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Abstract

A Hamiltonian formulation of classes of distributed-parameter systems is
presented, which incorporates the energy flow through the boundary of the
spatial domain of the system, and which allows to represent the system as a
boundary control Hamiltonian system. The system is Hamiltonian with respect
to an infinite-dimensional Dirac structure associated with the exterior derivative
and based on Stokes’ theorem. The theory is applied to the telegraph equations
for an ideal transmission line, Maxwell’s equations on a bounded domain with
non-zero Poynting vector at its boundary, and a vibrating string with traction
forces at its ends. Furthermore the framework is extended to cover Euler’s
equations for an ideal fluid on a domain with permeable boundary. Finally,
some properties of the Stokes-Dirac structure are investigated, including the
analysis of conservation laws.
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1 Introduction

The Hamiltonian formulation of classes of distributed-parameter systems has been
a challenging and fruitful area of research for quite some time. (A nice introduction,
especially with respect to systems stemming from fluid dynamics, can be found in
[24], where also a historical account is provided.) The identification of the underlying
Hamiltonian structure of sets of p.d.e.’s has been instrumental in proving all sorts of
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results on integrability, the existence of soliton solutions, stability, reduction, etc.,
and in unifying existing results, see e.g. [9], [23], [13], [14], [22], [1].

Recently, there has been also a surge of interest in the design and control of
nonlinear distributed-parameter systems, motivated by various applications. At the
same time, it is well-known from finite-dimensional nonlinear control systems [31],
[33], [7], [19], [25], [26], [29], [30] that the (generalized) Hamiltonian formulation
may be very helpful in the control design, and even more is to be expected in the
distributed-parameter case. However, in extending the Hamiltonian theory as for
instance exposed in [24] to distributed-parameter control systems a fundamental
difficulty arises in the treatment of boundary conditions. Indeed, the treatment of
infinite-dimensional Hamiltonian systems in the literature seems mostly focussed
on systems with infinite spatial domain, where the variables go to zero for the
spatial variables tending to infinity, or on systems with boundary conditions such
that the energy exchange through the boundary is zero. On the other hand, from
a control and interconnection point of view it is essential to be able to describe
a distributed-parameter system with varying boundary conditions inducing energy
exchange through the boundary, since in many applications interaction with the en-
vironment (e.g. actuation or measurement) takes place through the boundary of the
system. Clear examples are the telegraph equations (describing the dynamics of a
transmission line), where the boundary of the system is described by the behavior of
the voltages and currents at both ends of the transmission line, or a vibrating string
(or, more generally, a flexible beam), where it is natural to consider the evolution of
the forces and velocities at the ends of the string. Furthermore, in both examples it
is obvious that in general the boundary exchange of power (voltage times current in
the transmission line example, and force times velocity for the vibrating string) will
be non-zero, and that in fact one would like to consider the voltages and currents or
forces and velocities as additional boundary variables of the system, which can be
interconnected to other systems. Also for numerical integration and simulation of
complex distibuted-parameter systems it is essential to be able to describe the com-
plex system as the interconnection or coupling of its subsystems via their boundary
variables; for example in the case of coupled fluid-solid dynamics.

From a mathematical point of view, it is not obvious how to incorporate non-
zero energy flow through the boundary in the existing Hamiltonian framework for
distributed-parameter systems. The problem is already illustrated by the Hamilto-
nian formulation of e.g. the Korteweg-de Vries equation (see e.g. [24]). Here for
zero boundary conditions a Poisson bracket can be formulated with the use of the
differential operator d

dx , since by integration by parts this operator is obviously skew-
symmetric. However, for boundary conditions corresponding to non-zero energy flow
the differential operator is not skew-symmetric anymore (since after integrating by
parts the remainders are not zero ). Also the interesting paper [12] does not really
solve this problem, since it is concerned with the modification of the Poisson bracket
in case of a free boundary.

In the present paper we provide a framework to overcome this fundamental
problem by using the notion of a Dirac structure; extending and generalizing a pre-
liminary and partial treatment of this framework in [20], [21]. Dirac structures were
originally introduced in [6],[8] as a geometric structure generalizing both symplectic
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and Poisson structures. Later on (see e.g. [31], [7], [18], [2]) it was realized that
in the finite-dimensional case Dirac structures can be naturally employed to formal-
ize Hamiltonian systems with constraints as implicit Hamiltonian systems. It will
turn out that in order to allow the inclusion of boundary variables in distributed-
parameter systems the concept of Dirac structure again provides the right type of
generalization with respect to the existing framework using Poisson structures. (In
fact, already in [8] Dirac structures were employed for the Hamiltonian represen-
tation of certain evolution equations. However, this treatment did not involve the
inclusion of boundary variables, and, in fact, the employed Dirac structures are
equivalent to Poisson structures.)

The Dirac structure for distributed-parameter systems used in this paper has a
specific form by being defined on certain spaces of differential forms on the spatial
domain of the system and its boundary, and making use of Stokes’ theorem. Its
construction emphasizes the geometrical content of the physical variables involved,
by identifying them as differential k-forms, for appropriate k. This interpretation is
rather well-known (see e.g. [11]) in the case of Maxwell’s equations (and actually
directly follows from Faraday’s law and Ampère’s law), but seems less well-known
for the telegraph equations and the description of the Euler’s equations for an ideal
isentropic fluid. (Although very much related formulations of systems of partial
differential equations have been studied within the general context of conservation
laws.)

From the systems and control point of view the present paper can be seen as
providing the extension of the generalized Hamiltonian framework established for
lumped-parameter systems in [31], [7], [26], [28], [30], [29], [4] to the distributed-
parameter case. In the lumped-parameter case this Hamiltonian framework has
been successfully employed in the consistent (modular) modeling and simulation of
complex interconnected lumped-parameter physical systems, including (actuated)
multi-body systems with kinematic constraints and electro-mechanical systems [31],
[18], [7], [30], and in the design and control of such systems, exploiting the Hamilto-
nian and passivity structure in a crucial way [33], [29], [19], [25], [26], [30]. Similar
developments can be pursued in the distributed-parameter case; see already [27],
[32] for some initial ideas in this direction.

The present paper is organized as follows. The main framework is established in
Section 2. After a general introduction to Dirac structures in Subsection 2.1 the
definition of a Stokes-Dirac structure is treated in Subsection 2.2. This paves the
way for the Hamiltonian formulation of distributed-parameter systems with bound-
ary variables in Subsection 2.3. In Section 3 this is applied to Maxwell’s equations
on a bounded domain (Subsection 3.1), the telegraph equations for an ideal trans-
mission line (Subsection 3.2), and the vibrating string (Subsection 3.3). Further-
more, by modifying the Stokes-Dirac structure with an additional term correspond-
ing to three-dimensional convection, Euler’s equations for an ideal isentropic fluid are
treated in Subsection 3.4. Finally, in Section 4 the properties of Stokes-Dirac struc-
tures are further analysed: Subsection 4.1 deals with the pseudo-Poisson bracket
associated to the Stokes-Dirac structure, Subsection 4.2 sets up the basic notions
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of conservation laws and Casimir functions captured by the Stokes-Dirac structure,
while Subsection 4.3 deals with a covariant definition of Stokes-Dirac structures and
the resulting Hamiltonian systems. Finally, Section 5 contains the conclusions.

2 Hamiltonian formulation of distributed-parameter sys-

tems with boundary energy flow

2.1 Dirac structures

The notion of a Dirac structure was originally introduced in [6], [8] as a geometric
structure generalizing both symplectic and Poisson structures. In [31], [18], [28],
[2], [7], [30], [29], [4], it was employed as the geometrical notion formalizing general
power-conserving interconnections, thereby allowing the Hamiltonian formulation of
interconnected and constrained mechanical and electrical systems.

A definition of Dirac structures (which is actually slightly more general than the
one in [6], [8]) can be given as follows. Let F and E be linear spaces, equipped with
a pairing, that is, a bilinear operation

F × E → L (1)

with L a linear space. The pairing will be denoted by < e|f > ∈ L, f ∈ F , e ∈ E .
By symmetrizing the pairing we obtain a symmetric bilinear form �,� on F × E ,
with values in L, defined as

� (f1, e1), (f2, e2) �:=< e1|f2 > + < e2|f1 >, (fi, ei) ∈ F × E (2)

Definition 2.1. Let F and E be linear spaces with a pairing < | >. A Dirac
structure is a linear subspace D ⊂ F × E such that D = D⊥, with ⊥ denoting the
orthogonal complement with respect to the bilinear form �,�.

Example 2.2. Let F be a linear space over R. Let E be given as F ∗ (the space of
linear functionals on F), with pairing < | > the duality product < e|f >∈ R.

(a) Let J : E → F be a skew-symmetric map. Then graph J ⊂ F × E is a Dirac
structure.

(b) Let ω : F → E be a skew-symmetric map. Then graph ω ⊂ F × E is a Dirac
structure.

(c) Let V ⊂ F be a finite-dimensional linear subspace. Then V × V orth ⊂ F × E
is a Dirac structure, where V orth ⊂ E is the annihilating subspace of V . The
same holds if F is a topological vectorspace, E is the space of linear continuous
functionals on F , and V is a closed subspace of F .

Example 2.3. Let M be a finite-dimensional manifold. Let F = V (M) denote the
Lie algebra of smooth vector fields on M , and let E = Ω1(M) be the linear space of
smooth 1-forms on M . Consider the usual pairing < α|X >= iXα between 1-forms
α and vectorfields X; implying that L is the linear space of smooth functions on M .
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(a) Let J be a Poisson structure on M , defining a skew-symmetric mapping J :
Ω1(M) → V (M). Then graph J ⊂ V (M) × Ω1(M) is a Dirac structure.

(b) Let ω be a (pre-)symplectic structure on M , defining a skew-symmetric map-
ping ω : V (M) → Ω1(M). Then graph ω ⊂ V (M) × Ω1(M) is a Dirac
structure.

(c) Let V be a constant-dimensional distribution on M , and let annV be its
annihilating co-distribution. Then V × annV is a Dirac structure.

Remark 2.4. Usually in Example 2.3 an additional integrability condition is im-
posed on the Dirac structure, cf. [6], [8]. In part (a) this condition is equivalent
to the Jacobi-identity for the Poisson structure; in part (b) it is equivalent to the
closedness of the presymplectic structure, while in part (c) it is equivalent to the
involutivity of the distribution D. Integrability is equivalent to the existence of
canonical coordinates, cf. [6], [8], [7]. Various formulations of integrability of Dirac
structures and their implications have been worked out in [7]. For the develop-
ments of the current paper the notion of integrability is not crucial; see however the
conclusions section for some comments in this direction.

From the defining property D = D⊥ of a Dirac structure it directly follows that
for any (f, e) ∈ D

0 =� (f, e), (f, e) �= 2 < e|f > (3)

Thus if (f, e) is a pair of power variables (e.g., currents and voltages in an electric
circuit context, or forces and velocities in a mechanical context), then the condi-
tion (f, e) ∈ D implies power-conservation < e|f >= 0 (as do Kirchhoff’s laws or
Newton’s third law). This is the starting point for the geometric formulation of
general power-conserving interconnections in physical systems by Dirac structures
as alluded to above.

2.2 Stokes-Dirac structures

In this subsection we treat the underlying geometric framework for the Hamiltonian
formulation of distributed-parameter systems on a bounded spatial domain, with
non-zero energy flow through the boundary. The key concept is the introduction
of a special type of Dirac structure on suitable spaces of differential forms on the
spatial domain and its boundary, making use of Stokes’ theorem. A preliminary
treatment of this Dirac structure has been given in [20], [21].

Throughout, let Z be an n-dimensional smooth manifold with smooth (n − 1)-
dimensional boundary ∂Z, representing the space of spatial variables.

Denote by Ωk(Z), k = 0, 1, · · · , n, the space of exterior k-forms on Z, and by
Ωk(∂Z), k = 0, 1, · · · , n − 1, the space of k-forms on ∂Z. (Note that Ω0(Z), re-
spectively Ω0(∂Z), is the space of smooth functions on Z, respectively ∂Z.) Clearly,
Ωk(Z) and Ωk(∂Z) are (infinite-dimensional) linear spaces (over R). Furthermore,
there is a natural pairing between Ωk(Z) and Ωn−k(Z) given by

< β|α >:=

∫

Z

β ∧ α (∈ R) (4)
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with α ∈ Ωk(Z), β ∈ Ωn−k(Z), where ∧ is the usual wedge product of differential
forms yielding the n-form β ∧ α. In fact, the pairing (4) is non-degenerate in the
sense that if < β|α >= 0 for all α, respectively for all β, then β = 0, respectively
α = 0.

Similarly, there is a pairing between Ωk(∂Z) and Ωn−1−k(∂Z) given by

< β|α >:=

∫

∂Z

β ∧ α (5)

with α ∈ Ωk(∂Z), β ∈ Ωn−1−k(∂Z). Now let us define the linear space

Fp,q := Ωp(Z) × Ωq(Z) × Ωn−p(∂Z), (6)

for any pair p, q of positive integers satisfying

p + q = n + 1, (7)

and correspondingly let us define

Ep,q := Ωn−p(Z) × Ωn−q(Z) × Ωn−q(∂Z). (8)

Then the pairing (4) and (5) yields a (non-degenerate) pairing between Fp,q and Ep,q

(note that by (7) (n − p) + (n− q) = n− 1). As before (see (2)), symmetrization of
this pairing yields the following bilinear form on Fp,q × Ep,q with values in R:

�
(

f1
p , f1

q , f1
b , e1

p, e
1
q , e

1
b

)

,
(

f2
p , f2

q , f2
b , e2

p, e
2
q , e

2
b

)

�:=

∫

Z

[

e1
p ∧ f2

p + e1
q ∧ f2

q + e2
p ∧ f1

p + e2
q ∧ f1

q

]

+
∫

∂Z

[

e1
b ∧ f2

b + e2
b ∧ f1

b

]

(9)

where for i = 1, 2

f i
p ∈ Ωp(Z), f i

q ∈ Ωq(Z)

ei
p ∈ Ωn−p(Z), ei

p ∈ Ωn−q(Z)

f i
b ∈ Ωn−p(∂Z), ei

b ∈ Ωn−q(∂Z)

(10)

The spaces of differential forms Ωp(Z) and Ωq(Z) will represent the energy variables
of two different physical energy domains interacting with each other, while Ωn−p(∂Z)
and Ωn−q(∂Z) will denote the boundary variables whose (wedge) product represents
the boundary energy flow. For example, in Maxwell’s equations (Example 3.1) we
will have n = 3 and p = q = 2; with Ωp(Z) = Ω2(Z), respectively Ωq(Z) = Ω2(Z),
being the space of electric field inductions, respectively magnetic field inductions,
and Ωn−p(∂Z) = Ω1(∂Z) denoting the electric and magnetic field intensities at the
boundary, with product the Poynting vector.
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Theorem 2.5. Consider Fp,q and Ep,q given in (6), (8) with p, q satisfying (7), and
bilinear form �,� given by (9). Define the following linear subspace D of Fp,q×Ep,q

D = {(fp, fq, fb, ep, eq, eb) ∈ Fp,q × Ep,q|

[

fp

fq

]

=

[

0 (−1)rd

d 0

] [

ep

eq

]

,

[

fb

eb

]

=

[

1 0
0 −(−1)n−q

] [

ep|∂Z

eq|∂Z

]

} (11)

where |∂Z denotes restriction to the boundary ∂Z, and r := pq + 1. Then D = D⊥,
that is, D is a Dirac structure.

Proof First we show D ⊂ D⊥, and secondly D⊥ ⊂ D.

(i) D ⊂ D⊥ : let (f 1
p , f1

q , f1
b , e1

p, e
1
q , e

1
b ) ∈ D, and consider any (f 2

p , f2
q , f2

b , e2
p, e

2
q , e

2
b) ∈

D. By substitution of (11) into (9) the right-hand side of (9) becomes

∫

Z

[

(−1)re1
p ∧ de2

q + e1
q ∧ de2

p + (−1)re2
p ∧ de1

q + e2
q ∧ de1

p

]

−(−1)n−q

∫

∂Z

[

e1
q ∧ e2

p + e2
q ∧ e1

p

]

(12)

By the properties of the exterior derivative

d(e2
q ∧ e1

p) = de2
q ∧ e1

p + (−1)n−qe2
q ∧ de1

p

d(e1
q ∧ e2

p) = de1
q ∧ e2

p + (−1)n−qe1
q ∧ de2

p

(13)

and by the properties of the wedge product

e1
p ∧ de2

q = (−1)(n−p)(n−q+1)de2
q ∧ e1

p

e2
p ∧ de1

q = (−1)(n−p)(n−q+1)de1
q ∧ e2

p

(14)

Hence the first and fourth term in the
∫

Z integral in (12) can be rewritten as

(−1)re1
p ∧ de2

q + e2
q ∧ de1

p =

(−1)r+(n−p)(n−q+1)de2
q ∧ e1

p + e2
q ∧ de1

p =

(−1)n−qde2
q ∧ e1

p + e2
q ∧ de1

p = (−1)n−qd(e2
q ∧ e1

p) (15)

since by p + q = n + 1 and r = pq + 1, r + (n− p)(n− q + 1) = r + (q − 1)p =
2pq − p + 1 and (−1)2pq−p+1 = (−1)1−p = (−1)n−q.
Similarly, the second term together with third term can be written as

e1
q ∧ de2

p + (−1)re2
p ∧ de1

q = (−1)n−qd(e1
q ∧ e2

p) (16)
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Substitution of (15), (16) in the
∫

Z integral in (12) then yields by Stokes’
theorem that this integral is equal to

(−1)n−q

∫

Z

d(e2
q ∧ e1

p) + d(e1
q ∧ e2

p) =

(−1)n−q

∫

∂Z

[

e1
q ∧ e2

p + e2
q ∧ e1

p

]

, (17)

showing that (12) is zero, and thus D ⊂ D⊥.

(ii) D⊥ ⊂ D : let (f 1
p , f1

q , f1
b , e1

p, e
1
q , e

1
b ) ∈ D⊥, implying that for all elements

(f2
p , f2

q , f2
b , e2

p, e
2
q , e

2
b) ∈ D the right-hand side of (9) is zero, and hence by

substitution of (11)

∫

Z

[

(−1)re1
p ∧ de2

q + e1
q ∧ de2

p + e2
p ∧ f1

p + e2
q ∧ f1

q

]

+

∫

∂Z

[

e1
b ∧ e2

p − (−1)n−qe2
q ∧ f1

b

]

= 0 (18)

for all e2
p, e

2
q . Now, consider first e2

p, e
2
q which are zero on the boundary ∂Z,

implying that
∫

Z

[

(−1)re1
p ∧ de2

q + e1
q ∧ de2

p + e2
p ∧ f1

p + e2
q ∧ f1

q

]

= 0 (19)

for all e2
p, e

2
q with e2

p|∂Z = e2
q |∂Z = 0. By the first line of (13) and (14)

(−1)re1
p ∧ de2

q = (−1)r+(n−p)(n−q+1)de2
q ∧ e1

p =

(−1)n−qde2
q ∧ e1

p = (−1)n−qd(e2
q ∧ e1

p) − e2
q ∧ de1

p (20)

Similarly, by the second line of (13), (14)

e1
q ∧ de2

p = (−1)n−qd(e1
q ∧ e2

p) − (−1)n−qde1
q ∧ e2

p

e2
p ∧ f1

p = (−1)(n−p)pf1
p ∧ e2

p

(21)

Since e2
p|∂Z = e2

q|∂Z = 0, substitution of (20), (21) into (19) then yields by
Stokes’ theorem

∫

Z

[

−e2
q ∧ de1

p − (−1)n−qde1
q ∧ e2

p + (−1)(n−p)pf1
p ∧ e2

p + e2
q ∧ f1

q

]

= 0 (22)

for all e2
p, e

2
q with e2

p|∂Z = e2
q |∂Z = 0. Clearly, this implies

f1
q = de1

p

(−1)(n−p)pf1
p = (−1)(n−q)de1

q

(23)
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where the last equality is easily seen to be equivalent to

f1
p = (−1)rde1

q (24)

Finally, substitute (23), (24) into (18) to obtain

∫ Z
[

(−1)re1
p ∧ de2

q + e2
q ∧ de1

p + e1
q ∧ de2

p + (−1)re2
p ∧ de1

q

]

+

∫

∂Z

[

e1
b ∧ e2

p − (−1)n−qe2
q ∧ f1

b

]

= 0 (25)

for all e2
p, e

2
q . Substituting again (20) and the first line of (21), noting that

(−1)n−qde1
q ∧ e2

p = (−1)re2
p ∧ de1

q , this yields

∫

Z

[

(−1)n−qd(e2
q ∧ e1

p) + (−1)n−qd(e1
q ∧ e2

p)
]

+

∫

∂Z

[

e1
b ∧ e2

p − (−1)n−qe2
q ∧ f1

b

]

= 0 (26)

and hence by Stokes’ theorem

∫

∂Z

[

(−1)n−qe2
q ∧ e1

p − (−1)n−qe2
q ∧ f1

b + (−1)n−qe1
q ∧ e2

p + e1
b ∧ e2

p

]

= 0 (27)

for all e2
p, e

2
q , implying that

f1
b = e1

p|∂Z

e1
b = −(−1)n−qe1

q |∂Z

(28)

showing that indeed (f 1
p , f1

q , f1
b , e1

p, e
1
q , e

1
b) ∈ D. �

Remark 2.6. The spatial compositionality properties of the Stokes-Dirac structure
immediately follow from its definition. Indeed, let Z1, Z2 be two n-dimensional
manifolds with boundaries ∂Z1, ∂Z2, such that

∂Z1 = Γ ∪ Γ1, Γ ∩ Γ1 = φ

∂Z2 = Γ ∪ Γ2, Γ ∩ Γ2 = φ

(29)

for certain (n−1)-dimensional manifolds Γ,Γ1,Γ2 (that is, Z1 and Z2 have boundary
Γ in common). Then the Stokes-Dirac structures D1, D2 on Z1, respectively Z2,
compose to the Stokes-Dirac structure on the manifold Z1 ∪Z2 with boundary Γ1 ∪
Γ2 if we equate on Γ the boundary variables f 1

b (corresponding to D1) with −f 2
b

(corresponding to D2). (Note that a minus sign is inserted in order to ensure that
the power flowing into Z1 via Γ is equal to the power flowing out of Z2 via Γ.)
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2.3 Distributed-parameter port-Hamiltonian systems

The definition of a distributed-parameter Hamiltonian system with respect to a
Stokes-Dirac structure can now be stated as follows. Let Z be an n-dimensional
manifold with boundary ∂Z, and let D be a Stokes-Dirac structure as in Subsection
2.2. Consider furthermore a Hamiltonian density (energy per volume element)

H : Ωp(Z) × Ωq(Z) × Z → Ωn(Z) (30)

resulting in the total energy

H :=

∫

Z

H ∈ R (31)

Recall, see (4), that there exists a non-degenerate pairing between Ωp(Z) and Ωn−p(Z),
respectively between Ωq(Z) and Ωn−q(Z). This means that Ωn−p(Z) and Ωn−q(Z)
can be regarded as dual spaces to Ωp(Z), respectively Ωq(Z) (although strictly con-
tained in their functional analytic duals). Let now αp, ∂αp ∈ Ωp(Z), αq, ∂αq ∈
Ωq(Z). Then under weak smoothness conditions on H

H(αp + ∂αp, αq + ∂αq) =

∫

Z

H (αp + ∂αp, αq + ∂αq, z) =

∫

Z

H (αp, αq, z) +

∫

Z

[δpH ∧ ∂αp + δqH ∧ ∂αq]

+ higher order terms in ∂αp, ∂αq (32)

for certain differential forms

δpH ∈ Ωn−p(Z)

δqH ∈ Ωn−q(Z)
(33)

Furthermore, from the non-degeneracity of the pairing between Ωp(Z) and Ωn−p(Z),
respectively between Ωq(Z) and Ωn−q(Z), it immediately follows that these differ-
ential forms are uniquely determined. This means that (δpH, δqH) ∈ Ωn−p(Z) ×
Ωn−q(Z) can be regarded as the (partial) variational derivatives (see e.g. [24]) of
H at (αp, αq) ∈ Ωp(Z) × Ωq(Z). Throughout this paper we shall assume that the
Hamiltonian H admits variational derivatives satisfying (32).

Now consider a time-function

(αp(t), αq(t)) ∈ Ωp(Z) × Ωq(Z), t ∈ R, (34)

and the Hamiltonian H(αp(t), αq(t)) evaluated along this trajectory. It follows that
at any time t

dH

dt
=

∫

Z

[

δpH ∧
∂αp

∂t
+ δqH ∧

∂αq

∂t

]

(35)
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The differential forms
∂αp

∂t ,
∂αq

∂t represent the generalized velocities of the energy
variables αp, αq. They are connected to the Stokes-Dirac structure D by setting

fp = −
∂αp

∂t

fq = −
∂αq

∂t

(36)

(again the minus sign is included to have a consistent energy flow description). Since
the right-hand side of (35) is the rate of increase of the stored energy H, we set

ep = δpH

eq = δqH

(37)

(In network modeling terminology δpH and δqH are called the co-energy variables,
which are set equal to the effort variables ep, eq.) Now we come to the general
Hamiltonian description of a distributed-parameter system with boundary energy
flow. In order to emphasize that the boundary variables are regarded as intercon-
nection variables, which can be interconnected to other systems and whose product
represents power, we call these models port -Hamiltonian systems. (This terminology
comes from network modeling, see e.g. [16], [31], [30].)

Definition 2.7. The distributed-parameter port-Hamiltonian system with n-dimensional
manifold of spatial variables Z, state space Ωp(Z)×Ωq(Z) (with p+q = n+1), Stokes-
Dirac structure D given by (11), and Hamiltonian H, is given as (with r = pq + 1)

[

−
∂αp

∂t

−
∂αq

∂t

]

=

[

0 (−1)rd

d 0

] [

δpH

δqH

]

[

fb

eb

]

=

[

1 0
0 −(−1)n−q

] [

δpH|∂Z

δqH|∂Z

]

(38)

By the power-conserving property (3) of any Dirac structure it immediately
follows that for any (fp, fq, fb, ep, eq, eb) in the Stokes-Dirac structure D

∫

Z

[ep ∧ fp + eq ∧ fq] +

∫

∂Z

eb ∧ fb = 0 (39)

Hence by substitution of (36), (37) and using (35) we obtain

Proposition 2.8. Consider the distributed parameter port-Hamiltonian system
(38). Then

dH

dt
=

∫

∂Z

eb ∧ fb, (40)

expressing that the increase in energy on the domain Z is equal to the power supplied
to the system through the boundary ∂Z.

11



The system (38) can be called a (nonlinear) boundary control system in the sense
of e.g. [10]. Indeed, we could interpret fb as the boundary control inputs to the
system, and eb as the measured outputs (or the other way around). In Section 3 we
shall further elaborate on this point of view.

Energy exchange through the boundary is not the only way a distributed-parameter
system may interact with its environment. An example of this is provided by
Maxwell’s equations (Example 3.1), where interaction may also take place via the
current density J , which directly affects the electric charge distribution in the do-
main Z. In order to cope with this situation we augment the spaces Fp,q, Ep,q as
defined in (6), (8) to

Fa
q,p := Fp,q × Ωd(S)

Ea
q,p := Ep,q × Ωn−d(S)

(41)

for some m-dimensional manifold S and some d ∈ {0, 1, · · · ,m}, with f d ∈ Ωd(S)
denoting the externally supplied distributed control flow, and ed ∈ Ωn−d(S) the
conjugate distributed quantity, corresponding to an energy exchange

∫

S

ed ∧ fd (42)

The Stokes-Dirac structure (11) is now extended to
[

fp

fq

]

=

[

0 (−1)rd

d 0

] [

ep

eq

]

+ G(fd)

[

fb

eb

]

=

[

1 0
0 −(−1)n−q

] [

ep|∂Z

eq|∂Z

]

ed = −G∗

[

ep

eq

]

(43)

with G denoting a linear map

G =

(

Gp

Gq

)

: Ωd(S) → Ωp(Z) × Ωq(Z) (44)

with dual map (again we consider Ωn−p(Z) and Ωn−q(Z) as dual spaces to Ωp(Z),
respectively Ωn−q(Z))

G∗ = (G∗
p, G

∗
q) : Ωn−p(Z) × Ωn−q(Z) → Ωn−d(S) (45)

satisfying
∫

Z

[ep ∧ Gp(fd) + eq ∧ Gq(fd)] =

∫

S

[

G∗
p(ep) + G∗

q(eq)
]

∧ fd (46)

for all ep ∈ Ωn−p(Z), eq ∈ Ωn−q(Z), fd ∈ Ωd(S).
The following proposition can be easily checked.
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Proposition 2.9. Equations (43) determine a Dirac structure Da ⊂ Fa
p,q×Ea

p,q with
respect to the augmented bilinear form on F a

p,q × Ea
p,q which is obtained by adding

to the bilinear form (9) on Fp,q × Ep,q the term

∫

S

[

e1
d ∧ f2

d + e2
d ∧ f1

d

]

(47)

By making now the substitutions (36), (37) into Da given by (43) we obtain a
port-Hamiltonian system with external variables (fb, fd, eb, ed), with fb, eb the bound-
ary external variables and fd, ed the distributed external variables. Furthermore, the
energy balance (40) extends to

dH

dt
=

∫

∂Z

eb ∧ fb +

∫

S

ed ∧ fd, (48)

with the first term on the right-hand side denoting the power flow through the
boundary, and the second term denoting the distributed power flow.

Finally, energy dissipation can be incorporated in the framework of distributed-
parameter port-Hamiltonian systems by terminating some of the ports (boundary
or distributed) with a resistive relation. For example, for distributed dissipation, let
R : Ωn−d(S) → Ωd(S) be a map satisfying

∫

S

ed ∧ R(ed) ≥ 0, ∀ed ∈ Ωn−d(S) (49)

Then by adding the relation

fd = −R(ed) (50)

to the port-Hamiltonian system defined with respect to the Dirac structure Da, we
obtain a port-Hamiltonian system with dissipation, satisfying the energy inequality

dH

dt
=

∫

∂Z

eb ∧ fb −

∫

S

ed ∧ R(ed) ≤

∫

∂Z

eb ∧ fb (51)

3 Examples

In this section we show how the framework of distributed-parameter port-Hamiltonian
systems admits the representation of Maxwell’s equations, the telegraph equations
of an ideal transmission line, the vibrating string, and the Euler equations of an
ideal isentropic fluid.

3.1 Maxwell’s equations

We closely follow the formulation of Maxwell’s equations in terms of differential
forms as presented in [11], and show how this directly leads to the formulation as a
distributed-parameter port-Hamiltonian system.
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Let Z ⊂ R
3 be a 3-dimensional manifold with boundary ∂Z, defining the spatial

domain, and consider the electromagnetic field in Z. The energy variables are the
electric field induction 2-form αp = D ∈ Ω2(Z):

D =
1

2
Dij(t, z)dzi ∧ dzj (52)

and the magnetic field induction 2-form αq = B ∈ Ω2(Z) :

B =
1

2
Bij(t, z)dzi ∧ dzj (53)

The corresponding Stokes-Dirac structure (n = 3, p = 2, q = 2) is given as (cf. (11))

[

fp

fq

]

=

[

0 −d

d 0

] [

ep

eq

]

,

[

fb

eb

]

=

[

1 0
0 1

] [

ep|∂Z

eq|∂Z

]

(54)

Usually in this case one does not start with the definition of the total energy (Hamil-
tonian) H, but instead with the co-energy variables δpH, δqH, given, respectively,
as the electric field intensity E ∈ Ω1(Z) :

E = Ei(t, z)dzi (55)

and the magnetic field intensity H ∈ Ω1(Z) :

H = Hi(t, z)dzi (56)

They are related to the energy variables through the constitutive relations of the
medium (or material equations)

∗D = εE
∗B = µH

(57)

with the scalar functions ε(t, z) and µ(t, z) denoting the electric permittivity, respec-
tively magnetic permeability, and ∗ denoting the Hodge star operator (corresponding
to a Riemannian metric on Z), converting 2-forms into 1-forms. Then one defines
the Hamiltonian H as

H =

∫

Z

1

2
(E ∧ D + H ∧ B), (58)

and one immediately verifies that δpH = E , δqH = H.
Nevertheless there are other cases (corresponding to a nonlinear theory of the elec-
tromagnetic field, such as the Born-Infeld theory, see e.g. [11]) where one starts
with a more general Hamiltonian H =

∫

Z h, with the energy density h(D, B) being
a more general expression than 1

2 (ε−1 ∗ D ∧ D + µ−1 ∗ B ∧ B).
Assuming that there is no current in the medium Maxwell’s equations can now

be written as (see [11])

∂D
∂t = dH

∂B
∂t = −dE

(59)
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Explicitly taking into account the behavior at the boundary, Maxwell’s equations on
a domain Z ⊂ R

3 are then represented as the port-Hamiltonian system with respect
to the Stokes-Dirac structure given by (54), as

[

−∂D
∂t

−∂B
∂t

]

=

[

0 −d

d 0

] [

δDH

δBH

]

[

fb

eb

]

=

[

δDH|∂Z

δBH|∂Z

]

(60)

Note that the first line of (59) is nothing else than (the differential version of)
Ampère’s law, while the second line of (59) is Faraday’s law. Hence the Stokes-
Dirac structure in (59), (60) expresses the basic physical laws connecting D,B,H
and E .
The energy-balance (40) in the case of Maxwell’s equations takes the form

dH

dt
=

∫

∂Z

δBH ∧ δDH =

∫

∂Z

H∧ E = −

∫

∂Z

E ∧ H (61)

with E ∧ H a 2-form corresponding to the Poynting vector (see [11]).
In the case of a non-zero current density we have to modify the first matrix

equation of (60) to

[

−∂D
∂t

−∂B
∂t

]

=

[

0 −d

d 0

] [

δDH

δBH

]

+

[

I

0

]

J (62)

with I denoting the identity operator from J ∈ Ω2(Z) to Ω2(Z). (Thus, in the
notation of (44), fd = J , S = Z, and Ωd(S) = Ω2(Z).) Furthermore, we add the
equation

ed = −[I 0]

[

δDH

δBH

]

= −E , (63)

yielding the augmented energy balance

dH

dt
= −

∫

∂Z

E ∧ H−

∫

Z

E ∧ J (64)

which is known as Poynting’s theorem.
Finally, in order to incorporate energy dissipation we write J = Jd + J̄ , and we

impose Ohm’s law

∗Jd = σE (65)

with σ(t, z) the specific conductivity of the medium.

3.2 Telegraph equations

Consider an ideal lossless transmission line with Z = [0, 1] ⊂ R. The energy variables
are the charge density 1-form Q = Q(t, z)dz ∈ Ω1([0, 1]), and the flux density 1-form
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ϕ = ϕ(t, z)dz ∈ Ω1([0, 1]); thus p = q = n = 1. The total energy stored at time t in
the transmission line is given as

H(Q,ϕ) =

∫ 1

0

1

2

(

Q2(t, z)

C(z)
+

ϕ2(t, z)

L(z)

)

dz (66)

with co-energy variables

δQH = Q(t,z)
C(z) = V (t, z) (voltage)

δϕH = ϕ(t,z)
L(z) = I(t, z) (current)

(67)

where C(z), L(z) are respectively the distributed capacitance and distributed induc-
tance of the line.

The resulting port-Hamiltonian system is given by the telegraph equations

∂Q
∂t = −∂I

∂z

∂ϕ
∂t = −∂V

∂z

(68)

together with the boundary variables

f0
b (t) = V (t, 0), f 1

b (t) = V (t, 1)

e0
b(t) = −I(t, 0), e1

b(t) = −I(t, 1)
(69)

The resulting energy-balance is

dH

dt
=

∫

∂([0,1])
ebfb = −I(t, 1)V (t, 1) + I(t, 0)V (t, 0), (70)

in accordance with (40).

3.3 Vibrating string

Consider an elastic string subject to traction forces at its ends. The spatial variable
z belongs to the interval Z = [0, 1] ⊂ R. Let us denote by u(t, z) the displacement
of the string. The elastic potential energy is a function of the strain given by the
1-form

αq(t) = ε(t, z)dz =
∂u

∂z
(t, z)dz (71)

The associated co-energy variable is the stress given by the 0-form

σ = T ∗ αq (72)

with T the elasticity modulus and ∗ the Hodge star operator. Hence the potential
energy is the quadratic function

U(αq) =

∫ 1

0
σαq =

∫ 1

0
T ∗ αq ∧ αq =

∫ 1

0
T

(

∂u

∂z

)2

dz (73)
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and σ = δqU .
The kinetic energy K is a function of the kinetic momentum defined as the 1-form

αp(t) = p(t, z)dz (74)

given by the quadratic function

K(αp) =

∫ 1

0

p2

µ
dz (75)

The associated co-energy variable is the velocity given by the 0-form

v =
1

µ
∗ αp = δpK (76)

In this case the Dirac structure is the Stokes-Dirac structure for n = p = q = 1,
with an opposite sign convention leading to the equations (with H := U + K)

[

−
∂αp

∂t

−
∂αq

∂t

]

=

[

0 −d

−d 0

] [

δpH

δqH

]

[

fb

eb

]

=

[

1 0
0 1

] [

δpH|∂Z

δqH|∂Z

]

(77)

or, in more down-to-earth notation

∂p
∂t = ∂σ

∂z = ∂
∂z (Tε)

∂ε
∂t = ∂v

∂z = ∂
∂z

(

1
µp

)

fb = v|{0,1}

eb = σ|{0,1}

(78)

with boundary variables the velocity and stress at the ends of the string. Of course,

by substituting ε = ∂u
∂z into the 2nd equation of (78) one obtains ∂

∂z

(

∂u
∂t − p

µ

)

= 0,

implying that

p = µ
∂u

∂t
+ µf(t) (79)

for some function f , which may be set to zero. Substitution of (79) into the first
equation of (78) then yields the wave equation

µ
∂2u

∂t2
=

∂

∂z

(

T
∂u

∂z

)

(80)
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3.4 Ideal isentropic fluid

Consider an ideal compressible isentropic fluid in three dimensions, described in
Eulerian representation by the standard Euler equations

∂ρ
∂t = −∇ · (ρv)

∂v
∂t = −v · ∇v − 1

ρ∇p

(81)

with ρ(z, t) ∈ R the mass density at the spatial position z ∈ R
3 at time t, v(z, t) ∈ R

3

the (Eulerian) velocity of the fluid at spatial position z and time t, and p(z, t) the
pressure function, derivable from an internal energy function U(ρ) as

p(z, t) = ρ2(z, t)
∂U

∂ρ
(ρ(z, t)) (82)

Much innovative work has been done regarding the Hamiltonian formulation of (86)
and more general cases; we refer in particular to [23, 13, 14, 22, 1]. However, in these
treatments only closed fluid dynamical systems are being considered with no energy
exchange through the boundary of the spatial domain. As a result, a formulation
in terms of Poisson structures can be given, while as argued before, the general
inclusion of boundary variables necessitates the use of Dirac structures.

The formulation of (81) as a port-Hamiltonian system is given as follows. Let
D ⊂ R

3 be a given domain, filled with the fluid. We assume the existence of a
Riemannian metric <,> on D; usually the standard Euclidean metric on R

3. Let
Z ⊂ D be any 3-dimensional manifold with boundary ∂Z.

We identify the mass-density ρ with a 3-form on Z (see e.g. [13, 14]), that is,
with an element of Ω3(Z). Furthermore, we identify the Eulerian vector field v

with a 1-form on Z, that is, with an element of Ω1(Z). (By the existence of the
Riemannian metric on Z we can, by “index raising” or “index lowering”, identify
vector fields with 1-forms and vice versa.) The precise motivation for this choice of
variables will become clear later on. As a result we consider as the carrier spaces
for the port-Hamiltonian formulation of (81) the linear spaces Fp,q and Ep,q for
n = 3, p = 3, q = 1; that is

Fp,q = Ω3(Z) × Ω1(Z) × Ω0(∂Z) (83)

and

Ep,q = Ω0(Z) × Ω2(Z) × Ω2(∂Z) (84)

Since p + q = n + 1 we can define the corresponding Stokes-Dirac structure D given
by (11) on Fp,q ×Ep,q. However, as will become clear later on, due to 3-dimensional
convection we need to modify this Stokes-Dirac structure with an additional term
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into the following modified Stokes-Dirac structure

Dm := {(fp, fv, fb, eρ, ev , eb) ∈

Ω3(Z) × Ω1(Z) × Ω0(∂Z) × Ω0(Z) × Ω2(Z) × Ω2(∂Z)

[

fρ

fv

]

=

[

dev

deρ + 1
∗ρ ∗ ((∗dv) ∧ (∗ev))

]

[

fb

eb

]

=

[

eρ|∂Z

−ev|∂Z

]

} (85)

where ∗ denotes the Hodge star operator (corresponding to the Riemannian metric
on Z), converting k-forms on Z to (3 − k)-forms. A fundamental difference of
the modified Stokes-Dirac structure Dm with respect to the standard Stokes-Dirac
structure D is that Dm explicitly depends on the energy variables ρ and v (via the
terms ∗ρ and dv in the additional term 1

∗ρ ∗ ((∗dv) ∧ (∗ev)).

Completely similar to the proof of Theorem 2.5 it is shown that (Dm(ρ, v))⊥ =
Dm(ρ, v) for all ρ, v; the crucial additional observation is that the expression

e2
v ∧ ∗((∗dv) ∧ (∗e1

v)) (86)

is skew-symmetric in e1
v, e

2
v ∈ Ω2(Z).

Remark 3.1. In the standard Euclidean metric, identifying via the Hodge star
operator 2-forms βi with 1-forms, and representing 1-forms as vectors, we have in
vector calculus notation the equality

β2 ∧ ∗(α ∧ ∗β1) = α · (β1 × β2) (87)

for all 2-forms β1, β2 and 1-forms α. This shows clearly the skew-symmetry of (86).

The Eulerian equations (81) for an ideal isentropic fluid are obtained in the
port-controlled Hamiltonian representation by considering the Hamiltonian

H(ρ, v) :=

∫

Z

[

1

2
< v], v] > ρ + U(∗ρ)ρ

]

(88)

with v] the vector field corresponding to the 1-form v (“index lowering”), and U(∗ρ)
the internal energy. Indeed, by making the substitutions (36), (37) in Dm, and
noting that

grad H = (δρH, δvH) =

(

1

2
< v], v] > +

∂

∂ρ̃
(ρ̃U(ρ̃)) , iv]ρ

)

(89)

with ρ̃ := ∗ρ, the port-Hamiltonian system takes the form

−∂ρ
∂t = d(iv]ρ)

−∂v
∂t = d

(

1
2 < v], v] > +w(∗ρ)

)

+ 1
∗ρ ((∗dv) ∧ (∗iv]ρ))

fb =
[

1
2 < v], v] > +w(∗ρ)

]

|∂Z

eb = −iv]ρ|∂Z

(90)
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with

w(ρ̃) :=
∂

∂ρ̃
(ρ̃U(ρ̃)) (91)

the enthalpy. The expression δρH = 1
2 < v], v] > +w(ρ̃) is known as the Bernoulli

function.
The first two equations of (90) can be seen to represent the Eulerian equations

(81). The first equation corresponds to the basic law of mass-balance

d

dt

∫

ϕt(V )
ρ = 0, (92)

where V denotes an arbitrary volume in Z, and ϕt is the flow of the fluid (trans-
forming the material volume V at t = 0 to the volume ϕt(V ) at time t). Indeed,
(92) for any V is equivalent to

∂ρ

∂t
+ Lv]ρ = 0 (93)

Since by Cartan’s magical formula Lv]ρ = d(iv]ρ) + iv]dρ = d(iv]ρ) (since dρ = 0)
this yields the first line of (90). It also makes clear the interpretation of ρ as a 3-form
on Z.

For the identification of the second equation of (90) with the second equation
of (86) we note the following (see [32] for further details). Interpret ∇· in (81) as
the covariant derivative corresponding to the assumed Riemannian metric <,> on
Z. For a vector field u on Z, let u[ denote the corresponding 1-form u[ := iu <,>

(“index raising”). The covariant derivative ∇ is related to the Lie derivative by the
following formula (see for a proof [1], p. 202)

Luu[ = (∇uu)[ +
1

2
d < u, u > (94)

Since by Cartan’s magical formula Luu[ = iudu[ + d(iuu[) = iudu[ + d < u, u >,
(94) can be also written as

(∇uu)[ = iudu[ +
1

2
d < u, u > (95)

(This is the coordinate-free analog of the well-known vector calculus formula u·∇u =
curl u × u + 1

2∇|u|2.) Furthermore we have the identity

iv]dv =
1

∗ρ
∗ ((∗dv) ∧ (∗iv]ρ)) (96)

Finally, we have the following well-known relation between enthalpy and pressure
(obtained from (82) and (91))

1

ρ̃
dp = d(w(ρ̃)). (97)
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Hence by (95) (with u = v]), (96) and (97), we may rewrite the 2nd equation of (90)
as

−
∂v

∂t
=

(

∇v]v]
)[

+
1

∗ρ
dp (98)

which is the coordinate-free formulation of the 2nd equation of (81).
The boundary variables fb and eb given in (90) are respectively the stagnation

pressure at the boundary divided by ρ, and the (incoming) mass flow through the
boundary. The energy-balance (40) can be written out as

dH
dt =

∫

∂Z eb ∧ fb = −
∫

∂Z iv]ρ ∧
[

1
2 < v], v] > +w(∗ρ)

]

= −
∫

∂Z iv]

[

1
2 < v], v] > ρ + w(∗ρ)ρ

]

= −
∫

∂Z iv]

[

1
2 < v], v] > ρ + U(∗ρ)ρ

]

−
∫

∂Z iv](∗p)

(99)

where for the last equality we have used the relation (following from (82), (91))

w(∗ρ)ρ = U(∗ρ)ρ + ∗p (100)

The first term in the last line of (99) corresponds to the convected energy through
the boundary ∂Z, while the second term is (minus) the external work (static pressure
times velocity).

Usually, the second line of the Euler equations (81) (or equivalently equation
(98)) is obtained from the basic conservation law of momentum-balance together
with the first line of (81). Alternatively, emphasizing the interpretation of v as a
1-form, we may obtain it from Kelvin’s circulation theorem

d

dt

∫

ϕt(C)
v = 0 (101)

where C denotes any closed contour. Indeed, (101) for any closed C is equivalent to
the 1-form ∂v

∂t + Lv]v being closed. By (94) this is equivalent to requiring

∂v

∂t
+

(

∇v]v]
)[

(102)

to be closed, that is

∂v

∂t
+

(

∇v]v]
)[

= −dk (103)

for some (possibly locally defined) k : Z → R. Now additionally requiring that this
function k depends on z through ρ, that is

k(z) = w(ρ(z)) (104)

for some function w, we recover (98) with 1
∗ρdp replaced by dw (the differential of

the enthalpy).
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Remark 3.2. In the case of a one- or two-dimensional fluid flow the extra term in
the Dirac structure Dm as compared with the standard Stokes-Dirac structure D

vanishes, and so in these cases we are back to the standard definition of a distributed-
parameter port-Hamiltonian system (with ρ being a 1-form, respectively, a 2-form).

Furthermore, if in the three-dimensional case the 2-form dv(t) happens to be zero
at a certain time-instant t = t0 (irrotational flow), then it continues to be zero for
all time t ≥ t0. Hence also in this case the extra term (86) in the modified Stokes-
Dirac structure Dm vanishes, and the port-Hamiltonian system describing the Euler
equations reduces to the standard distributed-parameter port-Hamiltonian system
given in Definition 2.7.

4 Properties of Stokes-Dirac structures

4.1 Poisson brackets associated to Stokes-Dirac structures

Although Dirac structures strictly generalize Poisson structures we can associate a
(pseudo-)Poisson structure to any Dirac structure as defined in Section 2.1. Indeed,
let D ⊂ F ×E be a Dirac structure as given in Definition 2.1. Then we can define a
skew-symmetric bilinear form on a subspace of E ; basically following [6], [8]. First,
define the space of “admissible efforts”

Eadm = {e ∈ E|∃f ∈ F such that (f, e) ∈ D} (105)

Then we define on Eadm the bilinear form

[e1, e2] :=< e1|f2 >∈ L (106)

where f2 ∈ F is such that (f2, e2) ∈ D. This bilinear form is well-defined, since for
any other f ′

2 ∈ F such that (f ′
2, e2) ∈ D we obtain by linearity (f2 − f ′

2, 0) ∈ D, and
hence

0 =� (f1, e1), (f2 − f ′
2, 0) �=< e1|f2 > − < e1|f

′
2 > (107)

Furthermore, [ , ] is skew-symmetric since for any (f1, e1), (f2, e2) ∈ D

0 =� (f1, e1), (f2, e2) �=< e1|f2 > + < e2|f1 > (108)

Now, let us define on F the set of admissible mappings

Kadm = {k : F → L|∀a ∈ F ∃e(k, a) ∈ Eadm

such that for all ∂a ∈ F

k(a + ∂a) = k(a)+ < e(k, a)|∂a > +O(∂a)}

(109)

Note that e(k, a) (if it exists) is uniquely defined modulo the following linear subspace
of E

E0 = {e ∈ E| < e|f >= 0 for all f ∈ F} (110)
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We call e(k, a) (in fact, its equivalence class) the derivative of k at a, and we denote
it by δk(a). We define on Kadm the following bracket

{k1, k2}D(a) := [δk1(a), δk2(a)], k1, k2 ∈ Kadm (111)

which is clearly independent from the choice of the representants δk1(a), δk2(a).
By skew-symmetry of [ , ] it immediately follows that also {, } is skew-symmetric.
The Jacobi-identity for {, }D, however, is not automatically satisfied, and we call
therefore {, }D a pseudo-Poisson bracket.

For the Stokes-Dirac structure D of Theorem 2.5, given in equation (11), the
bracket takes the following form. The set of admissible functions Kadm consists of
those functions

k : Ωp(Z) × Ωq(Z) × Ωn−p(∂Z) → R (112)

whose derivatives

δk(z) = (δpk(z), δqk(z), δbk(z)) ∈ Ωn−p(Z) × Ωn−q(Z) × Ωn−q(∂Z) (113)

satisfy (cf. the last line of (11))

δbk(z) = −(−1)n−qδqk(z)|∂Z (114)

Furthermore, the bracket on K adm is given as (leaving out the arguments z)

{k1, k2}D =

∫

Z

[

δpk
1 ∧ (−1)rd(δqk

2) + (δqk
1) ∧ d(δpk

2)
]

−

∫

∂Z

(−1)n−q(δqk
1) ∧ (δpk

2) (115)

It follows from the general considerations above that this bracket is skew-symmetric.
(This can be also directly checked using Stokes’ theorem.) Furthermore, in this case
it is straightforward to check that {, }D also satisfies the Jacobi-identity

{{k1, k2}D, k3}D + {{k2, k3}D, k1}} + {k3, k1}D, k2}D = 0 (116)

for all ki ∈ K adm .
For the modified Stokes-Dirac structure Dm given in (85) the space K adm is

the same, but the resulting skew-symmetric bracket has an additional term:

{k1, k2}Dm =

∫

Z

[(δρk
1) ∧ (−1)rd(δqk

2) + (δqk
1) ∧ d(δpk

2)

+
1

∗ρ
δvk

1 ∧ ∗((∗dv) ∧ (∗δvk
2))] −

∫

∂Z

(−1)n−q(δqk
1) ∧ (δpk

2) (117)

(For the skew-symmetry of the additional term see (86) and Remark 3.1.)
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4.2 Conservation laws of port-Hamiltonian systems

Let us consider the distributed-parameter port-Hamiltonian system Σ, as defined in
Definition 2.7, on an n-dimensional spatial domain Z having state space Ωp(Z) ×
Ωq(Z) (with p + q = n + 1) and Stokes-Dirac structure D given by (11).
Conservation laws for Σ, which are independent from the Hamiltonian H, are ob-
tained as follows. Let

C : Ωp(Z) × Ωq(Z) × Z → R (118)

be a function satisfying

d(δpC) = 0, d(δqC) = 0, (119)

where d(δpC), d(δqC) are defined similarly to (33). Then the time-derivative of C

along the trajectories of Σ is given as (in view of (119), and using similar calculations
as in the proof of Theorem 2.5

d

dt
C =

∫

Z

δpC ∧ α̇p +

∫

Z

δqC ∧ α̇q

= −

∫

Z

δpC ∧ (−1)rd(δqH) −

∫

Z

δqC ∧ d(δpH)

= −(−1)n−q

∫

Z

d(δqH ∧ δpC) − (−1)n−q

∫

Z

d(δqC ∧ δpH)

=

∫

∂Z

eb ∧ fC
b +

∫

∂Z

eC
b ∧ fb (120)

where we have denoted, in analogy with (11),

fC
b := δpC|∂Z , eC

b := −(−1)n−qδqC|∂Z (121)

In particular, if additionally to (119) the function C satisfies

δpC|∂Z = 0, δqC|∂Z = 0 (122)

then dC
dt = 0 along the system trajectories of Σ for any Hamiltonian H. Therefore

a function C satisfying (119), (122) is called a Casimir function. If C satisfies
(119) but not (122) then C is called a conservation law for Σ: its time-derivative is
determined by the boundary conditions of Σ.

Example 4.1. In the case of the telegraph equations (Example 3.2) the total charge

CQ =

∫ 1

0
Q(t, z)dz

as well as the total magnetic flux

Cϕ =

∫ 1

0
ϕ(t, z)dz
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are both conservation laws. Indeed

d
dtCQ = −

∫ 1
0

∂I
∂z = I(0) − I(1)

d
dtCϕ = −

∫ 1
0

∂V
∂z dz = V (0) − V (1)

Similarly, in the case of the vibrating string (Example 3.3) conservation laws are
=

∫ 1
0 ε(t, z)dz = u(t, 1) − u(t, 0),

d
dt

∫ 1
0 ε(t, z)dz = d

dt (u(t, 1) − u(t, 0)) = v(t, 1) − v(t, 0)

d
dt

∫ 1
0 p(t, z)dz = σ(t, 1) − σ(t, 0)

�

Conservation laws C for Σ which are dependent on the Hamiltonian H are obtained
by replacing (119) by the weaker condition

δqH ∧ d(δpC) + (−1)rδpH ∧ d(δqC) = 0 (123)

Indeed, it immediately follows from the computation in (120) that under this con-
dition (120) continues to hold.

In the case of the modified Stokes-Dirac structure Dm defined in (85), for any
function C : Ω3(Z) × Ω1(Z) × Z → R satisfying

δvH ∧ d(δpC) + δρH ∧ d(δvC) = 0, ρ ∈ Ω3(Z), v ∈ Ω1(Z) (124)

equation (120) takes the form

d

dt
C =

∫

Z

δρC ∧ d(δvH) +

∫

Z

δvC ∧

[

d(δρH) +
1

∗ρ
∗ ((∗dv) ∧ (∗δvH))

]

=

∫

∂Z

δρC ∧ δvH +

∫

∂Z

δvC ∧ δρH

+

∫

Z

1

∗ρ
δvC ∗ ((∗dv) ∧ (∗δvH)) (125)

Hence we conclude that in order to obtain a conservation law we need to impose an
extra condition eliminating the last

∫

Z integral. A specific example of a conservation
law in this case is the helicity

C =

∫

Z

v ∧ dv (126)

with time-derivative

d

dt
C = −

∫

∂Z

fb ∧ dv (127)

A second class of conserved quantities corresponding to the Stokes-Dirac structure
D (11) is identified by noting that by (38)

−d
(

∂αp

∂t

)

= (−1)rd(dδqH) = 0

−d
(

∂αq

∂t

)

= d(dδpH) = 0

(128)

25



and thus the differential forms dαp and dαq do not depend on time. Therefore,
the component functions of dαp and dαq are conserved quantities of any port-
Hamiltonian system corresponding to D.

Example 4.2. In the case of Maxwell’s equations (Example 3.1) this yields that dD
and dB are constant 3-forms. The 3-form dD is the charge density (Gauss’ electric
law), while by Gauss’ magnetic law dB is actually zero.
In the case of an ideal isentropic fluid (Example 3.4) for which the vorticity dv(t0, z)
is zero at a certain time t0 we obtain by the same reasoning (since the additional
term in the Stokes-Dirac structure Dm is zero for t0) that dv(t, z) is zero for all
t ≥ t0 (irrotational flow); cf. Remark 3.2.

4.3 Covariant formulation of port-Hamiltonian systems

A covariant formulation of distributed-parameter port-Hamiltonian systems can be
obtained following a construction which is well-known for Maxwell’s equations (see
[11]), and directly generalizes to port-Hamiltonian systems (38) defined with respect
to a general Stokes-Dirac structure D.

Define on Z ×R with coordinates (z, t) (that is, space-time) the p−, respectively
q-form

γp := αp + (−1)rδqH ∧ dt

γq := αq + δpH ∧ dt

(129)

Then the first part of the equations (38) can be equivalently stated as

L ∂
∂t

d̄γp = 0

L ∂
∂t

d̄γq = 0
(130)

with d̄ denoting the exterior derivative on Z × R (with respect to z and t).
Indeed, (130) means that d̄γp and d̄γq do not depend on t, that is,

d̄γp = βp

d̄γq = βq

(131)

for certain (p + 1)− and (q + 1)−forms βp, respectively βq, not depending on t.
Writing out (131) yields (with d denoting the exterior derivative with respect to z)

dαp +
∂αp

∂t ∧ dt + (−1)rd(δqH) ∧ dt = βp

dαq +
∂αq

∂t ∧ dt + d(δpH) ∧ dt = βq

(132)

resulting in the equations of a port-Hamiltonian system (38)

−
∂αp

∂t = (−1)rd(δqH)

−
∂αq

∂t = d(δpH)

(133)
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together with the conserved quantities (cf. Section 4.2) dαp = βp, dαq = βq.
Furthermore, the boundary variables of the port-Hamiltonian system (38) can

be re-formulated as
(

i ∂
∂t

γq

)

|∂Z
= fb

(

i ∂
∂t

γp

)

|∂Z
= (−1)qeb

(134)

5 Conclusions and Final Remarks

The main results of this paper concern the definition of a Dirac structure which
allows the Hamiltonian formulation of a large class of distributed-parameter sys-
tems with boundary energy-flow, including the examples of the telegraph equations,
Maxwell’s equations, vibrating strings and ideal isentropic fluids. It has been argued
that in order to incorporate boundary variables into this formulation the notion of a
Dirac structure provides the appropriate generalization of the more commonly used
notion of a Poisson structure for evolution equations. The employed Dirac structure
is based on Stokes’ theorem, and emphasizes the geometrical content of the variables
as being differential k-forms.

From a physical point of view the Stokes-Dirac structure captures the balance
laws inherent to the system, like Faraday’s and Ampère’s law (in Maxwell’s equa-
tions), or mass-balance (in the case of an ideal fluid). This situation is quite similar
to the lumped-parameter case where the Dirac structure incorporates the topological
interconnection laws (Kirchhoff’s laws, Newton’s third law) and other interconnec-
tion constraints (see e.g. [31], [18], [17]).

Hence the starting point for the Hamiltonian description in this paper is dif-
ferent from the more common approach of deriving Hamiltonian equations from a
variational principle and its resulting Lagrangian equations, or (very much related)
a Hamiltonian formulation starting from a state space being a co-tangent bundle
endowed with its natural symplectic structure. In the case of Maxwell’s equations
this results in the use of the basic physical variables D and B (the electric and
magnetic field inductions), instead of the use of the variable D (or E) together with
the vector potential A (with dA = B) in the symplectic formulation of Maxwell’s
equations. It should be of interest to compare both approaches more closely, also in
the context of the natural multi-symplectic structures which have been formulated
for the Hamiltonian formulation of Lagrangian field equations; see e.g. [5], [15]. An-
other related issue in this context is the ”canonicity” of the Stokes-Dirac structure
(as compared with the canonicity of the symplectic structure on cotangent bundles
and the multi-symplectic structures). Indeed, the Stokes-Dirac structure as defined
in Theorem 2.5 satisfies the usual integrability condition for Dirac structures [6], [8],
[7], since it is a constant Dirac structure. Thus one could expect to be able to find
“canonical coordinates” for the Stokes-Dirac structure, in which it takes (almost)
the form of a canonical symplectic form. (The modified Stokes-Dirac structure Dm

defined in (85) is not constant anymore, but still is conjectured to be integrable.)
A very prominent and favorable property of Dirac structures is that they are
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closed under power-conserving interconnection. This has been formally proven in
the finite-dimensional case in [18] [29], but the result should carry through to the
infinite-dimensional case as well. It is a property of fundamental importance since
it enables to link port-Hamiltonian systems (lumped- or distributed-parameter) to
each other to obtain an interconnected port-Hamiltonian system with total energy
being the sum of the Hamiltonians of its constituent parts. Clearly, this is very
important in modeling (coupling e.g. solid components with fluid components, or
finite-dimensional electric components with transmission lines), as well as in control.
First of all, it enables to formulate directly distributed-parameter systems with
constraints as (implicit) Hamiltonian systems, like this has been done in the finite-
dimensional case for mechanical systems with kinematic constraints ([31], [7]), multi-
body systems ([18], [3]), and general electrical networks ([31], [2]). Secondly, from
the control perspective the notion of feedback control can be understood on its most
basic level as the coupling of given physical components with additional control
components (being themselves physical systems, or software components linked to
sensors and actuators). A preliminary study from this point of view of a control
scheme involving transmission lines has been provided in [27]. Among others, this
opens up the way for the application of passivity-based control techniques, which
have been proven to be very effective for the control of lumped-parameter physical
systems modelled as port-Hamiltonian systems.
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