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ABSTRACT 

Design engineers create models of design artifacts with 
commercial Computer Aided Design (CAD) solid modeling 
systems and manage the data files through Product Data 
Management (PDM) systems.  These systems stop short of 
providing support for querying and retrieving data from 
“within” the CAD data files.  A true CAD query language that 
allows designers the flexibility to describe queries against 
single and multiple CAD files would be of great benefit for 
design engineers.  This query language ought to be both data-
centric and user-centric in nature.  The design exemplar, a data-
structure that provides a standard representation of design 
knowledge based upon a general constraint validation and 
satisfaction algorithm, is shown here to be a concept upon 
which a CAD query language may be developed.  The first 
required extension of the design exemplar is the inclusion of 
logical connectives.  Some insights into the different levels at 
which the extensions may be implemented are discussed.  Also, 
some applications retrieving geometric data using this query 
language are demonstrated.  The query language, as it evolves, 
is expected to support geometric retrieval across domains and 
offer an all-purpose approach to geometric retrieval. 

1 INTRODUCTION 
With the proliferation of CAD use, the amount of 

knowledge that is generated in the course of engineering design 
will in turn increase.  As a result from this immense collection 
of knowledge, designers will need tools to access the 
information.  Just as the growth of the Internet spawned the 
development of new information retrieval tools and languages, 
the CAD market is facing the need to be capable of providing 
quick, intuitive retrieval tools to its users.  The design exemplar 
is shown to be a concept upon which a CAD query language 
might be developed and thus support these needed retrieval 
tools.   
___ 
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This paper seeks to identify the needs of a CAD-specific 
query language based upon an analysis of the essential 
characteristics and the tasks performed by traditional query 
languages.  Query languages are non-procedural, high-level 
computer languages that are primarily focused towards 
retrieving data held in files and databases.  They could also be 
used for updates, deletions, and additions [1].  Logical 
connectives, representing the union, intersection, and difference 
operands of relational algebra, have been identified as 
necessary extensions to the design exemplar for evolution into a 
true CAD query language.  This paper discusses the different 
levels at which the logical connectives ought to be 
implemented.  Potential applications across domains where the 
query language may be used to retrieve geometric information 
are discussed. 

The relational, or hierarchical, data model found in many 
legacy applications, and the query languages supporting this 
model, have solved problems facing most data-processing 
organizations dealing with business data, as the data could be 
structured according to the data model.  In contrast, “spatial” 
data processing in domains like GIS (Geographic Information 
Systems) and CAD/CAM (Computer Aided Design/Computer 
Aided Manufacturing) has not been solved adequately because 
the database systems require data to be expressed lexically [2]. 

Database technologies have been investigated for directly 
supporting CAD data, though no specific database technology 
has been shown to fully support CAD data [3].  The first 
normal form constraint in relational database technologies 
needs data to be expressed as atomic values and requires 
expensive join operations and may also lead to data 
inconsistencies while updating data.  Complex valued databases 
were not found adequate in solving data inconsistencies either.  
Object databases required additional programming for 
accessing data.  Deductive databases allowed access to the 
location of components in the model hierarchy.   
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Designers may wish to find CAD models that look similar 
to an existing model in order to begin a design from a baseline 
model.  In other words they are interested in locating “globally” 
similar CAD models.  Designers often have a concept in mind 
during the embodiment stage and may look for models that 
have a similar concept.  Designers may also seek to extract 
implicit information that is not explicitly stored in these 
models, but which may be inferred.  For example, designers 
may want to find all CAD models in the database that contain a 
boss.  The information “contain a boss” is not stored explicitly 
in the CAD models.  In other words, designers may be looking 
for “local” similarity between characteristics in CAD models 
and the desired concept.  Thus, designers may wish to query 
design models based upon both “global” and “local” 
similarities.  While a number of systems [4, 5, 6, 7, 8, 9] have 
been developed for searching CAD models based on global 
similarity, flexible and domain independent “local” similarity 
search driven by the user is not realized yet. 

Feature recognition approaches, evolving over the last 25 
years, have been commonly used in the CAD domain for 
retrieving geometric information [10].  The limitations of 
features were attributed to feature dependence on entities and 
relationships and, hence, their failure to embody the semantics 
of the geometric data.  The design exemplar goes beyond 
features and can convert application specific problems to 
domain independent ones [11].  The design exemplar is a data-
structure that provides a standard representation of engineering 
design knowledge based upon a canonically derived set of 
entities and constraints for representing topologic and 
geometric problems [11].  It leverages a standard domain 
independent vocabulary for geometric mechanical design 
problems to represent both explicit and implicit design 
concepts.  This vocabulary allows the designer to express 
geometric queries in the form of the design exemplar. The data-
structure of the design exemplar, when coupled with the 
generic design exemplar algorithm, has the capability to 
provide for the basic design tasks of pattern-matching, 
querying, validation and modification.  These capabilities of 
retrieving similar characteristics and changing them are based 
upon the generic design exemplar algorithm for constructing 
and submitting constraint problems to a general constraint 
solving system [11].  

Based upon the belief that there is a need for designers to 
have flexible capability of defining design characteristic queries 
upon CAD models and the evidence from the literature that 
existing query languages are not sufficient for supporting CAD 
data interrogation, the design exemplar is proposed as a 
foundation for the development of a CAD query language.  
This paper begins with a discussion on geometric query 
languages and identifies the needs of a CAD query language.  
An introduction to the design exemplar is provided.  The design 
exemplar was investigated as a CAD query language [12] 
discussing limitations and proposing extensions.  This paper 
offers some insights into the initial work in implementing the 
extensions proposed in [12].  Finally, examples of how the 
design exemplar may be used as a query language in existing 
CAD systems are presented. 

2 BACKGROUND 
Query languages are non-procedural computer languages, 

where the user specifies what is to be done and not how it is to 
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be done.  They are primarily focused on retrieving data held in 
files and databases.  The user has control over the desired 
functional result.  While the principle behind a query language 
is not limited to any domain specialization; practicality 
suggests that specific domains may require a customized 
language, with extended vocabulary and syntactic rules.  For 
example, in a scientific system, a query language might require 
facilities for handling matrices and numbers with varying units 
of measurement.  The power of a query language to select the 
data relevant to the user and keep out the irrelevant data could 
be assessed in terms of the ability to materialize the target data 
from the underlying data structure and also the variety of ways 
in which the conditions can be constructed and connected. 

This section discusses query dialogues, query formulation 
and processing, query expression, the components of a query 
language, and the necessary functions performed by a query 
language. 

2.1 Dialogue 
There are two main types of query dialogues:  user driven 

and system driven [1].  In the system driven dialogue, the user 
responds to messages initiated in the query system.  In systems 
where all records of data have the same structure and same 
quantity of data, a system driven approach may be useful.  User 
driven dialogue implies that the user employs a language to 
define his query.  Most of the so-called “English-like” query 
languages today fall into this class.  Commands have a defined 
syntax.  Further, only predicates from a specified list may be 
applied.  In CAD/CAM, every record (model) is likely to have 
varying amounts of data.  Moreover, users would be restricted 
if they are asked to express the desired concept to be queried, 
through a predefined dialogue driven by the system.  Hence, 
queries in CAD should be user-driven so that the designers 
have latitude in expressing their concepts in a complete 
manner. 

2.2 Query formulation and processing 
A common example of query formulation within the 

constrained mode of dialogue is the following: 
FIND target WHERE qualification 

The target data may be a file name, workspace, record name, or 
collection of data item names from one or more records.  The 
qualification is a set of conditions involving data items in both 
the target and the related data.  The conditions may be 
numerical or character string comparisons [1].   

Query processing generally operates in one of the 
following two basic ways: 
• One record that satisfies the conditions is made available to 

the user.  To retrieve all the records satisfying the 
conditions, the query statement is repeated in a procedural 
loop. 

• All records that satisfy the conditions are made available to 
the user.  This is implemented either by printing the 
selected records as they are retrieved or by using a 
workspace to store the selected records (or their references, 
pointers, etc.).  In this case the display generally shows a 
count of the number of records selected.  Such a workspace 
helps a user refine queries and provide more flexibility but 
is not often available. 
Complex queries can be built by performing simple 

comparisons either by using logical connectives (AND, OR, 
MINUS) in a single query or by nesting.  In CAD/CAM, either 
2 Copyright © 2003 by ASME 
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approach may be appropriate, as it is irrelevant whether a single 
CAD model is processed at a time and the results shown or a 
list of the CAD models is displayed, allowing the users to 
browse through each record. 

2.3 Query expression 
Queries may be expressed in different manners and it is 

important that the appropriate mode of querying be identified 
for the particular application domain.  McWherter, et al., [13] 
have identified four ways in which queries could be expressed 
for 2D matching and image retrieval: 
1. A textual query based on keywords. 
2. A query by example uses similarity measures derived off a 

set of query images provided as input. 
3. Query by sketch looks for image segments matching the 

sketched profile. 
4. Iconic queries use templates representing the important 

aspects of the desired image to identify images with similar 
features. 
Users need to express spatial concepts when they query the 

database of CAD models.  This implies that lexical descriptions 
of the query in these spatial situations will be ambiguous and 
may easily lead to misinterpretations.  Dialogue boxes and 
menu driven queries provide little help as they use the same 
syntax and grammar as lexically expressed languages, only 
providing support of external memory for the user [14].  
Further, since, by its very nature, CAD data is spatial and 
graphical, it is logical to express it in terms of explicit spatial 
concepts.  Egenhofer [14] argues that users prefer to sketch 
spatial queries, as they more readily support human spatial 
thinking.  Hence, it is clear that a graphical query language will 
be more appropriate than a query language that requires the 
user to formulate the query lexically.  Users of a CAD query 
language may also want to store already formulated queries that 
may be combined with others to formulate more complex and 
compound queries.  This may also result in savings of time and 
effort while formulating new queries and hence such a facility 
of combining pre-existing queries may be expected of a CAD 
query language.  

2.4 Components of a query language 
The components of the de-facto query language SQL 

(Structured Query Language) [15] that are essential in making 
it a “query language” are identified here.  These components 
include data-types, predicates, and logical connectives.  A data 
type is a set of data with values having predefined 
characteristics.  Variables are instances of one of these data 
types.  Some commonly supported categories of data-types in 
SQL are numeric, character, Boolean, date/time, and objects.  
The predicate is a condition that can be evaluated to produce a 
truth-value of true, false, or unknown.  The result is achieved 
by applying the predicate to a given row of a table.  Some 
examples of these predicates are =, <>, >, <, between, IN, 
LIKE, IS NULL, IS NOT NULL, or EXISTS.  These are also 
referred to as “comparison operators”.  They are critical 
components of a query language as they enable the construction 
of conditions that allow the users to access the data of interest 
to them.  SQL provides, at a minimum, for the logical 
connectives:  AND, OR, MINUS.  These represent the 
intersection, union, difference of relational algebra.  These 
operators enable the construction of compound conditions 
within a single query.  These operators may also be used to 
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combine two queries so that the resulting retrieved sets of both 
queries may be obtained.  

2.5 Tasks performed by a query language 
A query language is expected to perform the following 

tasks on a database:  retrieval, updates, deletions, and additions 
[1].  Consider a table in a relational database that contains 
information about the names of employees and the department 
to which they belong.  Table 1 lists the tasks that are typically 
performed by a query language and provides an example for 
each task and expresses the query in SQL. 

Table 1 - Tasks Performed by a Query Language 
Task Example Query with SQL 

Data 
Retrieval 

Retrieving names of 
employees from 
‘CS’ Dept. 

SELECT Employee_name 
FROM Employee_table 
WHERE Dept_name = ‘CS’ 

Data 
Addition 

Adding a record of 
employee Joe. 

INSERT into Employee_table 
VALUES (‘Joe’, ‘CS’) 

Data 
Modification 

Changing the 
Department of Joe 
from ‘CS’ to ‘ME’. 

UPDATE Employee_table 
SET Dept_name = ‘ME’ 
WHERE Employee_name = 
‘Joe’ 

Data Deletion 
Deleting all 
employees from 
‘CS’ Department. 

DELETE FROM 
Employee_table WHERE 
Dept_name = ‘CS’ 

This section identified the qualifications of a query 
language based on the de-facto query language (SQL).  These 
qualifications are the various components a query language 
may have and the various tasks it may be expected to perform.  
Table 2 summarizes the qualifications of a query language by 
listing the various components and tasks expected from a query 
language.  Each of these is discussed in detail later. 

Table 2 - Qualifications of a Query Language 
Data-Types 
Predicates Components 
Logical Connectives 
Retrieval 
Addition 
Update Tasks 

Delete 
In addition to the qualifications of a query language a 

“CAD” query language may be expected to meet the 
requirements of a spatial query language as given by [14].  
Users must be able to treat spatial data at a level independent 
from internal coding such as x-y co-ordinates.  The results 
should be displayed in graphical form, as it is the most natural 
form to analyze geometric data.  It should be possible to 
combine one query result with the results of one or more 
previous queries giving rise to a dynamic interaction.  
Graphical presentations may require the display of context in 
addition to the information sought. An extended dialog 
allowing selection by pointing and direct selection of a result as 
a reference to an upcoming query is required.  Graphical 
presentation of query results may require dedicated language 
tools.  Labels are important in understanding drawings so that 
users are able to select specific instances of objects. 

3 GEOMETRIC QUERY MECHANISMS 
This section describes the existing systems aiming at 

retrieving geometric information.  It is divided into two 
sections, the first part describes the query languages and/or 
3 Copyright © 2003 by ASME 
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mechanisms, while the second part describes the geometric 
query engines.  Special emphasis is placed on the distinction 
between querying geometric models based upon local similarity 
and global similarity. 

3.1 Query Languages and Mechanisms 
There have been many proposals at developing a geometric 

query language.  Most of them have attempted to extend SQL 
to spatial data.  Egenhofer [2] gives a detailed comparison of 
the query languages GEOQL, Extended SQL, PSQL, KGIS, 
and TIGRIS.  These are all extensions of SQL for the GIS 
domain.  

Chan and Zhu [16] have developed a geometric query 
language in the GIS domain built on SQL(QL/G).  They have 
extended the features of SQL and accommodated geometric 
data types and operators.  The language uses the geometric data 
types like REGION, LINE, or POINT that may be adequate to 
serve the needs in 2D applications like GIS.  In CAD where 
geometric data is defined in three dimensions, these data types 
may not be sufficient, but could be extended, theoretically, to 
accommodate data types found in CAD.  Further, in GIS 
applications the geometric data, such as the location of a city, 
can be uniquely stated whereas in CAD models the locations 
may change with translation, rotation, and scaling of models. 

Another query language that offers support for geometric 
data types is PostgreSQL [17].  Geometric data types like point, 
line, line segment, box, path, polygon, and circle can be 
represented in the language.  The language also has a number 
of geometric predicates that are mapped to a set of operators.  
The geometric predicates allow the comparison of geometric 
data-types.  For example, predicates can check whether an 
entity is to the right of, left of, above, below another entity.  
From the list of data-types and predicates supported, it can be 
observed that this query language supports 2D geometry only. 

Silva, et al., [18] have developed a geometric query 
mechanism for process planning.  This approach allows for 
querying against a single part file.  They assume that the part 
exists in a feature-based system and “tag” a feature type to each 
feature.  They have defined a list of relations and operations 
and they process the CAD models to form a representation of 
the part in the form of tables.  These tables have all the 
relations and the entities in the part satisfying them.  A query is 
processed against this tabulated information using a list of 
defined operations.  This method requires preprocessing of the 
CAD models before they can be queried.   
Yang, et al., [19] have developed a query approach to retrieve 
features from part files.  They use the Attribute Adjacency 
Graph (AAG) for representing the features of the parts.  Their 
language relies heavily upon preprocessing the CAD data into a 
new representative format.  The transformation module in their 
system transforms the B-Rep structure of the part files to a 
feature database.  For the transformation they use a set of 
definitions to which dictates the type of feature in which each 
instance will fit.  They classify the features into a set of primary 
and secondary features and describe “parent-child” or “same-
level” spatial relations between them.  The relation table 
contains all the relations between the features.  This approach 
makes use of SQL to query preprocessed data of CAD models 
populated in the database.  This approach allows designers to 
query against a database of CAD models and retrieve the 
features desired by the users.  However, the approach has 
limited capability to query CAD models because only those 
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features and relations defined a priori in the system may be 
used.  Moreover, there is no provision for quantitative 
predicates to compare the dimension values of features.  

Rosenthal, et al., [20] used an analogy between the data-
structures used for the data about parts, which they referred to 
as part hierarchies, and the part-of relationship.  They have 
defined geometric envelopes as the bounding boxes that totally 
contain a part.  The geometric predicates may be used to 
formulate intersection queries, proximity queries and 
containment queries.  The queries retrieve the parts that 
intersect, lie totally or within a distance from the given volume 
in an assembly.  They classified the predicates as either 
downward monotonic or upward monotonic, where downward 
monotonic predicates imply that if a part satisfies the predicate 
all the descendants of the part in the hierarchy also satisfy the 
predicate and vice-versa for upward monotonic.  Also, they 
classified the attributes as order preserving or inverse order 
preserving depending on whether the attributes have lower or 
higher values for the descendants.  The queries are suitable for 
environments in which the parts are arranged hierarchically and 
may find application in situations where the engineer would 
want information regarding the parts that are contained in an 
assembly, as well as the number of those parts available in the 
inventory.  However, this approach may not be useful in 
situations where the designer wants information about the 
features of a particular part. 

Koonce, et al., [21] have considered the querying of the 
data contained in the Express modeling format.   This query 
language is a textual language built on SQL with the processing 
logic based on the Object Protocol Method [22] and is designed 
to aid the moving of files from one CAD system to another.  
This allows proprietary systems to only query data in the STEP 
files that may be of relevance to them.  

Kriegel, et al., [23] have approached spatial database 
integration for novel CAD applications into off-the-shelf 
database systems.  Their approach relies upon voxelized 
geometries of VRML (Virtual Reality Modeling Language) 
models.  To enable the generated voxel set to be used as a 
spatial key, it is transformed to an interval sequence on a space-
filling curve and stored in a tree.  Their approach relies upon an 
approximation of the VRML models, which are approximations 
of original CAD models.  Their system allows users to query 
spatial regions for the parts that may lie completely within a 
selected region, intersect the selected region, or lie within the 
specified distance of the selected region.  The queries offered 
by this system are of limited value, as they do not encapsulate 
the semantics of the data. 

From the literature review, it may be seen that there are a 
number of approaches to retrieving geometric information in 
the CAD domain while some query languages were developed 
in the GIS domain.  However, to the best of our knowledge, this 
is a first attempt to derive the essential components of a query 
language and develop a CAD query language based on the 
requirements derived from a standard query language. 

In comparing these different approaches, a set of 
comparisons are offered (Table 3).  These comparisons include 
the dimension of the geometric information (2D vs. 3D), the 
scope of querying (single file vs. multiple files), the processing 
of data required (pre-processing vs. no processing), the 
application domain, and the form of querying. 
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[16] 2D S N GIS Mixed Lexical/ Graphical 
[21] 3D S ? CAD Lexical 
[18] 3D S Y CAD Lexical 
[19] 3D M Y CAD Lexical 

[20] 3D M N CAD Lexical and 
Guided 

[17] 2D S N/A General Lexical 
[23] 3D M Y CAD Unknown 

3.2 Geometric Search Engines 
Designers may be looking for models that are globally 

similar to an existing model.  There are many researchers 
working on retrieving globally similar models and the research 
has culminated into many geometric search engines.  Some 
popular 3D geometric search engines include:  3D Digital 
Library [4], 3D Geometry Search [6], ShapeSearch.net [24], 
Geometric Search Engine [9], 3D Search Engine [25], 3D 
Object Recognition [5], 3D Shape Retrieval Engine [26], 
Berchtold, et al., [27], and Peabody, et al., [28].   

There are conceptually three different types of queries in 
the context of CAD models: 
1. Retrieving CAD models that match the constructed model 

globally. 
2. Retrieving CAD models that match the characteristics 

expressed in the query. 
3. Retrieving parts from an assembly using geometric 

information.  
Table 4 identifies the type of queries employed by different 

search engines and approaches. 
Table 4 – Comparison of Different Approaches 

Retrieving 
globally similar 
models 

Retrieving CAD 
models that match the 
characteristics 
expressed in the 
query. 

Retrieving parts 
from an assembly 
using geometric 
information. 

All systems 
categorized 
under geometric 
search engines 

[19] 
[18] 

[20] 
[23] 

Most of the work in geometric query languages has been 
done in the field of GIS, with a majority of them being mere 
extensions of SQL.  In GIS systems users deal with maps, and 
the geometric data in the maps is populated in the database.  
Thus, the whole database is the information from a map and 
users usually query against positions of various entities like 
rivers, cities, towns etc. in the map.  It is important to realize 
that CAD-users are dealing with geometry of a single CAD 
model as well as the entire database of CAD models.  This is an 
important distinction between CAD query systems and GIS 
query systems.  
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4 EXEMPLAR DEFINITION 
Exemplars provide a standard representation of mechanical 

engineering design knowledge based upon a canonically 
derived set of entities and constraints for representing topologic 
and geometric design problems [29].  Initially conceived to 
provide a data structure that could be used to reason about 
explicit and implicit characteristics of a design model, the 
exemplar has been at the genesis of feature recognition systems 
[30], modeling of standard design procedures [31], rule 
validation and querying [11], case based design (CBD) [32], 
CAD query language [12], and view transformations [33].  
Exemplars are bi-partite graphs, where one set is composed of a 
number of entities and the other set, a number of relationships 
or constraints, such that every member of the first set is related 
to at least one member of the other set and no member of the 
same set.  The exemplar is composed of two pairs of orthogonal 
sub bipartite graphs (Figure 1) of entities and constraints:  
match/extract (used for retrieval) and alpha/beta (used for 
modification).  The entities and constraints are based on those 
derived by Bettig and Shah [34].  A bi-partite graph 
representation scheme was chosen as it fits well with boundary 
representation for geometry and equation set modeling for 
parametric representations. 

 

Alpha 

Beta 

Match Extract 

Bi-Partite Graph of 
Entities and Constraints 

A-M 
Bi-Partite Graph of 

Entities and Constraints 
B-M 

Bi-Partite Graph of 
Entities and Constraints

A-E 
Bi-Partite Graph of 

Entities and Constraints
B-E 

Validation Axis 

Figure 1 - Components of the Design Exemplar 
(based upon [29]) 
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One sub-graph (match) of the exemplar corresponds to the 
entities and constraints that are explicitly stored in the model.  
In a B-Rep model, this may often consist of the entities related 
by the boundary constraints and other constraints that the 
designer may have explicitly imposed on the model.  These are 
represented by solid lines in the representation scheme. The 
other sub-graph (extract) represents the information that is not 
stored explicitly in the model, but may be inferred through 
reasoning.  The “extract” part of the exemplar is represented by 
dashed lines in the representation scheme (Figure 3).  The 
extract part represents the relations that must hold true in 
addition to the matched part, thus facilitating reasoning about 
the matched part of the exemplar.  The transformation axis of 
the exemplar represents the alpha and beta sub graphs of the 
exemplar and allow for modification of models from alpha state 
to the beta state.  

While querying, designers might be looking merely for 
pattern matches to their specified queries or models that satisfy 
the conditions specified in the extract part of the exemplar, in 
addition to the pattern match.  They might also want to 
modify/add/delete information to an existing model.  Table 5 
5 Copyright © 2003 by ASME 
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illustrates the pairing between the different tasks expected of a 
query language with the sub graphs of the design exemplar. 
Table 5 - Query Language Tasks vs. Exemplar Sub-Graphs 

Alpha Beta 
Query language task Match Extract Match Extract 

Retrieval     
Modification     

Addition     
Deletion     

The solid marks indicate the sub graphs that must exist 
while the empty ones indicate the optional sub graphs.  For the 
retrieval task, only the pattern match may be sufficient and 
more sophisticated queries may be formed with the alpha 
extract sub graph along with the alpha match.  The 
modification, addition and deletion tasks essentially center on 
locating the characteristic to be modified and then transforming 
to the final desired state.  These require the alpha and beta sub 
graphs, with the alpha sub graph locating the characteristic to 
be modified and the beta sub graph representing the final state 
desired.  

The step feature, as shown in Figure 2a, consists of the 
four planes and every two planes sharing an edge with the 
correct convexity.  It is desired to retrieve the step feature and 
add a round at the concave edge.  As this is an example of 
model modification, the exemplar will have both the alpha and 
beta sub-graphs and the transformation from the alpha sub-
graph to the beta sub-graph will result in modification of the 
model.  The information regarding the planes and the curves 
that bound them is found explicitly in the model and constitutes 
the match portion of the q_step exemplar as shown in Figure 
2b.  The information about the convexity of the edges may not 
be necessarily stored explicitly in the CAD model and needs to 
be reasoned.  This constitutes the extract portion of the 
exemplar and is represented by dashed lines.  The convexity of 
the edges is determined by a sequence of steps.  Topologically 
correct normals to the planes are determined and a cross 
product of the vectors is taken.  The resultant vector is then 
compared with the correct direction of the curve to infer the 
convexity of the edge.   
 convex edge 

concave edge 

convex edge

Plane P1 

Plane P2 

Plane P3

Topologically Correct Normal:  

Plane P4 

 
(a) Sharp Step Feature 
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 convex edge

concave edge

convex edge

Plane P1

Plane P2 

Plane P3

Topologically Correct Normal:  

Plane P4 

Cylindrical 
surface 

 
(b) Filleted Step Feature 

Figure 2 - Example of a Step Feature 
To explain the q_step exemplar better, it is described in 

two parts, the first queries the convexity of an edge and the 
other retrieves the step feature and adds a round feature to it 
thus transforming Figure 2a to Figure 2b.  Figure 3 shows the 
exemplar representation for retrieving the step feature and 
modifying it.  The entities and relationships that only exist in 
the initial model are “alpha only”, those only in the transformed 
model are “beta only” and those that are in both the initial and 
the transformed model are “alpha and beta”.  The concave edge 
present in the initial model is replaced by two lines that bound a 
cylindrical surface along with the two circular curves.   

While a query to retrieve a rather simple feature was 
demonstrated here, a range of more complicated features have 
been retrieved using the exemplars [30].  Also, the modification 
of geometric information has been demonstrated using the 
exemplar. 

The various aspects of a query language were discussed in 
Section 2.  The qualifications were summarized and the 
appropriate qualities with respect to a CAD query language 
were outlined.  The design exemplar is discussed here as it 
relates to these various aspects of a query language.  The design 
exemplar allows queries to be expressed through a graphical 
interface and the queries are user-driven.  The implementation 
of the design exemplar allows users to sketch the queries and 
hence allows expression of spatial queries in a graphical 
manner [14]. 

The exemplar was investigated against the de-facto query 
SQL [12].  Table 6 shows the components and tasks performed 
by the exemplar as they relate to the qualifications outlined by 
Table 2.  The table shows representative data-types and 
predicates and the complete list may be found in Bettig [29]. 

The design exemplar is also shown to satisfy the 
requirements of a spatial query language given by Egenhofer 
[14], Table 7 is offered as an investigation of the different 
requirements. 
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Plane  P2 

Bound Plane P4 
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Curve C1 

Curve C2 

 Convex

 Concave 
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Point P1 
Bound 

Legend 
 

 Alpha Only 
 
 Beta Only  
    
 Alpha and Beta 
   

Match  
  

Extract 

Cylinder S1 Bound 

Line  L1 

Line L2 

Circle C4 

Circle  C5 

Point P2 

Bound 

Bound 

Point P3

Point P4 

Point P5 

Point P6 

Figure 3 - Exemplar to Modify a Sharp Step  
to a Filleted Step 
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Table 6 – Query Language Qualifications vs. Design 
Exemplar 

 Qualifications of 
a query language Design Exemplar 

Data-types 

Real parameter, Integer parameter, 
Vector, Rotation Matrix (Algebraic), 
Point, Direction, Line, Plane, Circle, 
Ellipse, Cylinder, Sphere (Geometric), 
Solid volume (Topologic), Form 
Features, Part, Assembly (Semantic) 

Predicates 

Scalar equations, Scalar inequalities, 
Fixed Tables, Vector equation, Cross 
Product(Algebraic) Distance Angle 
Radius, Focal Distance, Distance to 
resolved geometry, Control points, Knot 
values, Continuity conditions, In_Set, 
Map Coincident ,Incident Parallel 
,Right Angle(Geometric) Boundary, 
Length, Area, Volume, Directed-Left-
Of, Curve Direction, Curve Direction 
TC, Surface Normal, Surface Normal 
TC, Same Direction(Topologic) 

C
om

po
ne

nt
s 

Logical Connectives AND  
OR, NOT, MINUS (to be implemented) 

Retrieval 

Pattern Matching (Alpha/Match) 
Query Extraction (Alpha/Match and 
Alpha/Extract) 
Design Validation (Alpha/Match and 
Alpha/Extract) T

as
ks

 

Modification, 
Addition, 
Deletion 

Model Modification (Alpha/Match, 
Alpha/Extract, Beta/Match, 
Beta/Extract) 

Table 7 - Requirements of a Spatial Query Language vs. the 
Design Exemplar 

Requirements of a spatial query language Does 
exemplar 
comply? 

Ability to treat spatial data at a level 
independent from internal coding such as x-y 
co-ordinates. 

Yes 

Display results in graphical form Yes 

Combine one query result with results of one 
or more previous queries. 

Yes 

Display of context in addition to information 
sought 

Yes 

Extended dialog allowing selection by 
pointing and direct selection of a result as a 
reference to an upcoming query. 

No 

Labels to aid understanding of models so that 
users are able to select specific instances of 
objects. 

Limited 

The design exemplar has the data types and the predicates 
that may be expected of a CAD query language.  While the 
AND logical connective is inherently implemented in the 
exemplar, the NOT, OR, and MINUS logical connectives need 
to be implemented.  The exemplar has been shown to perform 
all the tasks expected of a query language as well as the desired 
characteristics of a spatial query language [12].  The next 
section offers some insights implementing the logical 
connectives, believed to be the necessary extensions to the 
exemplar in making it a query language.  Table 8 compares the 
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tasks that can be performed by prevalent query languages and 
systems. 

Table 8 - Comparison of Design Exemplar with Other 
Query Languages/Systems 

Query System 
or Language Typical tasks performed 

Can 
exemplar do 

tasks? 

Chan, et 
al.(1996) 

Querying positions and 
attributes of entities in the 
map. 

Yes 

Koonce, et al., 
(1998) 

File management on STEP 
files Limited 

Beaman, et al., 
(1991) 

Querying a CAD model for 
features that can be 
machined from a certain 
dirn. 

Yes 

Ou-Yang, et 
al., (1999) 

Querying a database of CAD 
models for features with 
specified relations 

Yes 

Rosenthal, et 
al., (1994). 

Region queries and part 
quantities Limited 

PostGre SQL Relative/ Absolute positions 
of entities Yes 

Kriegel, et. al, 
(2001) 

Volume Query 
Collision Query 
Clearance Query 

Limited 

5 IMPLEMENTATION OF THE CONNECTIVES 
A unique aspect of the design exemplar as a CAD query 

language is that it enables the user to use the vocabulary of 
CAD modeling to formulate the queries.  To elucidate further, 
the query may be expressed at various levels of data 
abstraction.  Therefore, it seems natural that the logical 
connectives also be implemented at the possible levels of 
abstraction.  The following levels of abstraction seem to be 
adequate in implementing the logical connectives:  entity, 
constraint, exemplar, and super-exemplar.  It may be noted that 
the levels need to be coherent with the exemplar vocabulary 
and are implemented accordingly. 

5.1 Entity level 
The first level of abstraction at which logical connectives 

might be applied is the entity level.  Consider a query to 
retrieve radially oriented holes in cylindrical components such 
as crankshafts, camshafts, etc.  While a normal query retrieves 
all the CAD models that contain holes, a query constraining the 
top curve of the hole to “NOT” be bounded by a planar surface 
will retrieve the desired holes.  Figure 4 shows a representative 
figure of a CAD model where a hole is not found on a planar 
face.  Holes that are found on non-planar faces may require 
additional fixturing costs in manufacturing.  Therefore, it may 
be desirable to find holes that are found on any surface except 
planar.  The most straightforward approach to this would be to 
restrict the type of surface upon which a hole is found.  Figure 
4 illustrates a hole on a non-planar surface. 

The exemplar to retrieve holes similar to the ones 
described above has been shown in Figure 5.  The cylindrical 
surface of the holes is bound by two curves, C1 and C2.  These 
curves are again bounded by the top surface and the bottom 
surface.  Here, a “NOT” logical connective is added to the 
entity S1 to restrict it from being of planar type.  In this 
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manner, only those holes that are not bounded by a planar 
surface are retrieved. 

 
Figure 4 - Hole Not Bounded by a Planar Face 

   Surface S2     Bound   

  Bound 

 Bound Curve C2 

Curve C1 

Surface S1  NOT 

Plane P2 

Surface S2 

 
Figure 5 - Exemplar for Retrieving a Hole not Bounded by 

a Planar Surface 

5.2 Constraint level 
The query language based on the exemplar is believed to 

be a step beyond features because of its ability to retrieve 
values of key parameters, dimensions, and locations of parts, 
which may be of special significance in embodiment and 
detailed design that requires sizing and geometric arrangement 
[10].  Implementation of the logical connectives at the 
constraint level helps in the formulation of more pertinent 
queries and eventually contributes to the evolution of the 
exemplar as a query language.  Consider a query that seeks 
bosses in CAD models but at the same time puts a restriction 
that their height may be between some values a and b. 

Eq1 = (h > a) AND (h < b) 
Thus it seems important that the logical connectives be 
implemented at the constraint level. 

Consider the retrieval of datum planes perpendicular to 
each other or parallel to each other as shown in Figure 6.  The 
“OR” logical connective may be used to formulate the 
corresponding exemplar.  The implementation of the logical 
connectives at the constraint level will enable the expression of 
all such conditions.  In this situation, the designer may be 
looking for planes that might be good candidates for datums.  
Typical datums are sought that are perpendicular or parallel to 
each other.  To provide the flexibility of defining a query to 
find either situation, an “OR” connective may be used between 
the parallel and perpendicular constraints. 
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 DTM1 

DTM2 

DTM3

DTM4

 
Figure 6 - Retrieving Datum Planes Parallel or 

Perpendicular to Each Other 
An exemplar to retrieve such datum planes is shown in 

Figure 7, where the datum planes form the match portion of the 
exemplar and the parallel and perpendicularity constraints have 
to be reasoned, and hence constitute the extract portion of the 
exemplar.  The “OR” logical connective is used here and 
provides the information that either of the two constraints is 
acceptable.  The logical connectives may only be applied 
between two or more constraints. 

 
Plane P1 Parallel 

Perpendicular Plane P2 
OR 

 
Figure 7 - Exemplar to Retrieve Parallel or Perpendicular 

Datum Planes 

5.3 Exemplar Level: 
The power of the logical connectives in formulating more 

appropriate and powerful queries may be realized by 
implementing them at the exemplar level.  In many queries it 
may be necessary to impose conditions on different patterns of 
entities and constraints.  Implementation at this level of 
abstraction will be through the concept of “blocks” [29] (Bettig, 
1999).  These blocks will be bi-partite graphs by themselves 
and appropriate logical connectives may be used with these 
blocks to formulate related queries.  Consider a query 
formulated to retrieve CAD models (Figure 8) that have a boss 
feature without a hole.  The top surface of the boss should not 
be bound by a curve that is concave.  A single exemplar may be 
written that expresses this query by looking for bosses that are 
bounded on the top surface by only one edge loop.  To express 
this, a “NOT” block may be created around secondary edges 
bounding the top surface.  In this manner, only the figure on the 
left would be retrieved. 

  
Figure 8 – Boss Models (with and without hole) 
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To retrieve CAD models that contain bosses without a 
hole, an exemplar has been written and is shown in Figure 9.  
As seen from Figure 8, the top surface of the boss is bounded 
by two curves in case of the boss with the hole bosses with 
holes. In other words, we need to exclude this characteristic 
while retrieving bosses that do not have holes. This may be 
achieved by expressing the above characteristic through a 
boundary constraint and a curve and applying the NOT block to 
the undesired pattern. The logical connectives at this level may 
be applied to a combination of entities and constraints, unlike 
the earlier levels of abstraction. 
 Solid S1 Bound 

Surface S2 Bound 

Top Surface S3 Bound 

Bottom 
Surface S4

Curve C2 

Bound

Curve C3 
NOT 

Curve C1 

 
Figure 9 - Exemplar to Retrieve Bosses without Holes 

5.4 Super-Exemplar Level: 
The super-exemplar level of data abstraction is defined 

here as the level at which the logical connectives may be 
applied between different exemplars.  This allows the designer 
to query CAD models and selectively filter out or combine 
different queries to retrieve the desired information.  Consider 
an example where the user is interested in retrieving CAD 
models that contain holes or pockets.  Exemplars to query these 
may be combined using the “OR” logical connective.  Thus, 
this query may be formulated as “q_hole OR q_pocket”.  
Consider Figure 10 where four different models are 
represented.  There is no restriction on the interaction between 
the hole and the pocket characteristics.  All that is being sought 
are those models that have either a hole or a pocket or both.  
The results from applying a hole query and a pocket query are 
illustrated.  At this level, the processing algorithm will use the 
results of individual queries and combine them using predicate 
logic to deduce the final result of the query.  With extended 
predicate logic more complex and compound queries may be 
formulated. 

An abstracted representation of a query to find models with 
either a pocket, a hole, or both is represented in Figure 11.  The 
q_pocket and q_hole design exemplars are represented as black 
boxes for simplicity [32].  An “OR” block surrounds them, 
indicating that if either characteristic is true, then the total 
query is true.   
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q_pocket = False 
q_hole = False 

 
q_pocket = False 

q_hole - True 

 
q_pocket = True 
q_hole = False 

 
q_pocket = True 
q_hole = True 

Figure 10 – Hole and Pocket Models 

 

q_pocket q_hole 

OR
 

Figure 11 – Design Exemplar to Retrieve Models Having 
Either a Hole or a Pocket 

Table 9 illustrates the truth tables from the different logical 
connectives that are required at each level.  Many of these 
connectives may be assembled from each other.  From the users 
perspective, this is irrelevant.  The operation and 
implementation of solving for these connectives is hidden from 
the user. 

Table 9 - Logic Truth Tables for Logical Connectives 
A B AND OR NOT (A) NAND NOR 

True True True True False False False 
True False False True False True False 
False True False True True True False 
False False False False True True True 

6 APPLICATIONS OF THE QUERY LANGUAGE 
The power of such a CAD query language may be truly 

realized by leveraging it in applications that require the 
retrieval of geometric information.  Often, automated Design 
for Manufacturing/Assembly (DFX) systems have a common 
overall approach that may be described by the following steps: 
• Retrieve geometric information:  Currently, this is 

achieved through an appropriate feature recognition 
approach for different systems.  The feature recognition 
approach in each system is tailored to suit the particular 
domain for which the system is designed.  

• Analysis of the geometric information:  An algorithm 
designed for the particular system operates on this 
information retrieved in the previous step. 
It is believed that while the algorithm might naturally be 

different for different systems, the CAD query language based 
on the design exemplar provides a common approach to 
retrieve the geometric information irrespective of the domain of 
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the application.  Three applications across various domains, 
where the query language could be used to retrieve geometric 
information, are demonstrated here with some of the required 
queries formulated as design exemplars.  

Lockett and Guenov [35] have developed a system that 
assists designers of products for casting and injection molding.  
It recognizes that a mid-surface abstraction of the part’s 
geometry is a suitable approach to represent injection molding 
components.  It generates a mid-surface approximation of the 
model, extracts the geometric and topologic information from 
the model, and generates a graphical representation of the 
geometry that is used as the basis for searching for features 
from a feature library.  Finally, a set of manufacturing rules is 
applied to the model and design alternatives are recommended.  
The features commonly encountered in the injection molding 
components are fins, holes, bosses, T-junctions, X-junctions, 
ribs and buttresses.  Figure 12 demonstrates a design exemplar 
written to recognize the T-junction feature.  The T-junction 
feature consists of the six planes that satisfy the parallel and 
perpendicularity constraints.  The six planes of the exemplar 
form the match portion while the other constraints form the 
extract.  Additional design exemplars may be developed for the 
other queries that are required for this system.  The CAD 
developer has the flexibility to define the queries in the 
language of the design exemplar without necessitating the 
development of system-specific search algorithms.  

Surface S2

Surface S3

Perpendicular 

Parallel 

Surface S4

Surface S5

Surface S1 Perpendicular 

Perpendicular 

Perpendicular 

Parallel Surface S6

Curve C1 Bound 

Concave 

NOT 

Figure 12 - T-Junction Design Exemplar 
Rangel and Shah [36] integrate CAD and CAM by 

implementing a Computer Aided Process Planning (CAPP) 
system within commercial CAD software.  Normally, three 
major tasks constitute automatic process-planning systems:  
machining feature-recognition, operations planning, and setup 
planning.  As an example of where the design exemplar might 
be employed as a query language for the feature recognition 
system, consider the example of determining the convexity of 
curves.  Using this exemplar, more complex exemplars might 
be developed to recognize cut-on features, cut-through features, 
or cut-around features [37].  The exemplar shown in Figure 13 
uses the topologically correct normals to the surfaces and a 
cross product of the normal vectors V1 and V2 to find the 
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resultant vector V4.  The topologically correct direction of the 
curve C1 is extracted and the direction of the corresponding 
vector V3 is compared with that of vector V4 to determine the 
convexity of the edge. 

 Surface S1 TC Normal 

Surface S2 TC Normal 

Vector V1 

Vector V2 

Bound 

Curve C1 

 TC Direction

Vector V3 

Vector V4 

Same 
Direction 

Cross 
Product 

Bound 
 

Figure 13 - Exemplar to Determine the Convexity of an 
Edge 

Joshi and Dutta [38] consider feature simplification of 
sheet metal components, usually modeled as free-form surface 
models, to generate an efficient finite element mesh.  NURBS 
surfaces are commonly used to represent the complex freeform 
shapes.  A critical step in this approach is the recognition of 
holes and fillets from these surfaces.  Since these are NURBS- 
based freeform surfaces, the holes are not represented as circles 
but a set of edges.  In this work, the definition of a hole is any 
loop of edges that has no surface on the inside.  The algorithm 
for recognizing a hole in these free-form surfaces relies on 
finding free edges on the surfaces and then filter out the edges 
that form the external loop.  A query to retrieve the free edges 
from a surface is demonstrated in Figure 14. 
 

NOT 

Surface S2 Bound 

Curve C1 Bound 

Surface S1 
 

Figure 14 - Exemplar to Retrive the Free Edges from a 
Surface 

The above applications illustrate the potential capability of 
this CAD query language to retrieve geometric information 
across domains.  It may be noted that this is significant, as in 
most previous query systems [18, 19, 21] only domain 
dependent applications were demonstrated or a limited set of 
features was used.  Moreover, the implementation of the design 
exemplar allows for the CAD models in the database to be 
stored in the STEP format, thus making it independent of the 
commercial CAD system used for modeling.  

7 DISCUSSION 
This paper focused on the current status of the project 

aiming to develop a complete CAD query language.  The 
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necessary extensions identified will be implemented at various 
levels of data abstraction and will enable the users to formulate 
queries to retrieve only the relevant data. 

The design exemplar offers the expected functionalities of 
query language.  It effectively performs the functions of 
retrieving, adding, modifying and removing geometric data 
from CAD models.  It satisfies the general format of a query:  

FIND target WHERE qualification 
The exemplar finds the CAD files (target), which satisfy the 
match and extract portions of the exemplars (qualification).  
The exemplar relies upon the algebraic, semantic, topologic, 
and geometric entities and constraints; facilitating multiple 
levels of domain independent design queries as can be seen in 
[30, 32, 37].   

With the implementation of the logical connectives the 
design exemplar is expected to evolve into a CAD query 
language.  The potential users of such a query language may 
include anyone retrieving geometric information for various 
purposes, but two groups of people are anticipated to benefit 
the most from such a query language. 

The first group of people, as discussed earlier are designers 
looking for CAD models that match the concept in mind. Since 
this query language also supports modification of geometric 
data, designers may automate such tasks using the modification 
queries.  For example, a m_counter_bore exemplar may be used 
to remove any counter-bores found in the database of CAD 
models.  The query may be made more specific by including 
more constraints in the extract and may allow such a 
modification to be applied to only the desired holes. 

The second group of people anticipated to benefit from this 
query language is researchers developing various automatic 
DFX systems. The query language may eliminate the need to 
develop special retrieval algorithms and enable the researchers 
to focus on the processing of the geometric information 
retrieved by the query language. 

The design exemplar has been shown to be a first step 
towards the development of a CAD query language.  It 
overcomes the limitations of earlier approaches, operating in a 
domain independent environment and using either a pre-defined 
library of queries or user defined queries.  The design exemplar 
allows users to build their own queries (user-centric) while 
enabling them to operate with the CAD vocabulary (data-
centric) at the same time.  This query language goes beyond 
features by enabling the users to encapsulate the semantics of 
the geometric data and provides for comparison of CAD 
models based on key parameters and dimensions.  It is believed 
that as the exemplar based query language evolves, it will play 
a vital role, not only in retrieving geometric information during 
the various design stages but also in automation of applications 
throughout the design process.  Current work aims at 
implementing the extensions and also deriving a similarity 
measure by which the CAD models may be indexed based on 
the results of previous queries.  It is believed that this query 
language may ultimately provide the desired general approach 
to retrieve geometric information. 
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