+l  
F{, +' - F { , ,  + F* = 0. (1) 

Y02 

Replace the j th and j + I th F~,, terms with differences of cross- 
over point displacements ( E n  )eff(uJi - uJi-~)/Yo, and ( E A  )~ff(uJi + t 
- u{,)/yo~, respectively. These terms are strains on either side of 
crossover point j multiplied by ( E A )  off. Equation (1) becomes 

(EA)eff (u{71 _ 2u{, + u{,+') 
Yol 

F; + J J 
- -  ( U n _  1 - -  2u{, + u,,+l) = 0. (2) 
Y02 

Smearing out the interaction with the # 2 yarns and regarding u,, as 
a continuous function of position x,, this equilibrium equation, for 
nonslipping yarns, can then be written as 

Journal  of Appl ied  Mechanics  D E C E M B E R  1999, Vol. 66 / 927 

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



F z * ~  

F 2 * 4 -  

F 2 * ~  

F2* -~- 

P 

4 

(a) 

. , p 
n+l n n-I ~ ~ ~ 

2 1 0 -1 -2 -3 

.., . . . . . . . .  . . . - . -" '*"  ' . . . . . . . . . . .  

. . . .  . . . . . . .  . . . . . . . . .  ., 

yo~ l . . . . . . . . . . . . . . . . . . . . . . .  

, . , .  . . . . . . . . . . . . . .  ,., 

j i : . /  .......... . . . .  - . . . . . . . . . . .  . , .  

. . . . .  i : ~  j , 1 "  i . . . . . . . .  
I . . . . . . .  " . .  

. . . . . .  ' "  x ~ . . . . . . . .  

i 

, T x~ 
X 2  

P 

-4 ~5 "~ " 

~ F ~ *  

-~ F~ * 

. . ~  , b l n - I  - -  bl n 

/A n  - -  ~ n + l  ~ j  ¢-1 Y 0 2  

F,~ 
-~ ' (b )  

~ F2* 

, X 1 - - - -0 

-I~--.-L(line of symmetry) 

Fig. 3 (a) Geometry of damaged fabric indicating the elastic (nonslipping) deformation. Highly 
schematic, only yarn centerllnss are shown. Breaks in # 1 yarns, dashed lines represent deformed 
# 2 yarns. (b) Equilibrium of the jth crossover point unit cell. 

d2u, F* 
dx~ + (EA)efffolYo2 (u , - i  - 2u, + u,+l) = 0. (3) 

Equation (3) is written in dimensionless form as 

U" + U,,-i - 2U,  + U,+l = 0 (4) 

using the following nondimensionalization: 

/(Ea)effyo|Yo2 ~ U. (5) 

where primes denote differentiation with respect to ~. 
Crossover point slip is assumed to occur in a region near the 

breaks, 0 < x ~ < l,,, where l,, denotes the extent of the slip region 
on the nth # 1 yarn. In the slipping region, the yarn is assumed to 
experience a periodic array of frictional tractions f of constant 
value (simple slip assumption (Godfrey and Rossettos, 1998)), the 

Fig. 4 Yarn slip and deformation pattern near slit. White arrows Indicate 
motion of broken # 1 yarns in type 1 slip. Black arrows indicate motion of 
# 2 yarns in type 2 slip. Highly schematic. 

period corresponding to the crossover point spacing. The equilib- 
rium equation can be written as 

d2u,, f 
dx~ ~- (Ea)efO'0~- 0 (6) 

where the minus sign applies for slip of a broken yarn and the plus 
sign applies for slip occurring on an intact yarn. It is noted that 
yarns that are broken (# 1 yarns) will slip in the positive x :  
direction relative to the crossing # 2 yarns (Fig. 4), thereby 
incurring a friction force in the negative x:direct ion (type 1 slip: 
minus sign). In the slip that occurs on an intact yarn, the # 2 yarns 
slip in the positive x:direct ion (Fig. 4), applying a friction force 
on the # 1 yarn in the positive x:direct ion (type 2 slip: plus sign). 
Equation (6) is written in dimensionless form as 

U" ¥ j ~ = 0  (7) 

where slip occurs in a region 0 < ~ < t, and a dimensionless 
loading parameter and dimensionless extent of the slip region a r e  

introduced: 

[ F;yo, ~ /(Ea)a'ffolYo2 
: =  p We 02s' z,, = t° (8) 

In the solution of problems involving various configurations 
with a given number of broken yarns and the associated slip 
regions, continuity conditions between the slip and nonslip regions 
are applied, in addition to appropriate boundary conditions. Since 
the broken yarn ends are stress free at the slit, the boundary 
condition on the broken yarns at ~ = 0 is U',, = - 1. The - 1 is due 
to the fact that the sum of the reference state strain and the 
additional strain du,,/dXl must vanish at ~ = 0; the reference state 
strain is duffdx~ = p/(EA)orf and, using (5), get dUffd~ = 1. For 
intact yarns, symmetry requires that U,, = 0 at ~ = 0. A uniform 
strain is assumed far from the breaks, therefore, for all yarns we 
require that U',, = 0 at ~ = oo. 
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Application to Large Slits--Type 2 Slip 
The essential mechanisms of the model are depicted by the 

equilibrium equations, i.e., (4) and (7), and appropriate boundary 
and continuity conditions as discussed above. Although the basic 
equations are simple, the opportunity for each yarn near the dam- 
age site to slip over a unique slip extent, 1,,, creates significant 
difficulty in implementing the model to treat specific numbers of 
breaks. For larger slits, the actual configuration of the slipping 
regions may be expected to become increasingly complex. For 
predicting the onset of tear propagation, our interest is in the stress 
concentration in the first intact yarn at the tip of the slit. Since 
knowledge of the complete deformation field of the fabric under 
increasing load is not our goal, we exploit simplifications designed 
to approximate the fabric's behavior in the immediate vicinity of 
the first intact yarn at loads corresponding to the onset of tear 
propagation. 

As previously mentioned, type 2 slip is the slip that occurs when 
a rotated crossing yarn slips in the positive x~-direction at a 
crossover point with an intact yarn, straightening the kink that 
occurs at the crossover point to a degree (Fig. 4). Type 1 slip is the 
slip that occurs on broken yarns as they displace relative to the 
crossing yarns, moving away from the initial line of breaks (Fig. 
4). For slits involving small numbers of breaks, where high remote 
loads may be attained, type I slip may be easily observed in testing 
because the slip displacements are significant; the broken ends of 
the yarns often slip far enough to disengage from their interlacings 
with several crossing yarns. 

Consider the damaged fabric under a slowly increasing remote 
yarn load p starting from zero. Initially, for large slits, the fabric 
behaves elastically (no slip) until p attains the threshold value p ~j,,,~,, 
when type 2 slip begins along the first intact # 1 yarn at the tip of 
the slit. As the load is increased further, the type 2 slip extent 
grows and a second load threshold is reached when type I slip 
begins at the outermost broken yarn. For further increases in the 
load, the type 1 slip extent will increase approximately linearly 
with the load, as shown by calculations in Godfrey and Rossettos 
(1998), but, for some regime of load, the type 1 slip extent will 
remain significantly smaller than the type 2 slip extent. Since, for 
increasingly large slits, tear propagation can be expected to occur 
at smaller values of p (larger stress concentrations), the loading 
regime in which either type 2 slip occurs alone, or occurs over a 
much larger extent than type 1 slip, encompasses the loads over 
which tear propagation occurs in many stressed fabrics. Post-test 
inspection of experimental specimens confirms this expectation, 
where little evidence of type 1 slip is exhibited by the most damage 
sensitive fabrics. 

Comparison of the post-test permanent deformation patterns in 
the vicinity of slit damage in fabric specimens with small and large 
slits supports the notion that the type 2 slip mechanism becomes 
increasingly important in larger slits. Specimens of a continuous 
filament polyester fabric with damage consisting of three (small 
slit) and 45 (large slit) consecutive aligned fill yarn breaks were 
tested under the considered bi-axial loading. The fabric, and the 
method and conditions of the biaxial testing, are described in the 
experimental section of this paper. The polyester fabric is the most 
damage tolerant of those studied here and, therefore, exhibits the 
largest and most well developed slip regions. The post-test con- 
figuration of the three break specimen, after removal of the exter- 
nal loads, is exhibited in Fig. 5. As can be seen, tear propagation 
did not occur at the initial damage site; the test ended in a "jaw 
break" type failure. The deformation pattern provides clear evi- 
dence of substantial type 1 slip: the cut ends of the three broken 
yarns have displaced far enough to disengage from interlacings 
with seven or eight # 2 yarns; the three broken yarns exhibit a 
distinct wiggly appearance for some length starting at the cut ends, 
suggestive of a slipped yarn region adjacent to an unslipped region 
of the broken yarns further away from the origin. The overall 
waviness exhibited by all # 1 yarns in the figure is due to the 
general plastic deformation of the # 1 yarns in the specimen caused 

Fig. 5 Post-test permanent deformation pattern in three break speci- 
men, polyester fabric 

by the high value of the remote tension, p, experienced in this test. 
Examination of the # 2 yarns in this specimen reveals that they 
remain essentially straight and parallel to the x2-coordinate axis in 
the vicinity of the local damage, a fact that is consistent with the 
hypothesis that very little, if any, slip occurred at crossover points 
along the intact yarns (type 2 slip). The post-test configuration of 
the 45 break specimen, after removal of external loads, is exhibited 
in Fig. 6. This test ended in tear propagation, as evidenced by the 
frayed looking yarn ends resulting from the rupture of the initially 
intact # 1 yarns along the line x t ~ 0. The displacement of the cut 
yarn ends seen here, similar to that seen in the three break speci- 
men, also indicates substantial type 1 slip. In the 45 break case, 
however, the # 2 yarns are permanently curved such that, as they 
approach their crossover points with the broken # 1 yams, the # 2 
yarns move away from the line of initial breaks. Crossover points 
on any particular # 2 yarn, where it is interlaced with the 45 
initially broken # 1 yarns, are seen to lie at greater distances from 
the line x~ ~- 0 than cross-over points where the # 2 yarn is 
interlaced with the initially intact # 1 yarns (except in the region of 
complicated deformation very near the cut ends). This pattern can 
be seen in the entire field of view of Fig. 6. The occurrence of type 
2 slip along several intact # 1 yarns at the tips of the slit provides 
a plausible explanation of the observed deformation pattern. The 
fact that the pattern extends to the edge of the figure suggests that 

Fig. 6 Post-test permanent deformation pattern in 45 break specimen, 
polyester fabric 
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the extent in the x~-direction of the region experiencing type 2 slip 
is likely significantly larger than the extent of the type 1 slip 
region. Taken together, Figs. 5 and 6 suggest that, as the consid- 
ered slit size becomes larger, type 2 slip becomes the predominant 
inelastic mechanism in the response of the damaged fabric. The 
predominance of type 2 slip in large slits is apt to be most 
applicable to relatively damage sensitive fabrics, where tear prop- 
agation occurs before the type 1 slip extent grows significantly. 

In what follows, we assume for large slits, that a type 2 slip 
occurs in only the first few intact yarns at the tip of the slit over a 
common extent, I. Type 1 slip is assumed not  to occur  on the 
broken yams. These simple assumptions on slip configuration are 
justified by two observations. First, the occurrence of type 2 slip on 
yarns at some distance ahead of the first intact yarn does not 
significantly affect the tension in the first intact yarn. This was 
demonstrated in calculations by Godfrey (1998), where the number 
of intact yarns at the slit tip assumed to be slipping was taken to be 
in the range of four to ten without affecting tension in the first 
intact yarn. Second, following the discussion given in the previous 
paragraphs, it can be shown for large slits a posteriori from results 
of the calculation, using (7), that, for values of the remote load that 
are of interest, type 1 slip either will not occur or its extent will be 
small (note that, if U'~(0 +) -< f ,  where yarn N is the last broken 
yarn, no type 1 slip will occur). This suggests that type 2 slip will 
have the primary influence over the stress concentration in the first 
intact yarn. 

We consider a finite width configuration of 2q + 1 # 1 yarns 
with 2N + 1 consecutive aligned breaks (slit) centered at the 
zeroth yarn. Yarns in the positive x2 half-plane are numbered so 
that n equals 1 to q. Yarns in the negative x2 half-plane are 
numbered - 1 to - q. The series of breaks is symmetrical about the 
center yarn, so that, concerning ourselves only with nonnegative n, 
yarns numbered 0 -< n -< N are broken and yarns numbered n > 
N are intact. Because of symmetry, we need only consider equa- 
tions for yarns n = 0 to n = q. 

The fabric is divided into regions I, 0 < ~ < I, where type 2 
slip is occurring on yarns n = N + 1 to n = N + s, and II, ~ 
~, where no slip is occurring. In the analysis, we will arbitrarily 
take s to be four, for definiteness. As mentioned, varying the value 
of s from four to ten has an insignificant effect on the stress 
concentration in the first intact yarn (Godfrey, 1998). The value of 
q is assumed to be sufficiently large such that the behavior of the 
finite width configuration closely approximates that of an infinite 
fabric with an isolated slit. Similar studies in composite sheets 
containing matrix yield zones near the slit tip (Rossettos and 
Shishesaz, 1987; Rossettos and Olia, 1995), where the structure of 
the equations is the same (Rossettos and Godfrey, 1998) and the 
slip zone in fabrics plays an analogous role as the matrix yield 
zone in composites, have shown exponential decay in the width 
direction, so that finite width sheets provide effective models for 
the infinite sheet problems. Therefore, the displacements of yarn q 
are taken to be those of the undamaged reference, i.e., Uq(~) = 0. 

In region II (nonslipping region), the equilibrium equations have 
the form of (4), where symmetry about the center yarn and the 
above assumption regarding the qth yarn, lead to the following 
special forms for yarns 0 and q - 1, written as 

and 

U'~ - 2U0 + 2U1 = 0 (9) 

U~t_ 1 + Uq_ 2 -- 2 U q _  1 = 0 ,  (10) 

respectively. 
In region I, (4), and the special forms (9) and (10), hold 

everywhere except for yarns n = N through n = N + 5. For the 
slipping yarns, N + 1 --< n -< N + 4, the equilibrium equations 
are (7) where the plus sign is taken for type 2 slip. Yarns N and 
N + 5 require special equations derived from consideration of the 
equilibrium and deformation of that portion of a crossing (# 2) 
yarn that spans the crossover points on # 1 yarns from yarn N to 

yarn N + 5. The derivation proceeds as follows. It is assumed that 
the # 2 yarns behave as classical taut strings under transverse 
loads, f ,  at the four slipping crossover points. The displacement of 
the crossing (# 2) yarns in the x~-direction at the slipping crossover 
points is denoted by 6, ,  N + 1 - n -< N + 4. Force equilibrium 
in the xt-direction is written for each of the slipping crossover 
points on the # 2 yarns, where force components arise from the 
small rotations of the tensioned # 2 yarns and the small rotation 
angles are indicated by differences of displacements, i.e., (&,_ ~ - 
6,,)/yo2. This leads to a system of four linear equations for the four 
unknown # 2 yarn displacements: (UN -- 28N+~ + 8N+2)F~/yo2 = 
f,  (SN+~ - 2~u+2 + 8N+3)F*lyoz = f ,  . . . .  (~N+3 - -  2~N+4 q- 
UN+5) F*/yo2 = f .  Using (5) to nondimensionalize both # 1 and # 
2 displacements (i.e., u, and 8,,), and (8) to nondimensionalizef, 
the four equations take the form: UN - 2AN+~ + AN+2^ = f ,  
AN+i - 2AN+2 + AN+3 = ) ,  A N + 2  - -  2AN+3 + A N + 4  = f,  and 
Au+3 - 2Au+4 + UN+5 = f;  where the h,, are the dimensionless 
displacements of the # 2 yarn crossover points. Observing that the 
equation for the Nth # 1 yarn will have the form U% + UN ~ -- 
2Uu + AN+~ = 0, and that of the N + 5th # 1 yarn will have the 
form U,~.5 + /~N+4 - -  2UN+s + UN+6 = 0, the solution for dXN+~ 
and ~N+4, obtained from the four equations for the dx,, may be 
substituted into the equations for the Nth and N + 5th # 1 yarn to 
obtain 

and 

UN. ~_ UN_i -- ~6 UN + 51 UN+5 = 2j ~ (11) 

" ' = 2 ) .  ( 1 2 )  UN+ 5 q- y UN - -  ~ UN+5 q- UN+ 6 

As previously discussed, the boundary conditions may be writ- 
ten for intact and broken yarns as 

U , ( O ) = O , n > - N +  1; U~,(0) = - 1 ,  n < - N ;  (13) 

a t ~ = 0 a n d a s  

U',(oo) = 0 (14) 

for all yarns, 0 ~- n --< q - 1, at ~ = oo. Since all yarns are 
continuous at ~ = t, the following continuity conditions hold, 
where roman numeral subscripts I and II refer to the solution in 
regions I and II, respectively, 

U,,,(I) = U,,,(~); U'i,,(l) = U' . , ( I ) .  (15) 

An additional continuity condition arises from the assumption that 
slipping is approached in a continuous fashion. This may be 
illustrated by considering a point at x~ = a on yarn n = N + 1. 
As the remote load p is increased, a value o f p  is reached that just 
starts slip with the extent l = 0 +. As the load is increased further, 
the slip extent l increases, but, as long as 1 < a, no slip occurs at 

14 

12 / "  , . . . . . . . .  

i j ., .. •, ,. 
/J .," ,'" 

~ //,..,'"'" 
45 breaks 

IIi/ - -  35  b~oaks 

I Z ~ / '  - - - 25 breaks 

~"" 15 breaks  

0 10 15 20 25 30 35 

Fig. 7 Behavior of type 2 slip extent, i, with Increasing dimensionless 
applied load,/~ 
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Fig. 8 SCF versus ~ for slits of various numbers of breaks, large-slit 
analysis 

the point xj = a. During this time, the frictional forces at the 
nonslipping crossover points in the neighborhood of x~ = a 
increase continuously, until they reach a maximum value o f / ( o n  
the verge of slip) as the slip extent l approaches a. Therefore, the 
frictional force on yarn N + 1 (proportional to U~+j) is taken to 
be continuous at x~ = l, which may be stated in the dimensionless 
variables, using (4) and (7), as 

{ U N -  2 U N + I  + (16) 

The system of second order differential equations, namely (4), 
(9), (10), (11), and (12), for the nonslipping yarns in region 1 may 
be written in matrix form as 

U ' ( -  LU~ = Q (17) 

where L is banded, Ui r = [U0, Ui . . . . .  UN, UN~5, UN+6 . . . . .  
Uq-2, Uq_ ~], and the elements of Q are all zero except the N + 1 th 
and N + 2th elemen[ (corresponding to equations for yarns N and 
N + 5), which are 2J: A homogeneous solution to (17) is assumed 
in the form U~ = Re A~, where Ui and R are vectors of order q - 
4. The resulting eigenvector problem, (L - h=I) = 0, leads to 
eigenvalues h~ and eigenvectors R ~. The solution U~ can be written 
by the superposition of eigenvectors as the expansion 

q - 4  

UI = E Ri(Bi e-a''~ + ci  ca"i) + ui, 
i=1 

where the particular solution, Up, has been added to satisfy (17). 
The solution for the slipping yarns in region I, which involves (7), 
is 

U ~ , , = - ~  +A,,~, N +  l ~ n _< N + 4. 

5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.5. 

4 - [] Exp. - 35 breaks .,~ 
~/3 ~ k  - -  Anal. - 35 bleaks 

~ 3.5. ~ A Exp. - 45 breaks 

3- 

2.5. 

2. 

15 

1 

2 4 6 8 l0 12 

Fig. 9 Comparison of analytical and experimental SCFtp versus Pc be- 
havior for 35 and 45 break slits 

The system of second-order differential equations, namely (4), 
(9), and (10), for region II may similarly be written in matrix form 
and the solution may be written as the eigenvector expansion 

q 

Un = E YiDie-V'~ (20) 
i=1 

where the + % have been discarded to satisfy (14), UH and Y are 
vectors of order q, and U~i = [U0, U~ . . . . .  Uq-2, Uq ,]. 

To complete the solution process, we select values for the s l ip  
extent, Z, and determine the values of the constants (i.e., A,, B~, 
C~, and D~) and the parameter, f ,  using the boundary conditions, 
(13), and the continuity conditions, (l 5) and (16). Observing from 
(8) that the parameter f is inversely proportional to the applied 
load, p, we introduce a dimensionless applied load, f ,  which we 
define as f = f ~, in the interest of clarity in the presentation and 
interpretation of the results. 

Analytical Results - -Type 2 Slip 
As indicated above, the behavior of type 2 slip extent, f, with 

(18) increasing dimensionless applied load, I), may be obtained by 
selecting values of I and solving the defined boundary value 
problem to yield f,  where f = J' ~. In Fig. 7, t is plotted against f 
for various numbers of breaks. It is seen that larger slits (i.e., 
involving greater numbers of breaks) yield significantly greater 
slip extents for given values of f .  

The stress concentration factor (SCF) is defined here as the ratio 
of the maximum tension in the intact yarn adjacent to the yarn (19) 
break at the tip of the slit to the remote applied load, p m=,x/P. Using 

Fabric # 1 yarn 
system 

Cotton fill 

Polyester, fill 
continuous 
filament 

Cotton/polyester fill 
blend 

Cotton/polyester warp 
blend 

Table 1 Fabric properties 

~01, c m  

0.0334 

0:0348 

0.0334 

0.0391 

)02, c m  

0.0379 

0.0686 

0.039l 

0.0334 

Pu, N 

1.93 
6.36 

2.27 

2.50 

(EA)er t, N 

32.3 

23.9 

40.4 

71.2 

if2 ~ , N 

0.569 

0.888 

0.569 

0.388 

f ,  N 

0.0328 

0.0582 

0.0356 

0.0166 
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Table 2 Tear propagation results for 35 and 45 break slits 

Fabric # 1 yarn 35 break slit 45 break slit 
system /3c SCFip /3 c SCF,p 

Cotton fill 

Polyester, fill 
continuous filament 

Cotton/polyester fill 
blend 

Cotton/polyester warp 
blend 

t Standard deviations indicated in 

2.45 (0.612)* 

6.94 (0.944) 

4.76 (0.571) 

,arenthesis. 

2.98 (0.364) - -  

2.16 (0.018) 6.3l (0.883) 

- -  2.09 (0.449) 

2.52 (0.144) 4.25 (0.551) 

2.38 (0.080) 

3.35 (0,t55) 

2.82 (0.212) 

the displacement reference and the nondimensionalization scheme, 
it is straightforward to show that the SCF can be written as SCF = 
U~+~(0) + 1. The SCF due to slits containing various numbers of 
breaks is plotted against/~ in Fig. 8. 

Experiments  

To investigate the predictive ability of the simple microme- 
chanical large-slit model, a number of plain weave fabrics have 
been studied experimentally. Particular aspects of the experimental 
methods are described in more detail by Godfrey and Rossettos 
(1999), where preliminary results for 26 break slits are given. The 
methods used to obtain the present results differ only in that an 
improved specimen is used that provides a larger (15 cm × 15 cm) 
bi-axially stressed region. 

It is assumed that the onset of tear propagation occurs when the 
maximum yarn tension in the fabric, p m a x ,  occurring in the N + 1 th 
(first intact) yarn attains the value of the in situ ultimate breaking 
load of the # 1 yarn, p,,. The SCF in a particular fabric, under 
specific crossing yarn tension F*2, for a slit consisting of a given 
number of # 1 yarn breaks, takes on a special value at the onset of 
tear propagation, which we denote SCFtp. Since the applied load 
has the value p c (P critical) at the instant of tear propagation, we 
may write SCF,p as SCF~p = p,/p,. The SCF versus [J behavior, 
exhibited in Fig. 8, may be interpreted as representing the SCF,p 
versus /~c behavior of fabrics, where /~c is the dimensionless 
applied load at the onset of tear propagation, written, using (8), as 

Pc .[  F~yol 
= 7  / xgT0  (21) 

We will present our experimental results, which are essentially 
values of pc measured in a variety of stressed fabrics for slits of 35 
and 45 breaks, through the dimensionless parameters, SCFtp and 

The selection of 35 and 45 breaks for study was motivated by 
previous work with 26 breaks and the desire to study larger 
damage sizes. Much larger sizes were not considered because of 
limitations in existing experimental means, as well as the concern 
that very large slits may violate some of the fundamental modeling 
assumptions, such as the small # 2 yarn rotation assumption. 

The experimental set-up uses cruciform-shaped specimens 
where a fixed stress is applied in the xa-direction (a force on each 
# 2 yarn of F~) using an air cylinder actuated frame and a varying 
stress (from zero to high values) is applied in the x t-direction by 
a servo-hydraulic test machine. In tear propagation experiments, 
the initial slit-like damage is created in the center of the specimen 
by carefully cutting consecutive # 1 yarns using a sharp razor. The 
damaged specimen is mounted in the frame and F*2 is applied. The 
value of the remote load p is increased monotonically from zero 
until tear propagation occurs; the maximum value o fp  is taken to 
be Pc. 

To evaluate the dimensionless parameters, the values for Y01, 
Yo2, P,, and (EA)eff are determined for the particular fabric and 
orientation under consideration. In addition, the value of j '  is 
determined for the specific value of F~ to be used in the tear 
propagation tests. Measurements of the in situ yarn stiffness and 
strength, (EA)of~ and p, ,  respectively, are made using uniaxially 
loaded "ravel strip" specimens. The value of (EA),, is determined 
from the slope of the load/strain curve in the region where the 
loaded yarns have straightened out. The crossover point slip fric- 
tional force, f, is measured indirectly using a cruciform specimen 
with a small number of breaks (five to seven) observed under 
magnification on a video monitor, where the deflections of the # 2 
yarns caused by interaction with slipping # 1 yarns are used to 
calculatef. The frictional forces balance components of the forces 
in the tensioned crossing (# 2) yarns as they rotate through small 
angles. These angles, and therefore the frictional forces, can be 
calculated from the deflections. The selection of five to seven 
breaks for the measurements is a trade-off between two competing 
effects: Smaller numbers of breaks yield less deformation in the # 
2 yarns and, therefore, make measurements more difficult; using 
larger numbers of breaks introduces the possibility that not all of 
the broken # I yarns will be slipping simultaneously at crossover 
points on the # 2 yarn selected for measurement. Attempts to 
measuref  with larger numbers of breaks (fifteen) resulted in lower 
values, which is consistent with the notion that not all crossover 
points were contributing the maximum frictional force associated 
with slip. 

A 100 percent cotton staple yarn fabric, a cotton/polyester blend 
staple yarn fabric, and a continuous multifilament polyester yarn 
fabric are studied here. All fabrics are plain weave and somewhat 
sheer, i.e., exhibit easily observed open space between yarns, in 
order to mitigate the effects of near contact between adjacent yarns 
of the same yarn system. The fabric constructions are 30.0 by 26.4, 
30.0 by 25.6, and 28.7 by 14.6, warp yarns/cm by filling yarns/cm, 
and the areal densities are 113 g/m 2, 107 g/m 2, and 83.0 g/m 2, for 
the cotton, cotton/polyester, and polyester fabrics, respectively. 
The microstructural properties pertaining to the present tear prop- 
agation experiments are given in Table 1. 

The results of tear propagation experiments are given in Table 2 
for initial slit-like damage consisting of 35 and 45 breaks. Standard 
deviations are determined based on approximate formulas for 
propagation of error in calculated quantities (Taylor, 1990), where 
the variability of p,., p,, a n d f  has been taken into account. Most 
of the variability exhibited by/~ c stems from variability in ¢i The 
measurement of f is difficult, particularly for the staple yarn 
fabrics. For each case, three measurements of f, three measure- 
ments of pc and three to six measurements of p ,  were made, 

Comparison  of  Analyt ical  and Experimental  Results  

The experimental results given in Table 2 are plotted with the 
predictions made using our large-slit analysis for 35 and 45 breaks 
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Comparison of analytical 25 break slit SCFtp versus/~c behavior 
with experimental results for 26 break slits given in Godfrey and Rosset- 
tos (1999) 

in Fig. 9. The experimental and analytical results are seen to be in 
good agreement. In Fig. 10, preliminary experimental results given 
by Godfrey and Rossettos (1999) for 26 breaks are plotted with the 
analytical curve for 25 breaks (the present model has only been 
implemented for odd numbers of breaks). For this case, the ana- 
lytical SCF, v is consistently higher than that measured, suggesting 
two possibilities: (1) the 26 break slit is not sufficiently large to be 
well approximated by our large-slit approach; and (2) the smaller 
specimen size used in the earlier work affects the experimental 
results. 

C o n c l u s i o n s  

A simple micromechanical model has been developed to predict 
the onset of tear propagation at slit-like damage sites in biaxially 
stressed plain weave fabrics under increasing loading perpendic- 
ular to the line of breaks. The analysis has been specialized for 
large slits parallel to a yarn direction, where it is assumed that slip 
occurs at crossover points in a region along the first few intact 
yarns near the tip of the slit. The simplified slipping configuration 
applies to slits involving greater than, say, 35 breaks, where it can 

be shown a posteriori that the slip mechanism assumed in the 
analysis is the one that dominates for remote load values of 
interest. Experimental results have been presented for the onset of 
tear propagation in a variety of stressed cotton and polyester 
fabrics containing 35 and 45 break slits that agree well with 
predictions made using the present large-slit analysis. 
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