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Abstract

We introduce a central difference method and a quasi-reversibility method for solving a backward heat conduction
problem (BHCP) numerically. For these two numerical methods, we give the stability analysis. Meanwhile, we investigate
the roles of regularization parameters in these two methods. Numerical results show that our algorithm is effective.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The backward heat conduction problem (BHCP) is also referred to as final boundary value problem. In
general, no solution which satisfies the heat conduction equation with final data and the boundary conditions
exists. Even if a solution exists, it will not be continuously dependent on the final data. The BHCP is a typical
example of an ill-posed problem which is unstable by numerical methods and requires special regularization
methods. In the context of approximation method for this problem, many approaches have been investigated.
Such authors as Lattes and Lions [1], Showalter [2], Ames et al. [3], Miller [4] have approximated the BHCP by
quasi-reversibility methods. Schroter and Tautenhahn [5] established an optimal error estimate for a special
BHCP. Mera and Jourhmane used many numerical methods with regularization techniques to approximate
the problem in [6-8], etc. A mollification method has been studied by Hao in [9]. Kirkup and Wadsworth used
an operator-splitting method in [10]. A difference approximation method for solving sideways heat equation
was provided by Eldén in [11]. So far in the literature (cf. [3,12] and the references therein), most of the authors
used the eigenfunctions and eigenvalues to reconstruct the solution of the BHCP by many quasi-reversibility
methods numerically, However, the eigenfunctions and eigenvalues are in general not available and the labor
needed to compute these and the corresponding Fourier coefficients is very onerous. In this paper, we use two
regularization methods to solve the BHCP in one-dimensional setting numerically, but these methods can be
generalized to two-dimensional case.
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The paper is organized as follows. In the forthcoming section, we will present the mathematical problem on
a BHCP; in Section 3, we review two regularization methods, one is central difference regularization method,
the other is a special quasi-reversibility regularization method; in Section 4, some finite difference schemes are
constructed for the inverse problem and the numerical stability analysis is provided; in Section 5, numerical
examples are tested to verify the effect of the numerical schemes.

2. Mathematical problem
2.1. The direct problem

We consider the following heat equation:

u(x,t) = U (x,8), —n<x<m 0<t<T,

u(m,t) = s(t), 0<t<T,
u(—mt) =1(r), 0<t<T, (2.1)
u(x,0) = f(x), —T<x<m.

Solving the equation with given s(¢); /(f) and f{x) is called a direct problem. From the theory of heat equation,
we can see that for s(¢); /(¢) and f{x) in some function space there exists a unique solution [13].

2.2. The inverse problem

Consider the following problem:

u(x, 1) = up(x,1), —n<x<m 0<t<T,

u(m,t) = s(t), 0<t<T,
u(—mt) =1(r), 0<t<T, (2.2)
u(x,T) = g(x), —nT<x<T.

The inverse problem is to determine the value of u(x, 7) for 0 < ¢ < T from the data s(¢); /(f) and g(x). If the
solution exists, then the problem has a unique solution (cf. [14, p. 64]).

The data g(x) are based on (physical) observations and are not known with complete accuracy, due to the
ill-posedness of the BHCP, a small error in the data g(x) can cause an arbitrarily large error in the solution
u(x, t). Now we want to reconstruct the temperature distribution u(x, ¢) for 0 < ¢ < T by two different regular-
ization methods.

3. Central difference regularization

By using the central difference with step length % to approximate the second derivative u,,, we can get the
following problem:

u,(x,1) = L’(”h"’)72”’(1?’)“("7}"’), —nt<x<m 0<t<T,
u(m, t) = s(t), 0<t<T, (3.1)
u(—m,t) = 1(z), 0<t<T,
u(x,T) = g(x), —nT<x<T.
Let 7 =T —t, w(x,?) = u(x,t), we have
W = — Wy, —n<x<mn, 0<t<T. (3.2)

If w,, at x; is replaced by a second-order central difference, then (3.2) becomes

wi(x;,7) = —%[w(x,ﬂ + h, 1) = 2w(x;, 1) + w(x; — h,1)]. (3.3)
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Let x;=—n+(i— Dh, fori=1,....2n+ 1. h =2, w; = w;(t) = w(—n+ (i — 1),7). Then by the boundary
condition of (3.1) there hold w;(7) = /(¢) and w,(Z) = s(¢). Meanwhile, Eq. (3.3) with initial boundary con-
ditions can be discretized as

wa (1) PR . wa(7) wi (7)
~ | wow T - 1 . )
wi(t) = S w;(7) — 0 )
0o k2 N
Won (E) 7 Wo, (Z) Wout1 (l)
A@n-1)x(2n-1) e
w2(0) g(x2)
wi(0) | =1 glx) [ (35)
Wzn(o) g(x2n)

This is an ordinary differential system and there are many numerical methods such as Euler method, Runge—
Kutta method for the system. But we find that the eigenvalues of A4 are 4, = % sin” #’Ll) = 0, k € Z (the po-
sitive integer set). Therefore, the numerical method for (3.4) and (3.5) is unstable. However, via the variable

transformation [15]

v(D) = e wi(D), i=1,....2n+1, (3.6)
where @ > 0 is a contraction factor to be determined such that (3.3) in terms of v;(7) is changed to
aU,‘ ; 2 ~. 1 ~ ~
2= (- a)a =l + o0 (3.)
similarly, we have
vy (f vy (F —at | (}
2(1) R 0 2(7) e (7
: L2 1
- w24 n” - 1
- 0 ~7 4 ; -
UZn(t) 7 UZn(t) e_ats(t)
B(an-1)x(2n—1)
v2(0) g(x2)
vi(0) [ =1 &) |- (3.9)
Uy (0) g(x2n)
We choose a = b/h* > h% such that the eigenvalues of matrix B are negative, thus the numerical methods such

as Runge-Kutta method for (3.8) and (3.9) are stable. After v;(f) is obtained numerically, we can obtain
wi(7) = e“v;(7), furthermore w(ih, ) ~ u(ih, T —7) = u;(t).

In the central difference regularization method, the space step length 4 plays the role of regularization
parameter. According to the general regularization theory, the / should be neither too small nor too large.
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By our experience, the parameter / is selected as & = 2(ln (%))71/ 2, where 9 is the noise level of the data g(x).
We will see this choice rule is very effective in the subsequent numerical tests.

4. Quasi-reversibility regularization method

The initial boundary value problem (2.2) is replaced by the following problem:

U (X, 8) = U (X, 8) + €ty (x, 1), —n<x<m 0<t<T,

u(m, 1) = s(), 0<t<T,
u(=m,t) = 1(1), 0<t<T, (4.1)
ux,T) = g(x), —n<x<m,

where € is a small positive parameter. For e sufficiently small the solution of (4.1) approximates the solution (if
it exists) of (2.1) in some sense. This is one of well-known quasi-reversibility methods [1]. For the above men-
tioned problem, Ewing [12] has presented a choice rule of the regularization parameter e, i.e., e = (In (%))7],
where J denotes the noise level of the data g(x), and the error estimate between the approximate solution and
the exact solution is given in L*(R)-norm.

Similarly, we take 7 = T — ¢, then problem (4.1) becomes

ui(x, 1) + up(x,7) — eupi(x,7) =0, —n<x<m0<i<T,
u(n, 1) = s(7), 0<1<T,

u(—m,1) = (1), 0<t<T, (“42)
u(x,0) = g(x), —T<x<T.
The problem has a unique solution if a solution exists. Now we prove it for two-dimensional case.
Theorem 1. There exists a unique solution (if it exists) for the problem:
u;(x, 1) + Au(x,?) — eAu;(x,7) =0, D x (0,T),
u(x,1) = h(x,1), on dD x (0, 7), (4.3)
u(x,0) = g(x), in D,
where D is a bounded subset in R%, A is the Laplace operator, € > 0.
Proof. We only need to prove the following problem has the zero solution:
wi(x, 1) + Aw(x,7) — eAw;(x,7) =0, D x (0,7T),
w(x,7) =0, on 8D x (0,7), (4.4)
w(x,0) =0, in D.
Set
0@ = [ W@ + VW@ ar
D
then

d(pgt) = 2(/ ww; + eVw - Vw;dx).

Due to the Green’s second formula, we have

dq(olg) _ 2</DWW; _ EWAW;dx> - 2</DW(W; - EAW,)dx> = 2</Dw(Aw)dx) = 2(/D |Vw|2dx)

<2( [0+ dvwirar) =20,
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Therefore, we have

o(7) < p(0)e. (4.5)
since ¢(0) = 0, there holds ¢(7) < 0. Hence w=0. O

Now we construct the finite difference schemes for solving problem (4.2), let x;=—n+ (i — D)h,
i=1,....2n+1,;,=(G—-1)t,j=1,....m+1, where h =2, 1 =L TLet u/ =u(x;,1;) represent the value of

the numerical solution of (4.2) at the mesh point (x;, 7;), then Eq. (4.2) is discretized as

. 1\ . . 1 2 1\ ; 1
i (2 )t = = = (Y (2 Dl = (G 6)

where r=5 i=2,....2n;j=1,....m.
Now we discuss the stability of difference schemes (4.6) by verifying the Von Neumann condition. The prop-
agation factor can be found

%+4<h%+r) sin® 2
G(o,1) = =5 .
14 4rsin® 2
It is easy to verify the fact that the Von Neumann condition
|G(o,7)| < 1 +ect

holds with ¢ = 1. Hence, the numerical algorithm (4.6) is stable.

5. Numerical examples

For convenience, we take s(z) = [(t) =0 in (2.2).
Example 1. We consider the following direct problem:
u(x, 1) = uy(x,1), —n<x<m 0<t<],
u(n,t) =0, 0<t<l, (5.1
u(—m,t) =0, 0<t<1

with the initial condition:
u(x,0) = {
Let x,=—n, x;=—n+({@—-1h, i=2,...,2n; X2, +1=0, ;=G — 1)1, j=1,...,m+1, the space step

length # = and the time step length =L then we solve this problem by an explicit difference scheme in
the following form:

TC+X, - g
X

i
n—x, 0<

u{“:ru/ + (0 =2Mu 4, j=1,....m, i=2,...2n

i+1 i
u(xz,,+1,tj)=u§n+l:0, j=1,....m+1, (5.2)
u(xl7t_/):L[{: ) ]:1a7m+1
with
T+x, —-n<x;<0
u(xhtl = O) — { ’ 5
T — Xi, O<Xi<n7

where » = -5, and it requires r < % for numerical stability reasons.

The numerical result for g(x) = u(x, T=1) is shown in Fig. 1, where n = 11, m = 50.

Now we solve the inverse problem by the g(x) generated numerically by the direct problem via the two dif-
ferent regularization methods. We choose to restore the solution f{x) at r = 0. We denote the numerical result
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9(x)

1.5}

0.5f

s 3 =2 10 1 2 3 4
Fig. 1. g(x) computed by (5.2).
of the inverse problem as f*(x). If we introduce random noises ¢ to data g(x), i.e., g.(x;) = g(x;) + erand(i),

where rand(i) is a random number between [—1, 1], then the total noise ¢ can be measured in the sense of root
mean square (RMS) error according to

1 2n—1

6i= \| 5 O (&) — glx)” (53)

i=1

_1
In the computation, we choose the regularization parameters 7 = 2(ln (%)) 2 for the central difference regular-

ization method and ¢ = (ln (%))_l for the quasi-reversibility method, respectively. The numerical results are
shown in Fig. 2 (quasi-reversibility), Fig. 3(central difference) with 6 = 0.001.

Example 2. Consider the problem
U = Uy, —n<x<m 0<t<l,
u(—m,t) =u(mn,t)=0, 0<t<l, (5.4)

u(x,1) = e 'sinx, —T<x<T.

3.5

numerical solution
— - — - exact solution

2.5¢

-4 -3 -2 -1 0 1 2 3 4

Fig. 2. X and f, m=50, n=11, ¢ = 0.145.
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numerical solution
— - — - exact solution
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— - — - exact solution
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numerical solution
— - — - exact solution
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Fig. 5. X and f, b=3, m=51,n=>5, h=n/5.
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The exact solution is
u(x,t) = e”'sinx. (5.5)

The numerical result for the inverse problem is also denoted as f*(x). See Fig. 4 (quasi-reversibility) and
Fig. 5 (central difference), where 6 = 0.0001.

From Examples 1 and 2, we conclude that the choice rules of the regularization parameters / and e are very
effective. By our numerical experiments, we can see that the accuracy of the numerical results increases with
the decreasing T; at the same time, the numerical solutions of the quasi-reversibility method depend on the
parameter e continuously. This accords with the theoretical result (cf. [16]). Here, we will not give the numer-
ical results.

6. Conclusions

In this paper, we discussed two regularization methods for the one-dimensional backward heat conduction
problem. We presented two algorithms for the inverse problem. Numerical results show that these method are
effective with two appropriately chosen regularization parameters. The algorithm for two-dimensional case is
to be considered.
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