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Summary

Objective: In the last few years several complete genome sequences have beenmade
available to the research community. The annotation of their complete inventory of
protein coding genes, however, has been so far an elusive goal. Classical ab initio gene
prediction methods have been of great support for this task, but show notable
weakness in the prediction of genes with unusual structural features. On the other
hand, annotation on the basis of similarity to already known genes in other species
does not permit the detection of genuinely novel genes and also introduces a potential
source of classification error when based on similarity to sequences erroneously
annotated as protein coding. Finally, several methods for the functional classification
and assessment of evolutionarily conserved regions have been proposed, but, to our
knowledge, signal processing techniques have not been applied yet to this problem,
despite their proven usefulness at the single genome level.
Results: In this article we introduce the use of signal processing in comparative
genomics and we propose a simple test able to evaluate the coding potential of a
pairwise genomic sequence alignment according to the pattern and periodicity with
which substitutions and gaps appear in the alignment. We assess the feasibility of our
approach on an annotated set of human—mouse genomic alignments.
Conclusion: Results show that the application of signal processing techniques to
sequence alignments can be a useful tool for the identification of evolutionarily
conserved protein-coding regions.
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1. Introduction

During evolution, genomic regions under no selective
pressure are progressively saturated of mutations,
rved.
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whereas homologous regions under selective pres-
sure retain higher levels of identity. The identifica-
tion of sequences under evolutionary constraints
through the comparison of DNA sequences is a power-
ful technique for inferring the locations of
functional elements in a genome. As whole-genome
sequencing efforts extend beyond traditional model
organisms to include a wide diversity of species,
comparative analyses will be further empowered
to reveal insights into genome evolution. The dis-
covery and annotation of functional genomic ele-
ments is a necessary step toward a detailed
understandingof genomebiology, and sequencecom-
parison have been demonstrated to be an integral
tool for this task. In recent years an ever increasing
amount of findings have clearly hinted that,
despite initial assumptions, a large proportion of
the sequences conserved between related genomes
does not represent protein-coding regions. Other
experiments also demonstrated that the classical
opinion that long stretches of conserved genomic
sequences are predominantly protein-coding
regions has to be revised, because of the
presence of long conserved non-coding functional
elements like modular clusters of well conserved
transcription factor binding sites [1]. All in all, the
discrimination between conserved coding and non-
coding sequences remains an important objective in
comparative genomics.

In any comparative analysis, it is of critical impor-
tance the accurate choice of the evolutionary dis-
tance separating the genomes to be compared. The
evolutionary distance separating human and mouse
place this pair of organisms at a strategic position
for the identification of shared functionally con-
served sequences. Around 80 million years (MYs)
separate human and mouse from their last common
ancestor (160 MYs of independent evolution of their
genomes) and the estimated rate of divergence of
independently evolving vertebrate genomes, on
average 0.1—0.5% per MY, ensures that human—
mouse genome comparisons allow sequences whose
functional importance is conserved to be identified
through sequence alignments, while the evolution-
ary distance is sufficient to allow the ‘masking’ of
the non-functional ones. On the other hand, at the
DNA level even functionally equivalent regions can
be difficult to align between more distant species
(as it is in the case of human/fish or human/fly
comparisons).

Several approaches for protein coding gene
prediction based on comparative genomics have
been proposed, ranging from TWINSCAN [2], an
extension of the ab initio gene predictor GENSCAN
[3] that integrates sequence conservation in the
probabilistic model (GHMM) of GENSCAN, to
CSTminer [4], a tool to discriminate between
coding and non-coding conserved sequences on
the basis of the presence (or absence) of evolu-
tionary dynamics compatible with a protein coding
function.

On the other hand, another class of methods for
the detection of protein coding regions are based
on the analysis of DNA periodicities, exploiting
techniques developed in the field of digital signal
processing [5—10]. Despite the fact that these
methods have been proven to be quite efficient
on a single genome [11], as of today they have not
been applied to large scale classification of
aligned genomic sequences. Here we present a
method based on signal theory that given two
aligned conserved genomic sequences classifies
them as coding or non-coding according to the
pattern and periodicity with which substitutions
and gaps appear in the alignment. Indeed, the
idea of using substitution patterns in aligned
DNA sequences to discriminate protein-coding
conserved regions was first introduced in [12],
where it was applied to the analysis of a single
Drosophila melanogaster gene compared its homo-
logs in other Drosophila species in order to extend
and determine correctly its protein coding
sequence. In this work, we extended this basic
idea also to deal with frameshifts induced by gaps
in the alignments, and tested accuracy and sensi-
tivity of the resulting method on a large set of
pariwise human/mouse alignments of coding
sequences and intergenic regions, with very
encouraging results.
2. Numerical encoding

The periodic pattern in protein coding DNA
sequences is a well-known phenomenon. The pro-
minent signal detectable only in protein coding
regions, often referred to as ‘‘3-periodicity’’, is a
direct consequence of their functional role. In
order to produce a new protein a flow of informa-
tion has to be established from the DNA sequence
to the cellular machinery responsible for
protein synthesis (the ribosomes). DNA can be
seen as a string of symbols belonging from a 4-
letter alphabet. In order to encode for 20 amino
acids the DNA has to be read in words of length 3
(the codons), and thus there are 64 (43) possible
codons in DNA, 3 of which are used to encode the
end of the translation (protein building) process.
The set of rules allowing tRNAs to pair each of the
64 possible codons with the appropriate amino
acid are known, in their complex, as the genetic
code.
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Figure 1 The genetic code: the 64 possible codons, and
the corresponding amino acid (AA). ATG serves both as
methionine codon and translation start codon; STOP indi-
cates codons marking the end of translation.
Since 20 different amino acids are encoded by 61
codons, the genetic code is redundant, and the same
amino acid can be encoded by different codons (see
Fig. 1). This is the key point to explain the origin of
the 3-period: in families of codons encoding for the
same amino acid, each member is used in protein
coding DNA regions with different frequencies, lead-
ing to a codon usage pattern that is extremely
specific for each organism.

The presence of overrepresented codons in cod-
ing sequences results into an unequal usage of the
four nucleotides in the three positions of the codons
and this, in turn, results in a spectral peak at period
3 (because of the codons’ size) clearly detectable
only in coding sequences and absent in non-coding
regions.

The strength of the peak at frequency 1/3 can be
easily quantified using Fourier transformation and
evaluating the signal over noise ratio in the power
spectrum of the DNA sequence under investigation.

At primary level, a DNA sequence S [i] of length N
consists of a series of symbols belonging to an
alphabet S ¼ fA;C;G;Tg. In single sequence signal
processing techniques the sequence is mapped to
four binary signals, each of which is associated with
a specific nucleotide [13]. For example the DNA
sequence

S½i� ¼ ½ATGCGTACGCACTGACGC�
can be encoded as follows:

A½i� ¼ ½100000100010001000�
C½i� ¼ ½000100010101000101�

G½i� ¼ ½001010001000010010�

T½i� ¼ ½010001000000100000�

that is, with binary vectors indicating the presence
(1) or absence (0) of each nucleotide in each posi-
tion of the sequence.

Once indicated the discrete Fourier transform
(DFT) of the signal associated to each nucleotide
(e.g. A) as ÂðkÞ, with 0 � k � N � 1, the spectral
energy associated with sequence S[i]can be
defined as follows:

jŜðkÞj2 ¼ jÂðkÞj2 þ jĈðkÞj2 þ jĜðkÞj2 þ jT̂ðkÞj2 (1)

Then, for the 3-periodicity property, in protein
coding regions the spectral energy obtained by
the DFT of the binary signals associated to each
nucleotide shows a peak at discrete frequency
N=3. This peak is not observed in the spectral energy
of non-coding DNA regions.

Instead of single sequences, in comparative
genomics the objects of investigation are usually
aligned sequences. The pattern with which sub-
stitutions appear in the alignment can be reason-
ably expected to provide information regarding
the coding potential of conserved sequences.
The reason is that the degeneracy of the genetic
code tends to make substitutions more tolerated if
they occur in the third position of codons, the one
where they are less likely to result in a variation of
the encoded amino acid, thus maximizing the
preservation of the biological function of the
encoded polypeptide.

This, in turn, introduces a preferential substitu-
tion pattern that can be detected using methods
able to quantify the periodicities in signals (such as
the DFT). For this reason, the frequency expected to
provide maximal discrimination power between
coding and non-coding conserved sequences is thus
frequency N=3, where N is the length (number of
columns) of the alignment. For the alignment
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we can build a binary descriptor defining the
position of all the substitutions along the aligned
sequences:

M½i� ¼ ½0000010010010010011�
To look for aligned regions with mismatches occur-
ring mainly in the third position of a codon, as in
[14], we can use the position count function (PCF) to
count the number of 1’s occurring at each phase s ¼
f0; 1; 2g in the binary descriptor M parsed in non-
overlapping words of size w ¼ 3:

CM
3 ðsÞ ¼

XðN�1Þ=3
i¼0

M½3iþ s� (2)

Using the PCF, as shown in [14] the magnitude of the
DFT M̂½k�at discrete frequency N=3 can be defined as
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N

3

� �����
����
2

¼ 1

2
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Once calculated the signal strength at frequency
N=3 we need to normalize it with respect to the
average spectral noise. The average value jM̂ð1Þav j of
the squared magnitude jM̂½k�j2 of a binary descriptor,
excluding the fundamental frequency component
M̂½0�, can be calculated as in [14]:

jM̂ð1Þav j
2 ¼ 1

ðN � 1Þ N �
Xw�1
s¼0

CM
wðsÞ

 !Xw�1
s¼0

CM
wðsÞ (4)

where w ¼ 3. Finally, the signal (at frequency N=3)
to noise ratio in the power spectrum representing
the spectral coding potential (SCP) of the conserved
sequence under investigation can be calculated
using the following equation:

SCP ¼ jM̂½N=3�j
2

jM̂ð1Þav j
2

(5)

That is, we measure the coding potential of the
alignment as the signal at frequency N=3 normalized
with respect to the signal present at every fre-
quency of the spectrum excluding the dc component
(M̂½0�).

A potential problem affecting the SCP is repre-
sented by frame shifts introduced by gaps in aligned
sequences. A phase shift in a member of a pairwise
sequence alignment leads to an enrichment of sub-
stitutions in a wrong phase and this might result in
an artifactual increase of the three periodicity in
the substitution pattern. The problem can be solved
considering the differences in the pattern of gaps
observable in protein-coding and non-coding aligned
sequences. In alignments of coding sequences gaps
often occur in multiples of three (corresponding
with amino acid indels in the translated protein)
and, even if the presence of a single gap disrupts the
correct phase alignment, the correct phase is recov-
ered by the presence of other gaps nearby, recover-
ing the correct phase. Starting from these
observations, metrics able to calculate the amount
of columns in the alignment representing different
pairs of aligned phases are highly informative on the
functional nature of the conserved regions, since a
pair of coding aligned sequences is expected to show
a very strong phase conservation as opposite of non-
coding ones.

In our experiments we used a phase conservation
metric in order to protect the calculated coding
potential score from 3-periodic substitution pat-
terns randomly introduced by frame shifts intro-
duced by gaps in the aligned sequences. As
frame-recovery test we adopted the technique pro-
posed by Noguchi and colleagues [15]. Possible
frame shifts can be classified with respect to the
remainders of gap lengths divided by three. There
are thus three possible cases. A three-base shift
does not introduce misalignments of reading
frames, regardless of the location of the gap in
either of the sequences aligned. A single base shift
caused by a gap in one sequence corresponds to a
two base shift in the other, or vice versa (see Fig. 2
A—C). However, the examples illustrated in Fig. 2
are based on prior knowledge of the correct reading
frame, which is not available during alignment of
unannotated sequences. Hence, in [15] the authors
defined an index representing the ‘phase lag’
between two aligned sequences with three base
periods.

According to [15] we thus calculate the phase lag
status associated to each nucleotide in both the
sequences aligned. Let a (phase — 0, 1 or 2) be
the phase in the first sequence at column i in the
alignment and b (phase — 0, 1 or 2) the correspond-
ing phase label in the second sequence at the same
position. We counted the occurrences of each phase
alignment combination (PAC) along the alignment
columns and we then calculated its frequency
among all the gap-free columns in the alignment.

We then define the frame recovery test (FRT) as
the frequency with which the most frequent phase
pair is found in thegapless positions of the alignment:

FRT ¼ argmax ða;bÞ
PACða; bÞ

gfc
(6)

where PAC(a, b) is the phase alignment combination
of each possible pair of phases (a, b), and gfc
denotes the number of gap-free columns in the
alignment. The use of FRT as part of a coding
potential metric is justified by the observation that
in coding exons of conserved genes, gaps in the
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Figure 2 Gaps in aligned sequences and the consequent variation of phase of aligned pair of nucleotides produces three
main classes of frameshifts, according to the number of contiguous gaps and their position in the top sequence or in the
bottom sequence.
alignment do not shift the reading frame or recover
the frames even if they are shifted and, more
important, this index can be applied in absence of
prior knowledge about the real reading frame of the
aligned sequences.

The final coding potential metric we introduce is
defined by the multiplication of the SCP (as
described by Eq. 5) and the FRT:

CP ¼ SCP � FRT (7)

3. Experiments

In order to assess the ability of our method to
discriminate between coding and non-coding con-
served sequences we built two evaluation datasets.
The coding dataset contained 3061 alignments
obtained comparing 1580 pairs of human and mouse
orthologous coding sequences retrieved from Bio-
mart. The simplest way to obtain a non-coding
sequence set was to align whole genomic intergenic
regions, and then to remove from the alignment
sequences overlapping genomic regions annotated
as coding. In particular, we employed the human
genomic sequences annotated in the ENCODE pro-
ject, and their alignment with the corresponding
homologs in mouse. The high quality of the existing
annotations for these regions allowed us to safely
discriminate between alignments containing pro-
tein coding regions, even if we could not exclude
a priori the presence of unknown protein coding
genes or pseudogenes. The comparison of ENCODE
regions and their homologs in mouse produced 4123
alignments. The comparison of genomic coordinates
of the alignments with the content of the ENTREZ
and VEGA gene databases led to the removal 1896
alignments, 1771 of which overlapped annotated
coding sequences and 125 overlapped to annotated
pseudogenes. Thus, the resulting non-coding set was
composed by 2227 aligned sequence pairs. The
alignments (coding and non-coding) ranged in length
from 42 to 1032 base pairs, with no significant
difference in the length distribution of coding and
non-coding sets.

We further improved the quality of our align-
ments set removing all the alignments shorter than
60 nucleotides and with less than 5% of divergence
at nucleotide identity level. This is expected to
provide optimal conditions for our tests, since we
are trying to quantify the amount of differential
variation observable in different codon positions
and thus we need to grant the existence of both a
minimal amount of variation and a relatively high
number of codons.

The final positive set (coding set) comprised 2929
alignments while the negative set (non-coding set)
was composed by 1779 pairwise alignments.

Each alignment was analyzed in order to measure
the signal over noise ratio introduced at frequency
N=3 by substitutions occurring in the third position
of codons corrected by a term accounting for the
frame shift recovery due by the non-random position
and density of gaps in alignments protein coding
conserved sequences. The CP index calculated
according to Eq. (7) ranged from 0.00 to 612.09 in
the 2929 alignments composed only by coding
sequences, and from 0 to 35.12 in the 1779
sequences of the non-coding set. The cumulative
distribution of CP values in coding and non-coding
sets is shown in Fig. 3. As we can see, CP is highly
discriminative between the alignments contained in
our benchmark sets.

Table 1 shows the number of coding sequences
correctly classified (true positives), and uncorrectly
classified as non-coding (false negatives), and
vice versa for non-coding (false positives and true
negatives), with the corresponding sensitivity and
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Figure 3 Fraction of coding (continuous line) and non-coding alignments (dotted line) with CP score greater than the x-
axis value. A CP cutoff set to 3.8 allows for the correct prediction of 83% of the positive (protein coding) set with a false
positive rate of 1.0%.

Table 1 At different CP score threshold values, frac-
tion of alignments correctly and uncorrectly classified
as coding (true positives–—TP, false positives–—FP), and
correctly and uncorrectly classified as non-coding (true
negatives–—TN, false negatives–—FN), and the corre-
sponding sensitivity (TP/(TP + FN)) and specificity
(TN/(TN + FP)) values

CP TP FP TN FN Sens Spec

0.0 1 1 0 0 1.00 0.00
2.0 0.91 0.07 0.93 0.09 0.91 0.93
4.0 0.82 0.01 0.99 0.18 0.82 0.99
6.0 0.74 0.00 1.00 0.26 0.74 1.00
specificity values at different CP threshold values.
For example, the CP score at threshold 4.0 is able to
classify correctly 2405 coding alignments (82.10% of
coding set) yielding only 12 false positives (less than
1.0% of the non-coding set).

Further examination of false positive alignments
revealed that seven of the false positives obtained
by the method matched transcribed regions (that is,
annotations like RNAs, cDNAs, ESTs), while four
more overlapped proteic features (like conserved
domains) indicating the possible presence of as yet
unannotated genes in nearly all of our ‘‘false posi-
tive’’ predictions.
4. Conclusions

The periodicity of three detectable at nucleotide
level in coding regions has been observed by many
authors, even if spectral techniques derived by this
observation, to our knowledge, have never been
applied to a comparative analysis. In this paper
we presented the application of spectral techniques
to aligned sequences and we demonstrated that the
signal over noise ratio at discrete frequency N=3
(where N is the length of the alignment) obtained
transforming a binary indicator encoding the posi-
tions of substitutions can be effectively used for
discrimination between protein coding and non-cod-
ing aligned DNA sequences.

This observation is a direct effect of the charac-
teristic selective pressure to which only functional
and protein coding conserved regions are subject
during evolution. The important problem of periodi-
cities disruption due by the presence of frame shifts
in pairwise alignments has been addressed using a
relatively simple frame recovery test. The method
we presented can be further improved using more
complex signal processing approaches and introdu-
cing other correction factors.

A straightforward application of our method is
the annotation of newly sequenced genomes,
because, once defined an appropriate cutoff value,
a classification can be obtained in total absence of
any previous knowledge regarding the genomic
regions under investigation. Because the origins of
the signal we investigated in this work is the selec-
tive pressure acting on protein coding regions and
because this is due to the presence of a near uni-
versal genetic code allowing the use of information
encoded in DNA for protein synthesis, we expect the
method to be valid for investigations in pairs of
species other than human and mouse, as well as
the analysis of multiple sequence alignments, or the
characterization of RNA sequences as coding
(mRNAs) or non-coding. Indeed, our method is cur-
rently being integrated in a gene prediction tool
which will be tested on genome-wide alignments of
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different species, and made available to the
research community.
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