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ABSTRACT    

 
Multifocus fusion is the process of unifying focal 
information from a set of input images acquired with limited 
depth of field. In this effort, we present a general purpose 
multifocus fusion algorithm, which can be applied to varied 
applications ranging from microscopic to long range scenes. 
The main contribution in this paper is the segmentation of 
the input images into partitions based on focal connectivity.  
Focal connectivity is established by isolating regions in an 
input image that fall on the same focal plane. Our method 
uses focal connectivity and does not rely on physical 
properties like edges directly for segmentation. Our method 
establishes sharpness maps to the input images, which are 
used to isolate and attribute image partitions to input images. 
The partitions are mosaiced seamlessly to form the fused 
image. Illustrative examples of multifocus fusion using our 
method are shown. Comparisons against existing methods 
are made and the results are discussed.  
 
Index Terms—Depth of focus, focal connectivity, image 
fusion, image partitioning, multifocus fusion. 
 

1. INTRODUCTION 
 
When obtaining images of a 3-dimensional scene it is 
desirable to have all objects in the scene to be in focus. 
Cameras suffer from the problem of limited depth of field 
(DOF) and this disallows a typical imaging system to obtain 
such an all-in-focus image. This is a prominent problem in 
inspection of microscopic scenes. In multifocus fusion, one 
aims to acquire information from different focal planes and 
fuse them into one image where all objects in the scene 
appear to be in focus, as shown in Figure 1. Previous work 
by others investigated solutions to this problem by using 
techniques based on tiling, multiscale decomposition 
(MSD), and learning methods. In this effort, we present a 
general purpose multifocus fusion technique that is able to 
fuse images acquired in varied applications such as 
microscopy, long range imaging, etc. Many datasets in the 
literature use input images wherein objects are placed well 
apart in the 3-D environment. Commonly, two input images 
are fused. Multifocus fusions of such datasets are relatively 
and easier task. In certain applications, such as microscopy, 

the narrow DOF requires multiple shots of the 3D scene to 
gather all the information contained in the scene. Since the 
focal planes lie close to each other, there are overlapping 
sections of a focused object in consecutive frames making 
multifocus fusion a challenging task. We present a technique 
that fuses multiple focal planes with narrow overlapping 
sections of the scene. Typical segmentation based methods 
employ edges from objects for segmentation. The main 
contribution in this paper is that we segment regions from 
the input images based on focal connectivity, and not on 
object connectivity. We employ such partitions for unifying 
information from all the focal planes. Before going into 
details of our method in section 3, we present the related 
work in section 2. We have compared out results with 
seminal works in the literature and we present experimental 
results in section 4, before presenting our conclusions in 
section 5. 

 

   
(a) (b) (c) 

Figure 1.  An example of multifocus fusion (a) Clock face on left 
focused (b) Clock face on right focused and, (c) Both clock faces 
fused by our multifocus fusion. 

2. RELATED WORK 
 
Multifocus fusion has been performed using various 
approaches in the past. The three seminal approaches are 
based on region selection methods [1,2], multiscale 
decomposition methods [3,4] and learning based methods. In 
region selection methods, the input images are initially 
divided in regions, typically blocks [2] or into segments 
using a segmentation technique [5, 6]. From sets of such 
regions, one region per set is chosen based on a sharpness 
criterion and mosaiced or blended to form the final fused 
image. The value of the sharpness criterion increases and 
decreases as objects come into focus and go out of focus, or 
if the contrast changes in the scene [7]. In region based 
methods, regions are typically selected in the image based 
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on edges. Liao et al use Hough transform to select regions 
which are mosaiced for the fused image [5]. Lewis et al use 
an entropy priority map for segmentation of regions for 
fusion [6]. In segmentation based methods, primarily high 
frequency information in the area of DOF in each input 
image is used. When the DOF is narrow, edge 
correspondence between the input images are not the same, 
due to the optics of the system. Therefore, segmentation 
based on physical object boundaries becomes ambiguous. In 
methods using tiling, the most widely reported issues are 
from blocking effects [3]. 

 In MSD based methods, many of the fusion 
regulations used, rely on pixel manipulation or replacement 
at a detail level and, these results in changes in the intensity 
values of the fused image. These effects are not very 
prominent to the end user when using simple datasets but 
stands out as an issue in accurate scene inspection. Learning 
based methods use training engines which learn to classify 
between sharp and blurred regions and are normally 
computationally expensive [5,8]. Training is normally done 
with prescribed focused and unfocussed training data sets. In 
the advent of region that is blurred in all the input images, 
i.e. unseen data, misclassification takes place and learning 
based methods employ averaging or force one arbitrary 
region as the fused image. Ringing effects have been widely 
reported. Furthermore, methods employing wavelets for a 
particular application may not be extendable to another 
application as it is difficult to realize a wavelet kernel that 
can handle multiscale datasets [3]. In our method, we base 
our segmentation on focal connectivity and not on object 
connectivity in the scene. There is no pixel manipulation and 
hence no artifacts such as ringing effects, etc. Our method is 
computationally straightforward and contains intelligence to 
choose between sharp and blurred regions.  
   

3. FUSION BY ESTABLISHING FOCAL 
CONNECTIVITY 

 
In segmentation based methods, segmentation is performed 
using physical edges of objects in the scene. Due to camera 
optics, an edge in one input image blurs in another. This 
makes segmentation based on edges ambiguous. To counter 
this problem, we propose segmentation of regions based on 
focal connectivity. Each image in a set of input images has 
certain regions of the scene in focus. A focally connected 
region is a region or a set of regions in an input image that 
fall on the same focal plane. These regions may be 
connected focally with or without physical continuities in 
object geometries. The central idea of our method is to 
isolate and attribute such partitions to one particular input 
image and synthesize the fused image. In our method, a 
sharpness map is calculated for every input image 
I{i} )y,x( ∀ i = 1,2,…, N. As a precursor to this step, the 

images are filtered with sobel masks to approximate 
horizontal and vertical gradients, Ix{i}(x,y) and Iy{i}(x,y) 

respectively, where the subscripts x and y denote directional 
gradient operations. These are used to calculate the 
sharpness maps Si(x,y)’s for each of the N input images by, 
isolate and attribute such partitions to one particular input 
image. The chosen partition is in better focus than its 
relative counterparts from all the input images. We isolate 
partitions in the input images based on focal connectivity   
 

{ }N,...,2,1i)y,x(I)y,x(I)y,x(S 2
}i{y

2
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To make the system less vulnerable to fluctuations 
dependent on sensor (e.g. noise), optics (e.g. magnification 
and side lobes), local contrast and illumination at the scene, 
we low pass filter the sharpness maps.  This increases the 
accuracy of the decisions to follow by ensuring that areas 
with better focus influence the decision of its neighbors. 
These sharpness maps are examined for regions of higher 
focus with their respective counterparts. When the sharpness 
map of input image I{i}(x,y), of N input images, is compared 
with its N-1 counterparts, one focally linked region, P{i}(x,y) 
is isolated by, 
 

{ } { }N,...,2,1k,N,...,2,1i

)y,x(S)y,x(S)y,x(P }ik{}i{}i{

∈∀∈∀

>= ≠ . (2) 

The union of the such partitions, P{i}(x,y)’s, form the fused 
image space, FN(x,y) and the intersection of the partitions is 
the null set, corresponding to blurred sections in all the input 
images. A corresponding mask is created and a pixel wise 
multiplication isolates the image partitions. The image 
partitions are then seamlessly mosaiced to form,  
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the fused image, where 
.

× denotes pixel-wise multiplication. 
There is no duplication in the partitions and therefore no 
blending at the peripheries of the partitions is required. This 
allows us to capitalize on focal overlaps by selecting the 
areas under best focus, out of adjacent areas, and between 
multiple images. Our system is able to choose between 
blurred regions and offer the least blurred region for fusion. 
When a region falls under overlapping DOF of multiple 
images, we use its sharpness map in a dynamic system that 
serves to populate the corresponding region with the area of 
best focus. This is an useful property that surpasses learning 
based methods in that, it is able to handle unseen data.  
 

4. EXPERIMENTAL RESULTS 
 
While imaging a 3D scene, the size of the objects and their 
relative positions in the scene defines the complexity of 
multifocus fusion. If the objects are placed well apart such 
that there are no focal overlaps, the problem of multifocus  
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Figure 2. Comparison of fusion methods, (a-d) Raw input images, (e) Fusion by tiling (notice block effects shown by arrows), (f) Fusion 
using MSD based fusion [4] (g) color coded focally connected partitions from our partitioning scheme, and (h) multifocus fused image 
using our method. Due to space considerations, full resolution images of the test images are provided for inspection at: 
http://www.ece.utk.edu/~hharihar/fusion.htm. Active zoom has been enabled for close inspection in the electronic versions of this paper. 
 
fusion becomes relatively easier. If the DOF is very narrow 
and the scene is imaged with many individual frames, with 
focal overlap the fusion algorithm requires more intelligence 
and finesse. It is possible to image an object at adjacent 
planes that appears to have common regions in focus. This is 
a prominent problem in microscopic imaging. In such a 
scenario, block based methods start exhibiting boundary 
issues more prominently and an a priori selection of the 
block sizes becomes more complicated. Data collected for 
this effort vary from microscopic to long range (>30 feet 
apart) data sets. Multifocus fusion is a significant problem in 
microscopic applications and we present an example (a 
microscopic scene of a damaged drill bit) in Figure 2. 
Acquisition conditions were chosen such that the DOF is 
very narrow and there is focal overlap between adjacent 
frames. Multiple shots of the scene are required to gather 
information from all the focal planes, especially given the 
extremely narrow depth of focus. In Figure 2 (a-d), we show 
a few images from the set of input images acquired. In 
Figure 2 (e), the results of the seminal tiling approach are 
presented. The input images were divided into sets of blocks 
and one block per set was chosen based on the Tenengrad 
sharpness criterion [9]. Block sizes were chosen empirically 
and the fused image with the highest overall Tenengrad 
measure was chosen to establish a fair comparison against 
our method. While a reasonable understanding on the scene 
can be obtained, there are visible blocking effects. In Figure 
2 (f), results from a widely used MSD based fusion method 
are presented, following [4]. This method was chosen as it 
was designed for fusion with multiple frames, and uses the 
coiflet wavelet (level 2) family, reported in the literature 
repeatedly as one suitable for multifocus fusion [4].  
In Figure 2 (g), image partitioning of the fused image space  

 
is shown using a color coding scheme. Each color coded 
section in this image is one focally connected area in an 
image and represents areas from 1 input image.  In Figure 2 
(h), we show results from our work, wherein regions 
selected from different focally connected partitions of the 
input images are mosaiced seamlessly to synthesize a 
multifocus fused image. Our method is suitable for 
applications where the illumination is poor and DOF is very 
narrow. 

In Figure 3, we show input images acquired of 2 
individuals standing about 30 feet apart in a long range 
application. This is a case where focusing both the subjects s 
difficult even with an extremely narrow aperture and 
extended illumination. In Figure 3 (a-b), input images are 
shown where one individual is blurred in each of the images. 
In Figure 3 (c), an image fused used the seminal tiling 
approach is shown. Window selection was extremely 
difficult in this case due to the scale of the subjects in the 
scene. An optimum window size was selected based on trials 
with different window sizes and computed Tenengrad 
measures. In Figure 3(d), fusion by MSD based fusion [4] is 
presented. The fusion shows sufficient detail from both focal 
planes. Upon close inspection ringing effects are visible 
(marked by arrows).  In Figure 3 (e), an image fused using 
our method is shown. 

Our method is able to select partitions regardless of 
the scale differences of the input images, consistently over 
other methods implemented for comparison. In our 
experiments, apart from subjective evaluations we have also 
performed objective evaluations of the fused images. The 
fused outputs of the various methods were evaluated for 
sharpness using the Tenengrad measure [9]. The Tenengrad 
measure is given by,  

(a) 

(e) 

(b) 

(f) 

(c) 

(g) 

(d) 

(h) 
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where, F is the fused image whose quality of fusion is to be 
evaluated, m×n is the total number of pixels in F, and x and 
y denote directional operations. This metric has been 
recorded as being optimal for sharpness evaluation by 
Krotkov [9]. 
 

 
           (a) (b)            (c)  

 
                          (d)          (e) 

Figure 3.  Demonstrations of multi focus fusion in a long range 
application wherein each focal plane is about 30 feet apart from 
each other. (a) Individual in foreground is in focus, (b) Individual 
in background is in focus, (c) Fusion using tiling (block effects 
shown with arrows), (d) Fusion using MSD based fusion (ringing 
effects shown with arrows) [4] and (e) Fusion using our method. 
Notice both individuals are in focus with no blocking or ringing 
effects in the fused image. Active zoom has been enabled for close 
inspection in the electronic versions of this paper. 

The objective results are consistent with visual 
inspection and show that our method produces images with 
better overall sharpness. The results of the objective testing 
are summarized in Table 1 wherein it is shown that the 
images fused using our method have the most measured 
sharpness when compared against the other methods used 
for comparison.  

Table 1: Objective evaluation of the output images of fusion 
methods (using the Tenengrad Metric [9]) studied in this paper  

 Tiling MSD 
Proposed 
Method 

Microscopic 8.67 E+07 5.31 E+07 9.70 E+07 
Long Range 1.14 E+09 0.77 E+09 2.05 E+09 

 
5. CONCLUSIONS AND FUTURE WORK 

 
A multifocus fusion scheme where regions are segmented 
from input image frames using the virtue of focal 
connectivity is presented. Images are partitioned based on 
focal connectivity and each partition is attributed to one 
input image. This method capitalizes on redundant focal 
information and narrow DOF to synthesize a fused image 

that appears to have an extended DOF while retaining the 
visual verisimilitude of the scene. This method has been 
found resilient to noise and the fused images exhibit focal 
information from all possible focal planes imaged. Rather 
than test them on examples with isolated objects in the 
scene, tests were done on challenging scenes where the focal 
planes are adjacent to each and simple visual inspection is 
insufficient during acquisition to determine planes of focus. 
Additionally, long range datasets have been used to 
demonstrate the versatility of our technique.  Experimental 
results and a comparison with other methods have been 
shown.   
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