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Abstract. Evolutionary robotics simulations can serve as a tool to clar-
ify counterintuitive or dynamically complex aspects of sensorimotor be-
haviour. We present a series of simulations that has been conducted in
order to aid the interpretation of ambiguous empirical data on human
adaptation to delayed tactile feedback. Agents have been evolved to catch
objects falling at different velocities to investigate the behavioural im-
pact that lengthening or shortening of sensory delays has on the strate-
gies evolved. A detailed analysis of the evolved model agents leads to
a number of hypotheses for the quantification of the existing data, as
well as to ideas for possible further empirical experiments. This study
confirms the utility of evolutionary robotics simulation in this kind of
interdisciplinary endeavour.
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1 Introduction

This paper presents results from an evolutionary robotics simulation imple-
mented to conceptually guide the analysis of empirical data on adaptation to
tactile delays. The use of evolutionary robotics simulations in close match with
minimalist empirical methods is rather unexplored territory. This study is also
an exploration into the utility of this kind of approach1. The model, which is
in itself rather simple, turns out to be an extremely rich source of hypotheses,
both for analysis of the existing results and for future experiments.

The data under investigation stems from a recent empirical study (Rohde,
Gapenne, Lenay, Aubert and Stewart (unpublished work)). In this study, we
set out to investigate the dynamics of human adaptation to delayed sensory
feedback in a minimal virtual environment. This experiment was inspired by the
work of Cunningham et al. [2], who report an interesting negative aftereffect in
subjects trained to solve a simple sensorimotor task with a 200ms visual delay:

1 For conceptual clarity, in the following, the terms ‘empirical’ and ‘experiment’ are
reserved for the real world experiments with humans, while the terms ‘simulated’
and ‘model’ are used to refer to the evolutionary robotics simulation of the task.
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Fig. 1. (A) A diagram of the experimental set up for the empirical study. (B) Human

trajectories before (top) and after (bottom) training, presented with a sequence of

16 lines of evenly spaced objects (black bars), both without delay: Even though the

behaviour has clearly been transformed, the performance on the task is similar.

Subjects suffered a performance breakdown when returning to the normal no–
delay condition, as a consequence of the adaptation to the sensory delay, an
effect that had failed to occur in previous experiments with delays, which the
authors suspect to be due to an inherent time pressure in the task.

Our experiment aimed to investigate the exact behavioural and dynamical
conditions that produce such effects. We implemented a catch task in a minimal
virtual environment, using the tactile feedback platform ‘TACTOS’ [4] by the
GSP group in Compiègne (compare Fig. 1 (A)). Blindfolded subjects had to po-
sition themselves as fast as possible below falling objects in order to catch them.
To include an inherent time pressure in our task, the objects fall down compara-
bly fast. Subjects moved along one dimension, relying only on tactile stimuli to
indicate the crossing of an object and a sound signal to indicate its velocity. We
tested the subjects’ capacity to adapt to a 250ms sensory delay, monitoring all
sensory (tactile display, sound signals) and motor (mouse movement) variables.

In terms of performance profiles, our experiments only produced a clear neg-
ative aftereffect in few of the 20 experimental subjects. Indeed, the results seem
rather arbitrary at first glance: Some subjects had difficulties with the unper-
turbed condition already, or were not perturbed by the introduction of the delay,
or simply did not suffer a negative aftereffect. A closer look at the trajectories,
however, revealed regularities across subjects, as to how different strategies are
impacted by the introduction or removal of a delay, and how strategies were mod-
ified to recover performance. These changes were not always well represented in
performance profiles. Figure 1 (B) shows, e.g., how a subject’s initial strategy
(fast oscillatory scanning) was transformed into a different but equally viable
strategy (slowly drifting to the right and halting once an object is perceived).

Our next step will be to classify the strategies and to quantify the transitions
they underwent across training. It is, however, not easy to formally characterise
classes of strategies and the adaptation effects described. Many variables (such
as velocity, acceleration, number of crossings, distance, velocity of the objects,
movement direction, etc.) and any cross-correlation or dependency between them
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in any subgroup of subjects could be used. Apart from the fact that the data
is relatively noisy, a major problem we face in our classification is that, despite
our minimalist approach, our data is very high dimensional.

The evolutionary robotics simulations presented in this paper have been con-
ducted in order to facilitate this classification. We want to stress that the task
as it is solved by the agents, even though it is very simple, is very close to the
real experimental set-up. This combination of minimal sensorimotor experiments
and evolutionary robotics models proved to be fruitful before [3] and the present
study confirms its usefulness. We analyse how delays impact on reflex-like, reac-
tive and anticipatory behaviour, and we identify movement velocity, the number
of movement inversions and the exact displacement from the object centre as
variables with a large potential to shed light on our empirical data.

2 The Model

The evolved artificial agents, just as the human sub-

dh
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perceptive field

object

Fig. 2. Illustration of the

experimental set-up

jects, can act by moving left or right in an infinite
one dimensional space, i.e., a looped tape (See Fig.
2). Evenly spaced objects (size 1 × 4, horizontal dis-
tance: 28 units) fall down from a vertical distance of
25 at one of seven constant velocities (vo ∈ {0.004,
0.006, 0.008, 0.010, 0.012, 0.014, 0.016}units/s), each
trial consists of a sequence of 32 objects at variable
velocities. The agents have a perceptive field of 16×8
units. We decided not to model the exact tactile in-
put patterns the subjects received, but to simply feed
a continuous input signal representing the horizon-
tal distance from the centre when an object entered the receptive field (I1 =
|dh|/6 if |dh| ≤ 6∧ dv ≤ 16). The subjects additionally received auditory pulsed
signals to indicate the velocity of falling objects. Such pulses (I2) are fed into a
second input neuron. A third input signal I3 is a reward signal (auditory in the
real experiment), in case an object is caught (rectangular input for 100ms). An
object is caught if it is in the centre region of the agent’s receptive field when
reaching the bottom line (|dh| < 4 ∧ dv = 0).

All three input signals are fed into the control network scaled by the sensory
gain SG and with a temporal delay. In the ‘no delay condition’ (NDC), there
is a minimal processing delay (on average 35ms) in the real experiment, which
is prolonged by 250ms to 285ms in the ‘delay condition’ (DC). The same val-
ues (i.e., 35 and 285ms) are used in the simulation. The agents are controlled
by a continuous time recurrent neural network (CTRNN, see e.g., [1]), whose
dynamics are governed by

τi
dai(t)

dt
= −ai(t) +

N∑

j=1

wijσ(aj(t) + θj) + Ii (1)
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where σ(x) = 1/(1 + e−x) the standard sigmoid function, ai(t) the activation of
unit i at time t, θ a bias term, τ the activity decay constant and wij the strength
of a connection from unit j to unit i. The three input neurons feed forward into
a fully connected layer of six hidden neurons, which feed the two non-recursively
coupled output neurons. The dynamics are simulated using the forward Euler
method, with a time step of 7ms. The basic velocity output v calculated by the
network is v = sign(σ(aM1)− 0.5) ·MG ·σ(aM2), so one neuron controls velocity
and another one direction, the motor gain MG scales the output.

The search algorithm used to evolve the parameters of the control network
is a generational genetic algorithm (GA) using a population of 30 individuals
with a real–valued genotype ∈ [0, 1], truncation selection (1/3), vector mutation
of magnitude r = 0.6 and reflection at the gene boundaries. The parameters
evolved (145 parameters) are: SG ∈ [1, 50], MG ∈ [0.001, 0.1], τi ∈ [25, 2000],
θi ∈ [−3, 3] and wi,j ∈ [−6, 6]. The weights wij and the bias θi are mapped
linearly to the target range, the sensor gain SG, the motor gain MG and the
time constants τi are mapped exponentially. The fitness F (i) of an individual i
in each trial is given by the proportion of objects caught F (i) = oi/O, O is the
number of objects exposed (usually 32). The catch task is in some ways similar
to the classification task investigated by Beer in [1], which inspired us to adopt
some of his visualisation tools to describe the sensorimotor dynamics.

3 Results

We evolved agents to solve the task under the DC and NDC, in order to get
an idea of the strategy space resulting from our model (10 evolutionary runs
with 1000 generations for each condition). Discarding one evolution from both
series in which simply nothing evolved, we find that solutions for both conditions
evolved to a high level of performance (see Fig. 3 (A)).

The solutions evolved for both scenarios generally involve halting abruptly
once the object is encountered, frequently slightly overshooting the target, to
then invert velocity and slowly move back to place the object in the centre of
the receptive field (see Fig. 4). This strategy is rather trivial, which is probably
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related to tight temporal constraints and the coarseness of the fitness function
that does not well capture the subtleties of sensorimotor perturbation and adap-
tation (see following analysis). As a stand–alone model, this model would, at
best, have been a pilot study for more interesting simulations. However, there
are reasons to believe that the discrepancy between performance measure and
behaviour are actual problems in the experiment and that subjects frequently use
these kinds of trivial strategies in response to the inherent limitations of the
experimental set–up, just as the agents do. Therefore, a close analysis of the
problems with the model and subtleties in the agents’ trajectories can be useful
for the data analysis and an improvement of the experimental set–up.

If we look at the solutions in terms of agent performance only, a striking
difference is that most of the solutions to the DC are robust to the removal
of the delay, while most of the solutions evolved for the NDC suffer a drastic
breakdown in performance below chance level once the delay is introduced (see
Fig. 3 (A)). If succeeding in the DC in many cases subsumes succeeding in
the NDC for this task, and this is not just a property of the model, this issue
could be crucial in explaining the failure to produce a negative aftereffect in the
subjects, despite the transformation of sensorimotor strategies.

Another difference is that the velocity at which the object is first touched
is on average twice as high for the NDC (v̄ = 0.025) than it is for the DC
(v̄ = 0.014). Do maybe agents use the same strategy for both conditions, only
varying their velocity? And are furthermore solutions generally able to deal
with shorter, but not with longer delays? A very crude test for this hypothesis
is to scale the velocity generated by evolved controllers, i.e. to double v in the
networks evolved for the DC and to divide it by two in the networks evolved
for the NDC. This test seems to confirm this hypothesis, because by virtue of
this scaling, the performance profiles of the solutions evolved for both conditions
are inverted (compare Fig. 3 (A) and (B)): Networks evolved under the NDC
become generalists that are good at both conditions, whereas sped up networks
evolved under the DC lose their capacity to perform the task with delay and
become specialists for the NDC. A closer look at the sensorimotor dynamics,
however, shows that things are not quite this simple.

As a first step in the analysis, it can be established that all evolved controllers
seem to function independently of the reward signal and the pace at which the
objects fall (I2 and I3), agents simply try to put objects as quickly as possible into
the centre of the perceptive field. Therefore, agents produce the same trajectories
for different object velocities that are just cut off at different points in time, and
we will disregard these inputs in our following analysis.

Systematic displacements. Figure 4 depicts trajectories from different
starting positions for two example individuals, one evolved for the DC (A) and
one evolved for the NDC (B), and how they differ when tested under the NDC
(top) and the DC (bottom). Both agents achieve to locate the object in the cen-
tre of their receptive field for most possible starting positions in the respective
condition they have been evolved for (bottom left for DC, top right for NDC).
Taking a look at how the behaviour is altered by the introduction/removal of a
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Fig. 4. Trajectories for different agent staring positions across time, presentation of a

single object. Crossing the object (grey region) produces a (delayed) input stimulus I1

(trajectories black during stimulation). Top: NDC, bottom: DC. (A) an agent evolved

for the DC (B) an agent evolved for the NDC.

delay, it can be seen that in both cases the trajectories are systematically dis-
placed from the centre of the perceptive field: The NDC agent overshoots its
goal when exposed to a prolongued delay (bottom right), while the DC agent
stops too early if the delay is removed (top left). The magnitude of these dis-
placements is proportional to the agents’ velocities. As the DC agent is much
slower, its systematic displacement is small enough for trajectories to stay in the
viable centre zone (|dh| < 4) of the receptive field, as defined by the fitness func-
tion F (i), while for the NDC agent, the displacement takes trajectories outside
its receptive field. Such systematic displacement of trajectories can be observed
for most agents. Since DC agents are on average half as fast, trajectory dis-
placement is on average smaller for them. This seems to explain their robustness
towards removal of the delay, which would then be due only to the coarseness of
the fitness function that does not detect or punish micro displacements.

In order to further investigate these matters we evolved a new set of agents
with a spatially more exact fitness function F ′(i) = 1

O

∑
O 1−√

dh/4. With this
modification, solutions to the DC cease to be robust to the removal of the delay
(see Fig. 3 (C)), which confirms the hypothesis that DC agent robustness is due
to the immunity of F (i) to micro displacements. Interestingly, the experimental
subjects were on average slower after training with delays. Therefore, these in-
sights about systematic displacements, their relation to velocity and their effect
on catch events (performance) may help in explaining the failure to produce a
negative aftereffect in the experiment.

The modified fitness function also allows us to explore agent adaptation to
delays by evolving agents under both conditions (Fig. 3 (C)). In the original task,
this was not interesting, as many DC agents are able to solve both conditions
anyway, so there was no selection pressure to go beyond robustness. Unfortu-
nately, despite longer evolution, no adaptive adjustment of strategies evolved,
only fixed strategies that compromised between the two conditions. We decided
not to explore these possibilities further, as these are purely theoretical exercises.
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As future empirical experiments, such set–ups are neither possible, nor desirable,
as discussed in the conclusion.

Reactive and reflex–like behaviour. Looking at the steady state veloci-
ties for varying I1 in evolved agents, (Fig. 5 (B)), we generally find that v∗ = 0 for
values of I1 that exceed a certain rather low threshold value of I1. Behaviourally,
this means that the agents are only sensitive to the onset of the stimulation when
an object enters the receptive field, which triggers a rapid decay of v to 0, some-
times preceeded by a movement direction inversion (negative peaks in v∗ in Fig
5 (B) left and right, compare corresponding trajectory graphs). The variation in
signal magnitude, as an agent moves to the exact position to stop, however, is
without effect on agent behaviour. This is why, e.g., the agent depicted in Fig. 4
(A) in the NDC remains in its location displaced from the centre of the recep-
tive field, rather than to actively search for the exact centre. Such strategies are
reflex–like in that they produce stereotyped trajectories.

Reflex–like behaviour evolved in all runs except one. The agent in Fig. 5 (A)
is the only agent evolved for the NDC that maintains a relatively high level
of performance when exposed to the DC. This is because the overshooting of
the target and the first movement inversion bring it back to the margin of the
perceptive field, where sensory activation is sufficiently low to trigger another
movement inversion, which brings the trajectory to the centre. In that sense, the
behaviour is more reactive, because it is sensitive to changes in magnitude of
the signal caused by ongoing behavioural dynamics (Fig. 5 (A) top vs. bottom).
Why did such reactive focussing strategies not evolve more systematically? The
answer is simple: Because the deliberate inherent time pressure in the task does
not allow for them to be beneficial. The cut off time for trials with the top three
velocities is 1000, 1142 and 1333ms after the objects become perceptible, which
corresponds to the cut off points (vertical lines) t = 2701, 2843 and 3033 in Fig.
5 (A). The reactive mechanism that brings back the overshooting trajectories
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needs more time to come into effect. Therefore it is important that the agents
induce the right behaviour immediately when the object is perceived, the time
window is just big enough to execute a reflex, not for reactive correction.

Why do faster solutions evolve for the DC than for the NDC? The
intuitive answer to this question is that slowing down seems to be the obvious
way of coping with a delay. This is, however, only directly true for reactive
strategies, in which ongoing behaviour correction is informed by and has to wait
for the delayed signal representing the effect of one’s own previous actions. For
the execution of a reflex, however, there is no real disadvantage to a delay other
than a shortening of the absolute time window in which to execute it, which
is what makes it more mysterious that DC agents are slower. We investigated
three plausible hypotheses: 1.) A maximum period of drifting back related to
the upper limit of 2000ms for τ . 2.) An optimisation of velocity to a minimal
network reaction time t(d) = tr + d. 3.) An advantage in absolute time for NDC
agents due to the 250ms longer time window. We didn’t find evidence for any
of these possible explanations. We are still unsure why faster solutions evolve
for the NDC, there seems to be no simple answer. The answer may well be a
combination of several of these simple factors, but, at the moment, we can give
no obvious pressing reasons for why DC agents should not be fast.

4 Conclusion

We present an evolutionary robotics study that is a very close model of a minimal
empirical study on adaptation to sensory delays in human subjects. The sim-
ulation model in itself is simple and not behaviourally sophisticated. However,
we hypothesise that these problems of the simulation are analogous to prob-
lems in the empirical experiment, whose results we do not yet fully understand.
Since evolutionary robotics simulations are scientific tools that can generate new
hypotheses and conceptual clarifications [5], the model merits closer inspection.

A substantial number of hypotheses about the existing data set can be derived
from the model. In the evolved solutions, sensorimotor behaviour is independent
of the reward signal and object velocity (apart from different cut off points), and
the behaviour within one object presentation is largely independent of previous
object presentations. If this is similar in the empirical data, dimensionality could
be reduced immensely. Another property of the evolved solutions is that, unless
halting leads to a cessation of the input signal, the exact position of the object
in the receptive field is not adjusted, which leads to another hypothesis to be
explored for data simplification. On the other hand, insights were gained about
the systematic displacement of trajectories from the object centre and its relation
to velocity. This gives us a starting point to search for evidence in our data that a
negative aftereffect could indeed have been produced, even if this is not reflected
in the performance profile. As a general case, the visualisation of steady states
and neighbouring trajectories that we adopted from Beer’s work [1] has led to
a helpful pre–theoretical understanding of evolved strategies. We will explore
whether such techniques are, to an extent, transferable to the empirical data.
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These insights about the discrepancy between sensorimotor adaptation and
task performance should in principle enable us to design a better experiment
in which these two factors concur. By using a fitness function that is spatially
more exact, we can easily modify the simulation for this to be the case. Un-
fortunately, this modification is not feasible for the real experiment. Both, the
temporal sampling rate and the spatial resolution are coarser in the experimen-
tal virtual environment than in the simulation, a coarseness that is necessary for
the experiment to work in real time. There are fierce limitations to the transfer-
ability of such simulations to real experimental designs, an issue that can be seen
as parallel to issues of simulation vs. real robots in classical robotics research.

But, even if these technical limitations could be mitigated, there are more
profound lessons to be learned from the analysis of the simulation, lessons that
relate to our discussion of reactive and reflex-like behaviour and that propose
a more radically different experiment. In purely reactive sensorimotor loops, a
sensory delay has an effect similar to an increase in inertia: Ongoing behaviour
has to slow down, because what to do next depends on previous movements and
the (delayed) perception of their effects. To an extent, this had already been
recognised by Cunningham et al. [2], who hypothesise that negative aftereffects
failed to occur in previous studies because they always provided the possibility
to compensate for the delay by slowing down – hence the emphasis on the in-
herent time pressure in their task, which makes compensation impossible and
forces real adaptation. This convincing argument had led us to include a strong
time pressure in our simulation (and in our experiment) by choosing high object
velocities. As desired, this hindered the evolution of reactive solutions, in which
subjects can slow down to compensate. However, evolution found a different,
faster ‘cognitive shortcut’: Agents use constant velocities, such that a fixed sen-
sory delay corresponds to a fixed spatial displacement, which forms part of the
stereotyped reflex–like trajectories that take objects to the centre of an agent’s
receptive field. In this kind of sensorimotor loop, we find a systematic error for
both shortening and lengthening of delays, which makes it in principle possible
to yield a negative aftereffect.

However, a more profound and complex adaptation to the delay seems to
have taken place in Cunningham et al.’s experiment, something that goes be-
yond the tuning of reflex–like trajectories in our agents (and possibly in our
subjects). This teaches us that there is more than just time pressure to their
experimental design. Their visual task forces subjects to produce fast variable
velocity motor sequences, in which a sensory delay can be neither understood
as an increase in inertia, nor as a fixed displacement. However, in order to be
able to usefully employ a fast motor sequence, it has to be possible to anticipate
consequences of actions far into the future, i.e., the signal needs to be complex
enough to feature cohesion between momentary signal structure, own movement
possibilites, and future signal structure over a longer time course, regularities
that make anticipatory behaviour possible. When designing a task analogous to
Cunningham et al.’s within our minimalist approach, the complexity of the vi-
sual sensation has been traded for a more tractable but less rich tactile sensory
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signal. Thereby, long term predictability was lost, a loss that we were aware
of, but that we did not previously consider essential. The lack of predictability,
however, lead to the evolution of reflex–like behaviour. Reactive behaviour could
not evolve because of the inherent time pressure in the task, and anticipatory
behaviour could not evolve because of the poverty of the input signal. We now
hypothesise that only anticipatory behaviour will produce interesting negative
aftereffects to adaptation to delay and plan to design a series of new minimalist
experiments with high predictability, to explore this hypotheses and elaborate
our ideas about reactive, reflex–like and anticipatory sensorimotor strategies.

This study is also an exploration into the usefulness of evolutionary robotics
simulations that closely match minimalist empirical experiments. The amount
of hypotheses derived from the model on different levels of conceptual analysis
speaks for itself; we consider this model a full success. However, it also became
clear that some of the experimental mistakes would probably not have been
made if the simulation had been run before the experiment. The design of an
empirical experiment goes through a cycle of generate-and-test, which costs a lot
of time and effort, both for the experimenter and for the piloting subjects, and
frequently is ended pre–maturely. To transfer this generate-and-test phase as
far as possible to simulation would be much less resource expensive. Therefore,
we recommend the use of evolutionary robotics models not just after, but also
before and alongside the conduction of empirical experiments.

In our analysis, we have focussed on one particular kind of agent behaviour,
which we saw as model for a salient and characteristic, but nonetheless particular
strategy adopted by the subjects. Both the empirical and the evolved solutions
are much more versatile than that. Whether or not the generated hypotheses
help in the classification and description of the data remains to be shown. In
case these results lead the analysis into a dead end, this is not a reason to put
the head in the sand. The possibilities of learning from evolutionary robotics
models about the investigated scenario are not nearly exhausted yet.

References

1. Beer, R.: The dynamics of active categorical perception in an evolved model agent.
Adaptive Behavior 11(4), 209–243 (2003)

2. Cunningham, D., Billock, V., Tsou, B.: Sensorimotor adaptation to violations of
temporal contiguity. Psychological Science 12(6), 532–535 (2001)

3. Di Paolo, E., Rohde, M., Iizuka, H. (Forthcoming): Sensitivity to social contingency
or stability of interaction? Modelling the dynamics of perceptual crossing. New
Ideas in Psychology, Special issue on Dynamics and Psychology

4. Gapenne, O., Rovira, K., Ali Ammar, A., Lenay, C.: Tactos: Special computer
interface for the reading and writing of 2D forms in blind people. In: Stephanidis,
C. (ed.) Universal Access in HCI: Inclusive Design in the Information Society, pp.
1270–1274. Lawrence Erlbaum Associates, London (2003)

5. Harvey, I., Di Paolo, E., Wood, R., Quinn, M., Tuci, E.A.: Evolutionary Robotics:
A new scientific tool for studying cognition. Artificial Life 11(1-2), 79–98 (2005)


	Adaptation to Sensory Delays
	Introduction
	The Model
	Results
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.03500
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.20000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




