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Service Time Optimization of Mixed-Line
Flow Shop Systems

Kagan Gokbayrak and Omer Selvi

Abstract—We consider deterministic mixed-line flow shop sys-
tems that are composed of controllable and uncontrollable ma-
chines. Arrival times and completion deadlines of jobs are assumed
to be known, and they are processed in the order they arrive at the
machines. We model these flow shops as serial networks of queues
operating under a non-preemptive first-come-first-served policy,
and employ max-plus algebra to characterize the system dynamics.
Defining completion-time costs for jobs and service costs at con-
trollable machines, a non-convex optimization problem is formu-
lated where the control variables are the constrained service times
at the controllable machines. In order to simplify this optimization
problem, under some cost assumptions, we show that no waiting
is observed on the optimal sample path at the downstream of the
first controllable machine. We also present a method to decompose
the optimization problem into convex subproblems. A solution al-
gorithm utilizing these findings is proposed, and a numerical study
is presented to evaluate the performance improvement due to this
algorithm.

Index Terms—Controllable service times, manufacturing, op-
timal control, queueing systems.

I. INTRODUCTION

W E consider a flow shop system consisting of ma-
chines that are processing identical jobs. The system

consists of both controllable machines where the service times
are adjustable for each process and uncontrollable machines
with fixed service times. Based on completion-time costs for
jobs and service costs at the controllable machines, an optimiza-
tion problem is formulated where the control variables are the
service times at the controllable machines. Since faster services
increase wear, tear, and the energy consumption at the machines,
and may raise the need for extra supervision, we assume that ser-
vice costs are decreasing in service times. Slower services, on
the other hand, not only build up inventory increasing inventory
costs (a form of completion-time cost) but also may delay com-
pletion times resulting with missed deadlines. This trade-off is
what makes the problem challenging, and our objective in this
study is to determine the cost minimizing service times.

Scheduling problems of flow shops with controllable service
times consider the job sequencing at each machine along with
the service time optimization. The job sequencing problems of
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flow shops are known to be NP-hard even for the case of fixed
service times (see in [1]). Therefore, the literature is limited
to heuristics and approximate solution methods: Nowicki and
Zdrzalka, in [2], were the first to analyze flow shop systems
with controllable service times. They studied the problem of
minimizing the maximum completion-time cost plus the total
service cost in a two machine flow shop system. Assuming that
the service cost on each machine was a decreasing linear func-
tion of the service times, an approximation algorithm was pro-
posed. In [3], Nowicki considered permutation flow shops in
which the job sequences were restricted to be identical on each
machine, and extended the approximation algorithm to apply at
flow shops of more than two machines. For further references, a
literature survey on scheduling with controllable service times
can be found in [4]. In this paper, we do not consider the job
sequencing problem. Instead, we assume that jobs are served in
the order they arrive at machines, i.e., the machines operate on
a non-preemptive first-come-first-served policy.

The idea of modeling production systems via max-plus
algebra and applying control theory for optimization first
appeared in [5] where job release times to a single machine
system were controlled to minimize the discrepancy between
job completion times and desired due dates. Following this
work, service time control problems for CNC (Computer
Numerical Control) machines, where the service times could
be adjusted between processes, were considered. Pepyne and
Cassandras, in [6], formulated an optimal control problem for
a single machine system with the objective of completing jobs
as fast as possible with the least amount of control effort. In
[7], Pepyne and Cassandras extended their results to jobs with
completion deadlines penalizing both earliness and tardiness.
In [8], the task of solving these problems was simplified by
exploiting structural properties of the optimal sample path,
and it was shown that, despite the fact that the objective
function was non-convex and non-differentiable, the optimal
sample path was unique. Further exploiting the structural
properties of the optimal sample path, “backward-in-time” and
“forward-in-time” algorithms based on the decomposition of
the original non-convex and non-differentiable optimization
problem into sets of smaller convex optimization problems with
linear constraints were presented in [9] and [10], respectively.
The “forward-in-time” algorithm presented in [10] was then
improved by Zhang and Cassandras in [11].

Gokbayrak and Selvi, in [12], studied a two-machine flow
shop system with regular costs on completion times and de-
creasing costs on service times, and identified some optimal
sample path characteristics to simplify the problem. In partic-
ular, no waiting was observed between machines on the optimal
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sample path that enabled the transformation of the non-smooth
discrete-event optimal control problem into a simple convex
programming problem. In [13], Gokbayrak and Selvi extended
the no-waiting property to multimachine flow shop systems.
Employing this property, simpler equivalent convex program-
ming formulations were presented and a forward-in-time solu-
tion algorithm was developed under strict convexity assump-
tions on service and completion-time costs. In [14] and [15],
Gokbayrak and Selvi considered the problem in [13] with the
additional constraint that the service times at machines were set
initially, and could not be altered between processes. For the re-
sulting service time optimization problem of flow shops of tradi-
tional (non-CNC) machines, alternative solution methods based
on convex programming and subgradient descent methods were
presented.

Parallel to the work by Gokbayrak and Selvi, Mao et al.,
in [16], considered an optimization problem for a single ma-
chine system based only on service costs. Instead of defining
a completion-time cost as in [13], they introduced completion
deadline constraints. For decreasing convex service costs, it was
shown that the optimal solution characteristics led to the highly
efficient Critical Task Decomposition Algorithm (CTDA). Em-
ploying CTDA, they extended their work to multimachine sys-
tems in [17] and [18] to obtain an iterative Virtual Deadline Al-
gorithm (VDA). The main idea of this algorithm was to intro-
duce virtual deadlines at each machine except the last one so that
the flow shop could be decomposed into single machine systems
where CTDA could be applied. Determination of these dead-
lines was performed iteratively and the convergence of VDA
was shown.

In this paper, we extend our work in [13] by introducing un-
controllable machines in the flow shop system and completion
deadline constraints in the optimization problem. Following the
same line of thought in [13], we first formulate a non-convex and
non-differentiable optimization problem with max-plus algebra.
Employing the standard method of linearization, an equivalent
convex optimization problem formulation is also presented. Uti-
lizing both formulations, we generalize the no-waiting property
to mixed-line flow shop systems. This property enables the sim-
plification of the non-convex and non-differentiable problem.
Then, we introduce a partitioning for the set of jobs and show
that the optimization problem can be solved by decomposing it
into convex subproblems, one for each part of the partition. An
algorithm that forms the partition and obtains the optimal solu-
tion is presented.

The rest of the paper is organized as follows: In Section II,
we formulate a non-convex and non-differentiable optimization
problem and obtain a convex programming formulation by the
standard method of linearization. In Section III, we derive a set
of waiting characteristics of such systems and show that, on the
optimal sample path, no waiting is observed at the downstream
of the first controllable machine. The simplified version of the
non-convex problem is also presented in this section. In Sec-
tion IV, we introduce a partitioning for the set of jobs, and show
that the optimal solution can be obtained by solving convex sub-
problems for each part in this partition. A forward decomposi-
tion algorithm is also presented in this section that forms the re-
quired partition and obtains the optimal solution. In Section V, a

numerical study is presented to demonstrate the benefits gained
through a set of example systems. A performance comparison
with VDA is also presented in this section. Finally, Section VI
concludes the paper.

II. PROBLEM FORMULATION

Let us consider an -machine flow shop system. The system
consists of both controllable machines where the service times
can be adjusted before each process and uncontrollable ma-
chines where the service times are fixed, hence it is called as
a mixed-line system. We define the sets and , disjoint sub-
sets of the set , as the index sets of the control-
lable and uncontrollable machines, respectively.

A sequence of identical jobs arrive at the system at known
times and are processed at all
machines sequentially. We denote these jobs and their comple-
tion deadlines by and , respectively. Machines
process these jobs one at a time on a first-come-first-served
non-preemptive basis. The durations of these processes at each
machine are denoted by the service times . Due to
physical limitations of the machines, we assume that each job
at any controllable machine needs at least a service of

duration. There is no upper bound on the service times. The
service times at the uncontrollable machines are fixed
to values .

We consider the discrete-event optimal control problem, de-
noted by , which has the following form:

(1)

(2)

(3)

(4)

(5)

(6)

for all . In this formulation, denotes the de-
parture time of job from machine , denotes the service
cost for some job processed at machine , and denotes the
completion-time cost for job .

We assume that a feasible solution exists for . If not, a binary
integer programming problem can be formulated as in [19] to re-
ject some of the jobs for feasibility. The job admission problem
is a subject of ongoing research, and it is not considered here.

The following standing assumptions are necessary to make
the problem somewhat more tractable while preserving the orig-
inality of the problem.

Assumption 1: , for all , is continuously differen-
tiable, monotonically decreasing, and strictly convex.

Assumption 2: , for all , is continuously
differentiable, monotonically increasing, and convex.

Note that for the costs satisfying these assumptions, longer
services will decrease the service costs, while possibly in-
creasing the completion times, hence the completion-time
costs.
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Due to the functions in the constraints, is non-convex
and non-differentiable. Linearizing these constraints, we can
formulate the following convex optimization problem:

(7)

(8)

(9)

(11)

(11)

(12)

for all .
As in [13], due to the standing assumptions, the optimal solu-

tion to the convex problem includes the optimal service times
for . Hence, solving suffices to determine the optimal ser-
vice times. For large and values, however, convex problem
solvers have high requirements on the computing resources to
solve , a fact that motivated the work in this paper.

In the next section, we show that no waiting is observed after
the first controllable machine, a property that enables the sim-
plification of the optimization problem . Linearization will be
applied to the simplified version to obtain a convex problem for-
mulation with fewer constraints.

III. WAITING CHARACTERISTICS OF THE OPTIMAL SOLUTION

The flow shop can be decomposed into controllable machines
and uncontrollable portions formed of sequentially located un-
controllable machines defined as follows:

Definition 1: Machines form an uncontrollable
portion if

1) Machine , if exists, is a controllable machine.
2) Machines are uncontrollable.
3) Machine , if exists, is a controllable machine.
The jobs, on the other hand, can be decomposed into blocks

according to their waiting characteristics at some machine .
Definition 2: For a given solution , a contiguous set of

jobs is said to form a block at machine if
1) and .
2) for .
Note that each job that does not wait at machine starts a new

block.
We state some previously established optimal solution

characteristics for uncontrollable portions and controllable
machines in the following subsections, and employ them to
present the no-waiting property for the mixed-line flow shops.

A. Uncontrollable Portions

Uncontrollable portions can be treated as fixed-service-time
flow shop systems previously studied in [14] and [15]; hence,
the results therein are applicable. An important result that we

borrow is that waiting can only be observed at local bottleneck
machines defined as follows:

Definition 3: Let machines form an uncontrol-
lable portion. A machine in this uncontrollable por-
tion is a local bottleneck if its service time exceeds the service
times of all upstream machines in the uncontrollable portion,
i.e., . Machine is also defined to be a
local bottleneck.

The arrival time of job at the uncontrollable portion
formed of machines is given as . We borrow
the following results that employ the interarrival times to
determine the block structure at a local bottleneck machine:

It follows from Lemma 5 in [15] that if job resides in a
block started by job at a local bottleneck machine , then

(13)

Another result that we borrow from [15] is that a necessary
condition for not to wait at a local bottleneck machine is

(14)

which follows from Lemma 3 in [15].
We also borrow the following lemma on the departure times

of jobs from uncontrollable machines:
Lemma 1: (Lemma 3 in [14]) The departure time of job

from machine within the uncontrollable portion started by the
machine is given by

(15)

where for all and .
If a job does not wait at machines , then the first

term in (15) dominates. All jobs that experience waiting at
one of these machines definitely wait at the machine with the
maximum service time . This machine prevents
waiting in its downstream up to machine , causing the second
term in (15) to dominate. (The details can be found in [14].)

Note that the results that we borrow from [14] and [15]
present characteristics of fixed-service-time systems that hold
for any cost structure; therefore, they are also applicable to our
optimization problem where uncontrollable machine service
costs are not considered.

We end this subsection by showing that no waiting is ob-
served at uncontrollable portions preceded by controllable ma-
chines.

Lemma 2: Let machines form an uncontrollable
portion and machine be controllable. On the optimal
sample path, jobs do not wait at these uncontrollable machines.

Proof: (By Induction) Since the first job does not wait for
service at any machine, we have the basis for induction. For a
contradiction in the inductive step, let us assume that, on the
optimal sample path, jobs do not wait while job
waits for service within the uncontrollable portion. Let be the
most upstream machine that waits at in the uncontrollable
portion. Let jobs form the block at machine in which
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job resides. Since machine has to be a local bottleneck,
by Lemma 1, we have, for

(16)

For these jobs , let us define the positive differences
as

(17)

Since job resides in the block started by at machine
, from (2) and (13),we have

(18)

We analyze two cases:
Case 1: Job finds machine busy, i.e.,

Since job starts a new block at machine , from the
case statement, (2), and (14), we have

(19)

From (18) and (19)

(20)

Let us define the perturbed service times as

otherwise
(21)

where

Note that is positive due to (17) and (20).
We can simply state that the departure times resulting

from the application of the perturbed service times satisfy
for all . Similarly, the service time

perturbation at machine does not affect the departure
times from upstream machines, hence, for example, we have

for all .
The service time perturbation for causes

(22)

for . Consequently, by Lemma 1 and the defi-
nition of , we have

Applying the same argument recursively, we obtain
for all .

From (21) and (22), the perturbed departure time of job
from machine is written as

Therefore, we can write

resulting with a possible decrease in the completion times for
jobs due to the perturbation in (21).

As a result, we can state that for all jobs, pos-
sibly lowering the completion-time costs due to Assumption 2.
Similarly, from (20), (21), and by Assumption 1, the perturbed
solution has a lower service cost. Hence, the perturbed solution
yields a cost lower than the optimal cost resulting with a contra-
diction.

Case 2: Job finds machine idle, i.e.,

Let us define the perturbed service times as

otherwise (23)

where

Note that is positive due to (17) and this case’s statement.
Following the same steps in Case 1, we can obtain

for all jobs. From Assumption 1 and (23), the perturbed
solution has a lower service cost. Hence, the perturbed solution
yields a cost lower than the optimal cost resulting with a contra-
diction.

B. Controllable Machines

Since the optimal solution of the convex problem includes
the optimal service times for , we apply calculus of variations
techniques on to determine optimal service time characteris-
tics for .
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Let us start with introducing Lagrangian multipliers , ,
, and for all and to form the augmented cost

The co-state equations can be stated as

(24)

(25)

(26)

(27)

(28)

and

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Employing these optimality conditions, we can prove the fol-
lowing lemma that establishes the monotonicity property of the
optimal service times at controllable machines.

Lemma 3: (Monotonicity Property) Let machine be a con-
trollable machine, i.e., . Then, for some ,
if jobs and are in the same block of the th machine on
the optimal sample path, then the optimal service times satisfy

.
Proof: (By contradiction) Let us assume that jobs

and are in the same block of the th machine on the optimal
sample path, and . From (10), there are two pos-
sible cases:

Case 1: : From (31), and from
(35), .

Case 2: : From (31), .
From both cases, we get

(37)

Since jobs and are in the same block of the th ma-
chine on the optimal sample path, from (7) and (8), we have

so, from (29)

(38)

From (25) and (33), we have

(39)

for . Similarly, from (26), (36), and by Assumption 2,
we have

(40)

It follows from (24), (37), (38), (39), and (40) that:

for all , which contradicts Assumption 1. Hence, within
a block, the optimal service times are non-decreasing in the job
index.

Lemmas 1–3 will be employed while proving the next
theorem, which shows that a controllable machine prevents
buffering in the closest downstream controllable machine.

Theorem 1: Let machines and , where , be two con-
secutive controllable machines, possibly separated by the un-
controllable portion . On the optimal sample
path, no waiting is observed at machine .

Proof: We prove by induction on jobs:
Basis Step: The first job does not wait at any machine.
Inductive Step: Let us assume, for a contradiction, that jobs

do not wait at machine and that jobs form a
block at machine on the optimal sample path so that

(41)

is satisfied by the block definition.
We denote the total service time for the uncontrollable ma-

chines in between and by defined as

and the maximum service time for this uncontrollable portion is
given by

Since jobs and reside in the same block at the control-
lable machine , according to Lemma 3

(42)
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From Lemma 2 and the block definition, we have

(43)

Since job does not wait at machine , from (14), (42),
and (43), we obtain

(44)

resulting with, from the block definition, (2), and (44)

(45)

There are two cases to consider:
Case 1: Idleness is observed at machine after job de-

parts, i.e., .
We consider the non-optimal solution defined as

otherwise (46)

for a very small evaluated as

and show that the departure times resulting from the application
of the non-optimal service times satisfy for

. Note that is positive by (41), (45), and the statement
of the case.

The perturbation in the service time does not affect jobs
; therefore, we already have for all

. Similarly, this perturbation does not affect the
departure times from the machines upstream to machine .

Job does not wait at the uncontrollable portion on the
optimal sample path. Increasing its service time at machine
does not change this fact; hence, we have

Since , job waits for service at ma-
chine also with this non-optimal solution. Hence

(47)

Similarly, jobs will be delayed at most by , re-
sulting with

(48)

for all . Following the same argument above,
for all .

value is selected small enough not to alter the service
starting and departure times of at machine ; hence,

. Since the departure time of job from ma-
chine may have a delay of at most , i.e., ,

we can not claim that job does not wait at the uncon-
trollable portion. Instead, employing Lemma 1, definition,
and (48), and observing that from
Lemma 2, we obtain

Since and , from (2) and
(46) we get . Following a similar argument
recursively, we get for all .

Since for all and since the optimal
service times are applied to all jobs at machines downstream to
machine , we have for all . Hence,
from Assumption 1 and (46)

contradicting the optimality of .
Case 2: No idleness is observed at machine after job

departs, i.e., .
It follows from (44) and that

(49)

By this case’s statement, we have

(50)

Since job is the last job in a block and is the first job
in the next block at machine , from (50) and by Lemma 2, we
have

resulting with

(51)

From (42), (49), and (51), we conclude that

(52)

Now, we consider the non-optimal solution defined as

otherwise
(53)

for a very small defined as

Note that is positive from (41), (45), and (52).
Following the same reasoning in Case 1, we can claim that

for all . Moreover, since the service
time perturbation occurs at machine , the upstream departure
times are not affected. Hence, for example, for
all .
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Since , from the statement of the
case and (53), we get

The optimal service times are applied to job at machines
downstream to machine and to jobs at all ma-
chines, so we can conclude that for all

. Hence, from (52), (53), and by Assumptions 1
and 2

contradicting the optimality of .
From these two cases, we conclude that no waiting is ob-

served at the downstream controllable machine .
By Lemma 2 and Theorem 1, we obtain the following result:
Corollary 1: On the optimal sample path, no waiting is ob-

served after the first controllable machine.
This corollary extends the no-waiting property in [13] to

mixed-line flow shop systems. Next, we employ this result to
simplify the formulation.

C. Simplified Problem

In the rest of the paper, we assume, for convenience, that the
most upstream machine is a controllable machine, i.e.,

. The flow shop systems that start out with a sequence of
uncontrollable machines can easily be reduced to our setting
by calculating the arrival times at the first controllable machine
via (2) and (6), and removing the uncontrollable machines up-
stream to the first controllable machine from the optimal control
problem formulation .

Employing Corollary 1 in the formulation, we obtain

(54)

(55)

(56)

(57)

for all and for all , and

(58)

(59)

(60)

for all .
Analyzing the constraints of , we determine that the cou-

pling between consecutive jobs are through (55)–(57). If we
have

inequalities satisfied for all , then coupling is removed
between jobs and . This observation motivates the de-
composition method presented next.

IV. PROBLEM DECOMPOSITION

Let us consider an array of service times
for job that is feasible for to define

(61)

and

(62)

which leads to a partition of the jobs as follows:
Definition 4: A contiguous set of jobs is said to form

an independent period for the system if
1) (for );
2) ;
3) For all , .
Definition 5: An independent period structure for the system

is a partition of jobs into independent periods.
Note that since , is always nonnegative.
The following lemma states that the optimal service time de-

cision for a job depends only on the arrival times and completion
deadlines of the jobs residing in the same independent period.
The proof is omitted as it is similar to the proof of Lemma 5 in
[13].

Lemma 4: Consider a contiguous job sequence
forming an independent period on the optimal sample path.
The optimal service times for these jobs do not depend on the
arrival times and the completion
deadlines .

Let us assume that the independent period structure of the op-
timal solution is known. We can employ Lemma 4 to decompose
problem into subproblems one for each independent period

obtained simply by substituting for and for
.

From the definition of independent periods,
is satisfied for all jobs where . Since
can be positive, it is possible to have for some

of these jobs. Therefore, the max constraint in (55) remains in
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the formulation and needs to be linearized for convex problem
formulations.

Defining the cost for the independent period formed of jobs
as

the resulting subproblem for the independent period can be for-
mulated as

(63)

(64)

(65)

(66)

(67)

for all and for all , and

(68)

(69)

(70)

for all .
Note that the convex problem , which has
fewer variables and constraints compared to , yields the

optimal solution for .
So far, we have shown how to obtain the optimal solution

when its independent period structure is given. In the next sub-
section, we develop an algorithm that obtains the optimal so-
lution as it determines independent period structure for the op-
timal solution.

A. Forward Decomposition Algorithm

We start with replacing Assumption 2 by the following as-
sumption, so that each problem has a unique optimal
solution:

Assumption 3: , for all , is continuously
differentiable, monotonically increasing, and strictly convex.

We denote the optimal service times for as
for and and the corresponding
departure times from the first stage as . From Lemma
4, if the job sequence forms an independent period on
the optimal sample path, then the optimal solution to
satisfies

for all and .

Following the same steps in [13], a procedure for identifying
the independent period structure of the optimal sample path is
formalized in the following theorem.

Theorem 2: Let job initiate an independent period on the
optimal sample path. Then, job ends this independent period
if and only if the following conditions are satisfied:

1) For all , ;
2) .
This theorem suggests a forward decomposition algorithm:

We assume that all the independent periods before job
are identified, hence the optimal service times for all

and are known. Starting
with and incrementing the job index at each iteration,
subproblems are solved until the second condition is
satisfied. Once the second condition is satisfied, we not only
obtain an independent period on the optimal sample
path, but also obtain the optimal service times for these jobs
from the solution of .

This forward decomposition algorithm can be given as

Algorithm 1

Step 1: (initialization) , ,

while do

Step 2: solve subproblem and determine

Step 3:

if , then

for and

endif

Step 4: (increment index )

Note that this decomposition algorithm requires only iter-
ations. However, these iterations are not identical in complexity
and depend on the arrival and deadline sequences along with the
cost parameters. The best case for this algorithm would be an op-
timal sample path where each job forms an independent period
of its own. In this case for all are solved.
The worst case for this algorithm, on the other hand, would be
an optimal sample path where all jobs reside in the same inde-
pendent period and no decomposition is observed. In this case,
we solve for all . If the expected number
of independent periods is small, e.g., for the bulk arrivals case
where we have only one independent period, we may choose to
solve directly.

V. NUMERICAL EXAMPLES

We present two numerical examples in this section. In the first
example, we demonstrate the benefit of simplifications due to
the no-waiting property by analyzing solution times of different
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TABLE I
COMPUTATION TIMES FOR �� , ���� �� FORMULATIONS AND FORWARD DECOMPOSITION ALGORITHM (IN SECONDS)

problem sizes for and convex formulations. The im-
provement due to the Forward Decomposition Algorithm (FDA)
is also illustrated in this example. The second example compares
the solution performances of our FDA and the Virtual Deadline
Algorithm (VDA) in [18] by Mao and Cassandras.

The computing environment for these examples is Matlab (by
The Mathworks) running on a computer with 2.0 GHz Intel
Core2Duo T7200 processor and 2 GB of RAM. The convex
problems are solved using (see [20]), a modeling system
for convex programming developed at Stanford University.

Example 1: Let us consider the optimization problem for
an -machine flow shop system processing a set of jobs.
The service cost for job at the controllable machine

is given as

(71)

for some . The completion-time cost for job , on the other
hand, is given by a cost defined as

(72)

Note that the service cost given in (71) is continuously dif-
ferentiable, monotonically decreasing, and strictly convex satis-
fying Assumption 1. Similarly, the completion-time cost given
in (72) is continuously differentiable, monotonically increasing,
and strictly convex for feasible completion times ,
hence satisfies Assumption 3. Therefore, we expect to see a
unique optimal solution.

We study problems with different and values. For each
and setting, we randomly generate ten optimization prob-

lems: We randomly create flow shop systems of control-
lable and uncontrollable machines. The interarrival times
for jobs are realized from an exponential distribution with a
mean of 2 units. The lower bounds on the controllable service
times and the cost parameters for all , the service
times for all , and the deadlines for all jobs are all
randomly assigned.

The average solution times (over ten optimization problems)
of the alternative methodologies for different and settings
are presented in Table I, where a dash sign denotes a crash due to
running out of memory. Due to space limitations, the resulting
optimal service and departure times are not reported here. How-
ever, as expected, no-waiting is observed after the first control-
lable machine of the system.

Having a smaller number of variables and constraints,
formulation outperforms formulation; the former is

not only faster to solve but also enables the solution of larger

problems. Forward Decomposition Algorithm (FDA), on the
other hand, outperforms the solution methodology
in terms of solution times for large and uncongested systems
where several independent periods are observed. Moreover, due
to solving several smaller problems, memory may no longer be
an active constraint. For congested or smaller systems, though,
solving should be preferred. For the bulk arrival case,
for example, instead of solving just the problem,
FDA solves for all , hence, not only it
takes longer to obtain the result, but also no memory benefit is
observed.

In the next example, we compare the solution performances
of our Forward Decomposition Algorithm (FDA) and Virtual
Deadline Algorithm (VDA) in [18] by Mao and Cassandras. In
order to have VDA applicable, in this example, we study flow
shop systems consisting only of controllable machines and with
no completion-time costs.

Example 2: We consider flow shop systems, where all ma-
chines are controllable, with service costs given in (71) and no
completion-time costs. For each and combination, ten
optimization problems are run with randomly assigned arrival

and deadline sequences, cost param-

eters, and lower bounds on service times. The average
solution times over ten problems for each setting are presented
in Table II.

As seen in Table II, for small values of , VDA is much
faster than FDA. However, as increases, VDA takes a lot
longer to converge compared to FDA, limiting its usage to small
flow shops.

VI. CONCLUSION

This paper studied the service time optimization of flow shop
systems consisting of both controllable machines, where the
service times are bounded below, and uncontrollable machines
with fixed service times. The optimization problem revealed
a trade-off between selecting faster services to lower comple-
tion-time costs (and to meet deadlines) and selecting slower ser-
vices to lower service costs.

Linearizing the max constraints due to max-plus queueing
dynamics, a convex optimization problem was formulated. A
set of waiting characteristics of the system was derived and it
was shown that no waiting is observed on the optimal sample
path after the first controllable machine. Employing this result,
a simplified convex optimization formulation was introduced
through eliminating variables and constraints from the
original convex optimization problem at each machine where
no waiting is observed. A “forward-in-time” decomposition
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TABLE II
COMPUTATION TIMES FOR VIRTUAL DEADLINE ALGORITHM AND FORWARD DECOMPOSITION ALGORITHM (IN SECONDS)

algorithm was also developed to decompose the simplified
convex optimization problem into smaller convex optimization
problems. As shown by a numerical example, the simplification
due to no-waiting property and the decomposition not only
improved the solution times considerably but also allowed us
to solve larger problems by alleviating computing hardware
constraints.

Another numerical example compared the forward decom-
position algorithm against a competing virtual deadline algo-
rithm for controllable flow shop systems with no completion-
time costs. The decomposition algorithm turned out to be supe-
rior for flow shop systems with large number of machines, be-
cause the convergence speed of the virtual deadline algorithm
decreased considerably as the number of machines increased.

Assuming that all arrival times and completion deadlines are
initially available can appear to be a drawback of this study pre-
venting on-line applications. When such job information is only
partially available, receding horizon controllers for flow shops,
which is a topic of ongoing research, employ solution methods
developed in this study. Hence, this work will form the foun-
dation for online optimization methods for the case of random
arrival times and completion deadlines.
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