

An Exploration of HTML5,

Flash, and Javascript -

Building a Presentation

Engine

By: Devlin Smith

Supervisor: Prof. Peter Wentworth

15 October 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357373985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

HTML5 is an emerging standard that provides new features and capabilities that overlap with

those traditionally provided by tools like Flash. Because the standard is still emerging there are no

clear guidelines or trade-offs to help choose between using the different technologies. We

demonstrate how HTML5 can be used to create a presentation engine, previously only possible in

technologies like Flash. The presentations contain various rich and interactive media, including

deep zoom viewing, videos, navigation control and sequencing of the presentation slides. These

features demonstrate the capabilities of HTML5, combined with Javascript, and the techniques

needed to use them.

1. Introduction

The World Wide Web (WWW) and specifically Hypertext Markup Language (HTML) are in a

constant state of evolution, and with that come updates of the previous technologies [5]. Tim

Berners-Lee’s initial creation of the Hypertext Transfer Protocol (HTTP) and HTML, and the

creation of masses of devices to browse the WWW, from old computers with the initial browsers

like Mosaic and Netscape, to mobile devices and tablets with up-to-date browsers, there has been

a mix of ways to interpret HTML [6][26][29].

The World Wide Web Consortium (W3C) co-ordinates groups in an effort to evolve and

standardize the technologies of the WWW. Supporters included Tim Berners-Lee and various

leading Information Technology companies including; Microsoft, Apple, Google, Adobe, and

anyone wanting to join its groups [33]. They are continually updating the current HTML standard

to include more applicable concepts and relevant Application Programming Interfaces (API) that

are standardised for the different browsers that view the WWW [4]. Along with these HTML

updates come new features that were previously only possible to achieve with Add-On

technologies like Adobe’s Flash [1].

They are also standardising the Cascading Style Sheets (CSS) used to provide styling to

HTML pages [34]. These have widely come to be known as CSS3 and HTML5, and are the latest

versions of these technologies [17][4]. It is important to note that they are still being standardised

and are currently in draft format [17][4]. CSS3 comes with abilities like transitions and

animations, and various additions to previous styling and effects. HTML5 comes with many more

technologies such as; video, audio, canvas, websockets, geolocation, web workers [35].

Combined with Javascript to form control and many of the abilities of Flash could be substituted

with the latest HTML technologies.

2. The Problem

With the release of new standards, and updates, there remains a problem of change, and addition,

of syntax with the current version of HTML, as well as how developers should be using it and

where its use is appropriate. This research will explore the uses of newer features of HTML and

how they affect current technologies on the WWW such as Flash [1]. The exploration intends to

expose useful features to a developer along with useful client side browser code, including the

Document Object Model (DOM) and scripting to alter it, namely Javascript [36][12].

This is done through the creation of a prototype presentation engine, because a

presentation is a media rich concept with vast opportunities for new HTML technology usage.

This will only be a prototype presentation as the display of information is the essential concept

for an argument towards how HTML will come to compete with technologies like Flash, and

development is restricted to Google Chrome for scope purposes.

Seadragon is a library that allows for zoomable compositions of pictures, supported by

Microsoft Expression Studio. Seadragon Ajax is a Javascript version that can be distributed over

the WWW and is an open source component that is used as a base to create the prototype

presentation engine [18]. The API is available from Microsoft Expression’s online API with

many useful components [18]. Newer HTML elements are used in combination with this to create

the feeling similar to previous online Flash presentations [25].

3. Related Work

Other presentations on the WWW were examined to examine the level of richness being

produced in Flash and Javascript, with possible new HTML5 features. This included Prezi, a

Flash based presenter with many powerful features. For a true display of Flash’s visual

capabilities a view of this website is recommended, and was used as the base of our requirements

specification for the engine [25].

HTML5rocks is another impressive use of CSS3 and HTML5 in combination to produce a

smooth visually appealing and promotes the use of CSS, HTML, and Javascript as ‘HTML5’

deeming it the “Next generation features for modern web development” [8]. HTML5rocks also

gives a brief overview of other new HTML5 elements and capabilities.

CreateJS is a Javascript library that uses HTML5 and was also explored for its control of HTML5

elements [10].

Another notable website is Wix, which allows a user to create websites online and use media rich

HTML5 templates, as well as Flash ones [32].

4. The Presentation Engine

This section will expose work created and follow useful concepts, and technologies, in the

creation of an online presentation. This is done through an analysis of the technologies used

throughout the engine.

Any presentation engine requires mechanisms to functions. We identified the following

requirements and our technological sources for the presentation in Table 1:

Table 1: List of required abilities and sources

Requirement Technological source

System should encourage strong overview Seadragon Ajax

Point to Point Navigation Seadragon Ajax and custom Javascript

Timeline and Slide/Node control (Object creation

and event control)

Custom Javascript

Overlay of custom objects: styling and positioning Seadragon Ajax and custom Javascript

Video HTML5: Video

Rich embedded content HTML: Iframe

Interactivity Custom Javascript

4.1 Significant HTML5 features for the presentation engine

The new HTML brings new events, elements and possibilities. This chapter covers

HTML elements for the prototype presentation engine, as well as how they were previously

possible. All HTML elements are controlled with Javascript in the presentation engine.

Video is a rich component, allowing for video to be streamed through HTML over HTTP.

Previously this was only possible through a Flash plugin. This is a large area for potential

competition, as video could be considered one of the most media rich forms available over the

WWW and is utilized in the presentation engine. This integration of video into the semantics of

the WWW is created in line with Tim Berners-Lee’s hope for an Internet of things that

understand one another [7]

The introduction of media requires the introduction of new media style events to control

the media-player component, hence HTML5 has also introduced many new event handlers

accessible through scripting [4]. These are used to detect behaviour like seeking, pause, play, and

loadstart (when media begins to load), and are controlled with Javascript to integrate the media-

player.

Canvas is a content area designed for drawing pixels through scripting, usually through

Javascript [15]. It has built-in functions that allow for text, shapes, shading and image drawing

[4]. This can be very useful in multimedia experience, and has been used to create online games

and various other complex concepts that were previously only possible in Flash [27]. The

performance on this pixel by pixel drawing on canvas is constantly changing with new Javascript

engines compared to Flash which has been optimising its environment for a much longer time,

and is not as efficient across all platforms, as Canvas is immediate-mode graphics that is

hardware accelerated on the latest browsers and is not retained as opposed to other technologies

(see Section 5 for SVG) [4][13][27], hence require a frame by frame draw for animation. Some

simple examples of its use would be seen in graphing, animation and image composition.

Canvas, Video, and Audio tags in HTML5 all have fall back sections, which is displayed

when browsers cannot interpret the tag correctly [4]. This fall back section can be used to embed

flash content for compatibility essential applications. This allows the designer to create web pages

that are compatible on multiple browsers. For example:

<video id=’vid1’>

<source src="What is HTML5.mp4" type="video/mp4">

<source src="What is HTML5.flv" type="video/flv">

‘Your browser does not support the video tag.'

<video />

The Iframe has been fully integrated into the new HTML specification, with the removal

of the previous fall back section used in Iframes. This fall back section was included to allow

designers to release HTML code that could be interpreted differently by browsers that could were

not yet able to understand the tag, once again allowing for cross-browsers compatibility [4].

HTML5 now expects all browsers to be able to interpret this tag. They allow us to source content

from other pages [4], differently phrased: we can embed another site inside our site. This has been

used to source Picture Document Format (PDF) documents and embed them into our

presentation, but has very broad application [4].

The above are the most notable HTML5 technologies used in the presentation, but other

powerful tools are mentioned under the related work section. They are controlled by events and

custom Javascript to control as a part of the presentation engine covered under Section 4.3.

4.2 Seadragon Ajax

Seadragon Ajax was essential to achieving the tool we selected to provide a scene display then

navigating to scenes within those scenes. Seadragon Ajax is an open source Javascript library that

allows the user to render Deep Zoom Images (DZI) through HTML [18]. The DZI is separated

into layers of zoom, composed of 256 x 256 pixel tiles of the image at that level of zoom. Initial

load time is reduced by only transferring images from the requested section of the DZI where the

user is viewing [18][19]. See Figure 1 for a representation:

Figure 1: Deep Zoom Image separation of layers

There are many free composers for DZI. The product of choice in this case was Microsoft

Deep Zoom Composer, which is also part of Microsoft Expression Studio [22]. They all have the

DZI output; the composition is an Extensible Markup Language (XML) or DZI file, describing

the folder structure and layout, and a folder structure composed of the 256 x 256 resolution tiles

[19].

It is possible to pan and zoom over large or high resolution, images in a DZI with

Seadragon Ajax, by using CSS to layer the images as the background to a container, and then

load new images on top, which later become the background again [18]. This is all done through

Javascript as the user pans and zooms by requesting normalised points, specifically x and y

position, depicting coordinates within the container. Zoom is also used to determine which folder

to access in the folder structure. These points are used covered again later within the creation of a

timeline under Section 4.3.

Overlays allow the designer to post content at a fixed position relative to a point in the

composition, but only allow for one size; hence the overlay doesn’t appear to be fixed onto the

image, and remains fixed, floating above the image, while the image zooms behind it [21]. This

approach was passed over in our prototype in favour of the Seadragon rectangle, an advanced

form of overlays, which fixes two corners of the rectangle to (zoomable) points in the underlying

image. The content’s size is fixed relative to that around it [20]. This creates a better sense that

the overlay is part of the underlying presentation. These Seadragon rectangles are vital to

embedding custom content, specifically HTML5, into our presentation in order to correctly

position and style the content.

4.3 Presentation Engine Prototype

A presentation requires several scenes to provide concepts and ideas; these are points

within our DZI with the possibility of Seadragon overlays. These scenes require transition,

ordering, timing between transitions, and the coordinates of the point. See Figure 2 for basic class

diagram.

Figure 2: Incomplete Class diagram of prototype presentation

The presentation engine is embedded in an HTML page for execution on the client. It is written

entirely in HTML5-compatible Javascript and served with custom Javascript. Javascript has many

abilities to control the client side web page and serialize objects, which are utilized in the engine

[12].

The Seadragon viewer allows us to control our instance of Seadragon Ajax, and getting

coordinates and controlling pan and zoom movements. The presentation is created by saving the

coordinates and timing into a waypoint node object, and then the waypoints are held within a

Javascript array (the timeline). Consideration was given to whether to support custom events

linked to waypoint nodes. For example, that would make it possible to start playing a video when

the presentation navigated to that waypoint node. A function uses the timer to recurse through the

timeline, with basic navigation controls from slide to slide. As a slide is navigated to, a timer is

activated. When this timer completes, the next navigation event occurs and the next timer

initiated. Seadragon Ajax has built in methods for panning and zooming to points with smooth

effects all computed through Javascript.

The timer allows the designer to create custom timed events for each slide. The user

zooms to the given slide, begins a recursion through the timeline enacting the call-back after a

period of time, which proceeds to the next slide and continues the recursion until the timeline is

complete. This timer can be controlled in various ways much like a media-player control.

To create more richness in the presentations, Seadragon rectangles are added at points in

on the DZI and are used to style customised content in the correct positioning. A designer is

required to find the points where an element is to be held, and then proceed to create the element

in Javascript, and attach it to the Seadragon viewer. Therefore the designer can embed rich

HTML5 video, and canvas, within Seadragon and the browser interprets it with the correct styling

and positioning, as done in the prototype presentation engine. Iframes are also used to embed

external sources like PDF or Flash websites. This allows a designer to embed all media rich

concepts previously available in older HTML. .

Seadragon captures and handles all mouse actions, so the built-in controls that are typical

for audio and video do not receive the events directly: they are passed to Seadragon, where it

handles to navigation control. Seadragon does provide facilities to create of custom controls,

which hover on top of the viewer and can be used to control these elements through Javascript

methods. In the prototype presentation we found it necessary to use these elements to control the

timeline navigation and so that we could pass the relevant events to the media player. We can also

control these elements through Javascript, or disable Seadragon’s mouse control allowing events

to propagate past it and to the media player.

In order to retain this timeline it can be saved to disk and reloaded. Through Javascript’s

use of Javascript Object Notation (JSON) objects can be serialized and de-serialized with the

JSON library built into the Javascript engine [11]. The JSON output can then be saved into the

page being hosted by the creator as the default presentation loaded with the page. It can also be

inserted into the URL, which is parsed on load for slide number and timeline details. This also

allows other users to create different timelines on the same presentation.

5. Conclusions and Further Work

To conclude, HTML5 brings all the required technologies to compete with Flash’s current

capabilities without the most of the complexities, but is still in its early stages. When HTML5

becomes a more consistent standard and the browsers have all implemented compatibility then

HTML5 is the more likely choice to suit the largest target market. Presently, Flash is much easier

to design because of the boilerplates that exist [1]. This future is however not far away as most

browsers today are doing their best to keep up with the standard and there are multiple open

source Javascript libraries that provide powerful capabilities [10]. See the following for related

articles [4][16][24][28].

Other HTML5 technologies were explored in the creation of this presentation, but

implementation was deemed out of scope for the project. These included websockets which allow

for a Transmission Connect Protocol (TCP) connection to an address and perform the necessary

handshakes [14]. Once this connection is made both pairs can both request and respond, which is

powerful concept to interpret in an HTTP environment, where the server doesn’t make requests or

updates unless asked. This opens the potential for browsers to host content such as complex

multiplayer games, or faster Rich internet application as a result of taking a layer off the network

communication stack [14]. It is not capable of the User Datagram Protocol (UDP) that Flash can

also perform, along with TCP [3].

WebGL is another technology that is driven by graphics acceleration in producing 3D

artefacts and has not been explored due to scope [30].

 CSS3 was also considered in the creation process, but its capabilities were not as relevant

to the actual design and function of the presentation, hence out of scope.

SVG elements were also explored and in small detail, allowing for shapes and shading.

More complex examples do exists and in combination with Javascript can yield powerful results

[23][31]. Good use of these elements is susceptible to much time spent creating shapes, which

Adobe has prefabricated in tools like Dreamweaver and Edge [9][2], and other sources [27].

Flash still has a place in the market because of the massive knowledge and information

base created around it and its power in certain circumstances, with large boilerplate frame works.

But to truly be a part of the semantic web of things, applications should explore the move to a

HTML5 design framework for the advantages it may bring and be free from a vendor specific

application, as well as future mobile browser compatibility.

6. References

1. Adobe. “Adobe Flash Video File Format Specification Version 10.1“. Adobe Systems

Incorporated. URL http:// download. macromedia. com/ f4v/

video_file_format_spec_v10_1. pdf (2010)

2. Adobe. “Adobe Dreamweaver CS6”. Adobe. URL http:// www. adobe. com/ africa/

products/ dreamweaver. html. (2011).

3. Adobe Flash. “Flash.net”. Adobe. URL http:// help. adobe. com/ en_US/ FlashPlatform/

beta/ reference/ actionscript/ 3/ flash/ net/ package-detail. html. (2012).

4. Berjon, Robin, Travis Leithead, Erika Doyle Navara, Edward O'Connor, and Silvia

Pfeiffer. “HTML5.” World Wide Web Consortium (W3C). URL http:// dev. w3. org/

html5/ spec/ single-page. html (2012).

5. Berners-Lee, Tim. "The Original HTTP as defined in 1991." World Wide Web

Consortium (W3C). URL http://www. w3. org/Protocols/HTTP/AsImplemented. html

(1991).

6. Berners-Lee, Tim. “Tim Berners-Lee” World Wide Web Consortium (W3C). URL

http://www. w3. org/Protocols/HTTP/AsImplemented. html (2012).

7. Berners-Lee, Tim, James Hendler, and Ora Lassila. "The semantic web." Scientific

american 284.5 (2001).

8. Bidelman, Eric, et. al. “HTML5rocks”. URL http:// slides. html5rocks. com/ #landing-

slide. (2012).

9. Bright, Peter. “Adobe’s continuing revolution pushes the cutting Edge of HTML5

development”. arstechniaca. URL http:// arstechnica. com/ information-technology/

2012/ 09/ adobes-continuing-revolution-pushes-the-cutting-edge-of-html5-development/.

(2012).

10. CreateJS. “CreateJS”. CreateJS. URL http://www. createjs. com/. (2012).

11. Crockford, Douglas. "JSON: The fat-free alternative to XML." In Proc. of XML, vol.

2006. (2006).

12. Flanagan, David. “JavaScript: the definitive guide”. O'Reilly Media. URL http:// www.

studentcubes. com/ data/ books/ 0/ JavaScript%20The%20Definite%20Guide. pdf .

(2006).

13. Foley, James D., Andries Van Dam, Steven K. Feiner, John F. Hughes, and Richard L.

Phillips. “Introduction to computer graphics” (Vol. 55). Addison-Wesley. (1994).

14. Hickson, Ian. “The WebSocket API W3C Working Draft 19 April 2011”. World Wide

Web Consortium (W3C). URL http:// www. w3. org/ TR/ 2011/ WD-websockets-

20110419/. (2011).

15. Holt, Bob, Rob Larsen, Marc Neuwirth. “CanvasJS”. github. URL https:// github. com/

roblarsen/ CanvasJS. (2012).

16. Jobs, Steve. “Thoughts on Flash”. Apple. URL http:// www. apple. com/ hotnews/

thoughts-on-flash/. (2010).

17. Meyer A., Eric, and Bert Boss. “Introduction to CSS3” World Wide Web Consortium

URL http:// www. w3. org/ TR/ 2001/ WD-css3-roadmap-20010523/. (2001).

18. Microsoft Expression. “Seadragon Ajax”. Microsoft. URL http:// gallery. expression.

microsoft. com/ SeadragonAjax. (2012).

19. Microsoft. “About Deep Zoom Composer”. Microsoft Corporation. URL http://

expression. microsoft. com/ en-us/ library/ dd409068. (2011).

20. Microsoft. “Seadragon Rectangle”. Microsoft Corporation. URL http:// expression.

microsoft. com/ en-us/ gg413346. (2011).

21. Microsoft. “Overlay Positioning”. Microsoft Corporation. URL http:// expression.

microsoft. com/ en-us/ gg413355. (2011).

22. Microsoft. “Microsoft Expression”. Microsoft Corporation. URL http:// expression.

microsoft. com/ en-us/ default. (2011).

23. Osmani, Addy. “20 SVG uses that will make your jaw drop”. Netmagazine. URL http://

www. netmagazine. com/ features/ 20-svg-uses-will-make-your-jaw-drop. (2011).

24. Pfeiffer, Silvia. “The Definitive Guide to HTML5 Video”. Apress (2010): pg7.

25. Prezi. “Learn Prezi”. Prezi. URL http:// prezi. com/ learn/. (2012).

26. Raggett, Dave, Arnaud Le Hors, and Ian Jacobs. "HTML 4.01 Specification." W3C

recommendation 24. (1999).

27. Rousset, David. “The Complete Guide to Building HTML5 Games with Canvas and

SVG”. Sitepoint. URL http:// www. sitepoint. com/ the-complete-guide-to-building-

html5-games-with-canvas-and-svg/.

28. Schroeder, Stan. “ Adobe Won’t Support Flash in Andriod 4.1” Mashable URL http://

mashable. com/ 2012/ 06/ 29/ flash-in-android-4-1/. (2012).

29. Stepp, Marty, Jessica Miller, and Victoria Kirst. "A CS 1.5 introduction to web

programming." ACM SIGCSE Bulletin 4 Mar. 2009: 122-123.

30. Tavares, Gregg. “WebGL Fundamentals”. HTML5Rocks. URL http:// www. html5rocks.

com/ en/ tutorials/ webgl/ webgl_fundamentals/. (2012).

31. Winter, Andre M., Andreas Neumanns. “carto.net SVG tutorial, example and

demonstration site”. Carto. URL http:// www. carto. net/ svg/ samples/. (2011).

32. Wix. “Wix”. Wix.com, Inc. URL http://www.wix.com/. (2012).

33. World Wide Web Consortium. “Facts”. World Wide Web Consortium (W3C). URL http://

www. w3. org/ Consortium/ facts#people. (2012).

34. World Wide Web Consortium. “CSS Current Status”. World Wide Web Consortium

(W3C). URL http:// www. w3. org/ standards/ techs/ css#w3c_all. (2012).

35. World Wide Web Consortium. “HTML5 differences from HTML4”. World Wide Web

Consortium (W3C). URL http:// www. w3. org/ TR/ html5-diff/. (2012).

36. World Wide Web Consortium. “Document Object Model (DOM)”. World Wide Web

Consortium (W3C). URL http:// www. w3. org/ DOM/. (2009).

