
Probabilistic Principal Component Analysis Applied
To Voice Conversion

Mark M. Wilde and Andrew B. Martinez
Electrical Engineering and Computer Science

Tulane University
New Orleans, Louisiana 70118–5674

Email: mwilde@tulane.edu

Abstract— In our model for voice conversion, we represent
the joint probabilistic acoustic space of the source and target
speakers with a mixture of Probabilistic Principal Component
Analyzers (PPCAs). We present a finer resolution of options to
the user of the voice conversion system than traditional Gaus-
sian Mixture Model based conversion. Objective experiments
demonstrate that the dimension of the PPCA directly impacts
resulting objective performance but saves both time and memory
complexity. Subjective tests imply that incremental removal of
information does not affect the listener perceptually. Thus, the
end user can select with more freedom how well the system should
perform.

I. INTRODUCTION

In voice conversion, we map the acoustic features of a
source speaker to those of a target speaker. We collect speech
in a parallel training corpus from both the source and target
speaker for use in training the model. After training is com-
plete, we predict what a target speaker sounds like using the
information from the new speech of the source speaker.

We have chosen the line spectrum frequencies (LSFs) to
represent the vocal tract features for a short frame of speech
because of their desirable properties outlined in [1]. In order
to have high quality conversion, we must convert both the
excitation at the vocal cords and the spectral properties of
the vocal tract. Early research used just the excitation of the
source speaker with converted spectral features, but a study
by Kain and Macon [1] determined that the excitation played
an important role in identifying a speaker.

For mapping the excitation, we follow Kain’s method of
residual prediction in which we predict the excitation from
the LP envelope [2].

II. MIXTURE MODELING FOR SPECTRAL CONVERSION

Past researchers model the high dimensional probabilistic
acoustic space of the just the source speaker or the joint density
of the source and target speaker to determine the mapping for
voice conversion. Stylianou modeled the acoustic probability
space of the source speaker with a Gaussian Mixture Model
(GMM) in [3]. He then found the cross-covariance of the target
speaker with source speaker and the mean of the target speaker
using least squares optimization of an overdetermined set of
linear equations. In his work, he demonstrated the theoretical
superiority of the GMM to codebook methods by showing
that codebook methods are a special case of the GMM in

which only the mean of a cluster is mapped. Kain extended
Stylianou’s work by modeling the joint probability density of
both the source and target speakers [1], [2], [4]. Although
this method increases the complexity during EM training, it
obviates the need to perform the least squares optimization
as with Stylianou’s method. Modeling the joint probability
density allows the system to capture all possible correlations
between the source and target speaker’s spectrum.

III. PROPOSED METHOD

We extend the spectral mapping aspect of voice conversion
by modeling the joint probability space of both speakers with
a mixture of Probabilistic Principal Component Analyzers
(PPCAs). Previous methods that used the GMM to model the
space are constrained to only two possible selections for rep-
resenting covariance structure — diagonal and full covariance
matrices. With diagonal structure, the training time is quick but
conversion performance is sacrificed. With full covariances,
we can model the underlying second order statistics with
improved conversion performance but incur the penalty of
longer training time.

By modeling covariance structure with a mixture of PP-
CAs, we provide an entire range of covariance structure that
incrementally includes more covariance information. As we
incrementally include more information, results indicate that
the objective performance of the system incrementally im-
proves. Subjective listening tests also indicate that the quality
of conversion for incremental amounts is not perceptually
noticeable. Thus, we present a wider array of options for voice
conversion to the end user; and the user determines the tradeoff
to fit the needs for the application.

IV. SPECTRAL CONVERSION WITH A GMM

We first discuss spectral conversion with a GMM to provide
the foundation which we extend upon in this paper. In order
to estimate the parameters of the GMM, we use the classic
expectation-maximization (EM) algorithm [5]. The limiting
operation computationally in EM is the re-estimation of the
jth sample covariance matrix weighted by the jth posterior
component probability. The EM algorithm’s complexity with
fully populated covariance matrices is O(NMd2) for each
iteration where N is the amount of training data, M is the
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number of components in the mixture, and d is the total
dimensionality of the source and target LSFs x and y.

Having estimated the parameters of the GMM, we can now
estimate the target speaker’s LSFs y from the source speaker’s
LSFs x. The joint covariance matrix Σj for the jth Gaussian
component is partitioned as follows.

Σj =

[

Σ
xx
j Σ

xy
j

Σ
yx
j Σ

yy
j

]

(1)

In the case of one component, a single Gaussian, the
expectation E[y|x] is the conditional mean of a joint Gaussian
given by

E[y |x] =

∫

y p(y|x) dy (2)

= µy + Σyx(Σxx)−1 (x − µx) (3)

Extending to the mixture case as previously done in [3], the
expectation is

E[y |x] =

M
∑
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where we weight the jth conditional mean by the probability
of component j given the information from the source vector
x.

A. Decorrelation Assumption

Assuming that the individual random variables of the source
and target vectors x and y respectively are decorrelated is
a constraint that previous researchers [3], [6] have placed
on x and y to speed up training and conversion time. In
order to benefit from these savings, researchers have elected
either to impose the structure of each submatrix of Σj or
of the entire covariance matrix Σj to be diagonal. When
assuming this decorrelation between the various components
of the feature vectors, the computational time for training with
EM is significantly reduced to O(NMd).

B. Weakness of the Decorrelation Assumption

Although the above diagonalizing methods can significantly
reduce computational time, we should note that this restriction
is inappropriate because the feature vectors x and y are
not completely decorrelated. This decorrelation assumption
implies that in the d-dimensional feature space, all of the
covariance structures are aligned with the feature space axes.
Another way to view the diagonal constraint is that it is a
primitive method of reducing the dimensionality of covariance
structure from d2 to d by imposing its structure to be diagonal.

Since only these two extremes, diagonal or full covariance
matrices, are available, a need exists for a method which can
fill in the “spectrum” of options between the extremities. With
only these two extremes, the end user must make a difficult
tradeoff between the time that it takes to train the system and
the resulting performance desired.

V. VOICE CONVERSION WITH A MIXTURE OF
PROBABILISTIC PRINCIPAL COMPONENT ANALYZERS

Although the GMM has become quite popular recently for
modeling complex probability densities, one of its shortcom-
ings is that an increase in the dimensionality of the feature
space increases the complexity of the model. Each covariance
matrix Σj in the mixture becomes excessively large, and
estimation of each sample covariance matrix and its inverse
is less tractable to compute as dimensionality increases.

Probabilistic Principal Component Analysis (PPCA), a
method developed by Tipping and Bishop [7], solves the
inflexibility of GMMs by performing a pseudo local Principal
Component Analysis on each component of the mixture.
A. Probabilistic Principal Component Analysis

PPCA’s statistical model assumes that a set of q latent
variables f are responsible for generating the d-dimensional
data set z as given in the following equation where q < d.

z = Wf + µ + ε (5)
f ∼ N (0, I) (6)
ε ∼ N (0,Ψ) (7)

We place the constraint that the latent variables f are indepen-
dent and Gaussian with unit variance, and the noise variables
ε are independent and Gaussian with covariance Ψ. In the
PPCA model, we restrict Ψ to have isotropic variance σ2I .
In addition, the factors f are independent of the noise ε. The
d×q matrix W contains the factor loadings, and the parameter
vector µ permits the data to have non-zero mean. Under these
assumptions, the observations z are Gaussian with mean µ

and model covariance C = WW T + σ2I .
B. Mixtures of Probabilistic Principal Component Analyzers

Because PPCA has a generative model, we can combine
several of these models into a mixture of PPCAs as described
in [7]. The form of the mixture is the following

p(z) =

M
∑

j=1

∫

p(z|f j)p(f j |j)P (j)df (8)

where we represent the jth component of the mixture with a
PPCA model. We find certain similarities between this model
and the GMM — the only difference is that with a mixture of
PPCAs we represent each of the M component densities with
a single PPCA model rather than with a multivariate normal.
C. EM for a Mixture of PPCAs

We can compute the parameters of the mixture of PPCAs
with the two stage EM algorithm formulated in [7]. In the
first stage, we ignore the latent variables f and compute the
expected log likelihood; then we maximize P (j) and µj . In the
second stage, we increase the likelihood again by maximizing
W j and σ2

j with the following equations

Ŵ j = SjW j

(

σ2

j I + M−1

j W T
j SjW j

)

−1

(9)
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}

(10)



where Sj is the weighted sample covariance matrix for the jth

component and M j = (W T
j W j + σ2I). Although it is con-

venient to include Sj in the above equation, its computation,
an O(NMd2) operation, is not explicitly necessary. It is only
necessary to evaluate the trace of the jth weighted sample
covariance matrix, an O(NMd) operation; and we evaluate
SjW j as

SjW j =
1

π̂jN

N
∑

n=1

Rnj [zn − µj ]
{

[zn − µj ]
T W j

}

(11)

where Rnj is the responsibility of the jth component and π̂j

is the jth mixing coefficient as described in [7]. Equation 11
is the limiting computation in the two stage EM formulation
with a complexity of O(NMdq). With this formulation, we
can use q, the amount of information we are willing to keep,
to vary the training complexity.

D. Spectral Conversion with PPCAs

In order to convert the spectrum in the PPCA case, we
calculate the expectation of the target vector y given the source
vector x for the single PPCA model and then extend the result
to a mixture of PPCAs. To find this expectation, we partition
z so that its joint multivariate density is

N

([

µx

µy

]

,

[

W xW T
x + σ2I W xW T

y

W yW T
x W yW T

y + σ2I

])

(12)

where we partition the mean µ and covariance C. Then, using
Equation 3, the conditional expectation of a joint Gaussian, we
find that

E[y|x] = W yW T
x

(

W xW T
x + σ2I

)

−1

(x−µx)+µy (13)

Extending the result from above to the case of a mixture of
PPCAs, our statistical mapping is

M
∑

j=1

P (j|x)W yW T
x

(

W xW T
x + σ2I

)

−1

(x − µx) + µy

(14)
An equivalent expression for the expectation from Equation

13 is

E[y|x] = W y

(

W T
x W x + σ2I

)

−1

W T
x (x−µx)+µy (15)

as derived in [8] by using the Matrix Inversion Lemma. The
above formulation can be extended to the mixture case as well.

The two above results in Equations 13 and 15 are similar
to the mapping found for GMMs except that with the PPCA
we are now free to remove dimensionality. When choosing
which expression to use for spectral conversion, we should
determine first whether q < d

2
for computational purposes. If

it is, then we should use Equation 15 for converting. Instead of
computing the inverse of the d

2
× d

2
matrix W xW T

x +σ2I , we
compute the inverse of the q×q matrix W T

x W x +σ2I with a
total complexity of O(Mq3) for all components in the mixture.
This decrease in complexity may not be that significant since
we only compute it once with our method for voice conversion;

but, if we update the model with an online EM algorithm by
including novelty test data as done in [9], using this method
reduces complexity of conversion. If q > d

2
, then we should

use Equation 14 for conversion.

E. PPCA as a General Case of Spectral Conversion with a
GMM

We now demonstrate with a simple proof how conversion
with the mixture of PPCAs is a general case of GMM
conversion in which we can take away dimensionality. Because
the covariance matrix Σ is symmetric, we can factor it with
an eigen-decomposition.

Σ = UΛUT = (UΛ
1

2 )(UΛ
1

2 )T (16)

This decomposition is equivalent to the case when we retain
all principal components with σ2 → 0. So, setting W =
UΛ

1

2 , we can formulate Σ as WW T when retaining all
components.1 Partitioning W into W x and W y gives the
following.

Σ =

[

W x

W y

]

[

W T
x W T

y

]

=

[

Σxx Σxy

Σyx Σyy

]

(17)

We determine from above that Σxx = W xW T
x and Σyx =

W yW T
x . Substituting into the expression for the conditional

mean of a joint Gaussian from Equation 3, we find that

E[y|x] = W yW T
x

(

W xW T
x

)

−1

(x − µx) + µy (18)

and notice that this solution is the same as Equation 13 in the
limit as σ2 → 0.

Thus, PPCA is a more general case of the GMM for
spectral conversion. In PPCA, we have the flexibility of
removing dimensions from W which in turn adds to σ2 the
average variance not captured in the projection. We notice
a relationship: the more dimensions that we take away from
W , the farther away we get from the “true” conversion with a
GMM. The question now is how far we can go away before it
perceptually makes a difference to the human ear. We assess
this question with both objective and subjective measurements
in the next section.

VI. OBJECTIVE EVALUATION

In evaluating our system, we use the objective measure
given by Kain [2]. This performance index is a ratio of two
measures. The first measure, the transspeaker distance, is the
spectral distance between the converted speech and the target
speech determining how “close” the converted speech is to
the target speaker’s. The second, the interspeaker distance,
measures the spectral distance between the source and target
speaker. To present the performance index, let us again con-
sider the vector of source speech for the nth frame as xn

1W in this case is the maximum likelihood estimate for the factor loadings
given in [7] without the noise term σ

2.
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Fig. 1. Performance Index Learning Curve for a Full GMM and a mixture
of PPCAs with varying dimensionality.

and the target speaker’s nth vector as yn. We compute the
performance index p with the following equation

p = 1 −
N

∑

n=1

d(yn, ŷn)

d(yn, xn)
(19)

where ŷn is the converted target vector and the distance d is
Euclidean.

We used a database of three speakers to assess conversion
performance (corresponding to six conversions). In Figure 1,
we fit each set of objective data points with its appropriate
“learning curve” benchmarking the mixture of PPCAs against
GMM-based conversion. As the training time increases, the
performance of each system exponentially increases until it
plateaus around 14 seconds of training data. We conclude
that 14 seconds of training data is enough for the system
to give a reasonable average performance between 0.24 and
0.28. We expect the average performance to increase slightly
with more than 30 seconds of training data.2 We show the
mixture of PPCAs for a range of values for q — the number
of dimensions we keep. Note that q varies from one dimension
to 39 dimensions because we set the LP model order for
each speaker to 20; thus, the joint space of both speakers has
dimension 40.

The interesting observation is that for each reduction of
q, the performance slightly decreases as we predicted previ-
ously.3 The only question is whether this incremental decrease
in information is perceptually noticeable to a listener.

VII. SUBJECTIVE LISTENING TESTS

In order to determine if the human ear notices the gradual
loss of information, we conducted subjective listening tests
with seven listeners and three speakers. Before starting the test,
we trained each listener on the three speakers’ distinct voice
qualities by playing several of their speech files. After this

2Kain’s best performance index was 0.31 [2], and Gillett’s was 0.36 [10]
with 120 seconds of training data.

3Note that this general trend occurs for each unit decrease of q, but we
only show the average decrease for a range of values for q.
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Fig. 2. Subjective Recognizability Learning Curve for a Full GMM and a
mixture of PPCAs with varying dimensionality.
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Fig. 3. Subjective Naturalness Learning Curve for Full GMMs and a mixture
of PPCAs with varying dimensionality.

initial training, we quizzed each listener until they identified
each speaker correctly for ten consecutive trials.

During the test, we played converted speech in a randomized
order varying both the PPCA dimensionality and the speaker.
We played the same sentence so that listeners could focus
intently on the quality of each recording.

First, the listener identified the speaker; overall, the accuracy
was 79.2%. After determining the speaker, the listener pro-
vided a subjective answer for three categories. Recognizability
indicates how easy it is for the listener to identify the speaker.
Naturalness describes how much like a human the speech
sounds. Quality is a subjective measure of how clean the
speech signal is. The listeners chose a subjective score between
one and five for each of the above categories.

A. Subjective Test Results

In Figure 2, we plot the mean recognizability learning
curve for each model versus the training time. Note that
recognizability of each system improves as the training time
increases; but from the listeners’ responses, we conclude that
it is difficult for them to distinguish the difference between
full covariances and reduced dimension covariances.

We plot the mean naturalness learning curve in Figure 3. It
is apparent that the full GMM method performs mostly better
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than PPCA though its performance is equivalent for some time
to the PPCAs when q is between 11 and 20. The fact that lower
dimensions perform better than higher dimensions indicate that
perhaps a little more testing is needed for this case.

Lastly, in Figure 4, we illustrate the subjective quality learn-
ing curve. Again, nothing indicates that one system’s quality
outperforms the others. All learning curves are relatively
close so we can conclude with some degree of confidence
that listeners do not notice the difference when we reduce
dimensionality.

Based on these tests of the three subjective categories, it is
apparent that each category’s performance increases with the
amount of training data. Although the performance increases
with more training data, incrementally removing “less rele-
vant” information does not affect the end listener perceptually.
Thus, in using PPCA, we have the benefit of reduced time and
memory complexity for both training and conversion without
affecting the end listener’s perceptual experience.

VIII. CONCLUDING REMARKS AND FUTURE
OPPORTUNITIES

In summary, we have applied the mixture of PPCAs model
to voice conversion. Using a mixture of PPCAs reduces the
time complexity for training from O(MNd2) to O(MNdq)

and conversion time from O(M
(

d
2

)3

) to O(Mq3) if q < d
2

with the penalty of a slight decrease in the objective quality of
conversion. Although the objective measure can detect that we
have reduced the amount of information, the human ear has
difficulty perceiving this reduction. Therefore, we recommend
that the user of the system select an appropriate value of
q to suit performance needs of the application. Obviously
we always want the system to perform with highest quality;
but, this high quality only comes with the price of expensive
computations. For voice conversion training and execution, the
mixture of PPCAs model provides a flexible range of tradeoffs
to select from.

We have several ways that this system can be improved upon
by incorporating the recent advances of variational Bayesian
modeling, independent component analysis, and an on line EM

algorithm.
By incorporating variational Bayesian techniques with

PPCA as described in [11], the system can automatically
estimate the appropriate model order for q, the amount of
information to retain of each component in the mixture, and
M , the number of components in the mixture.

Using a Gaussian for each component in the mixture is
controversial because we do not have infinite training data.
We can solve this problem by using a mixture of independent
component analyzers [12] where each component’s distribu-
tion is non-Gaussian and thus we could describe the density
of each component in the mixture more properly.

In our model, we only estimate the probability density from
a fixed set of training data. Including novelty test data in the
model is expensive with our current method because it requires
a complete re-estimation via EM. However, by updating the
model on line with the testing data of the source speaker,
we could improve performance significantly. Additionally, by
using this model, we could realize computational savings for
conversion with Equation 15 if q < d

2
.
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