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The main objective of the present study is the investigation of volume fraction effects on
the collision statistics of nonsettling inertial particles in a granular medium as well as
suspended in an unsteady homogeneous isotropic turbulent flow. For this purpose, differ-
ent studies with mono-disperse Lagrangian point-particles having different Stokes num-
bers are considered in which the volume fraction of the dispersed phase is varied
between 0.001 and 0.01. The fluid behavior is computed using a three-dimensional
Lattice-Boltzmann method. The carrier-fluid turbulence is maintained at Taylor micro-
scale Reynolds number 65.26 by applying a spectral forcing scheme. The Lagrangian
particle tracking is based on considering the drag force only and a deterministic model is
applied for collision detection. The influence of the particle phase on the fluid flow is
neglected at this stage. The particle size is maintained at a constant value for all Stokes
numbers so that the ratio of particle diameter to Kolmogorov length scale is fixed at 0.58.
The variation of the particle Stokes number was realized by modifying the solids density.
The observed particle Reynolds and Stokes numbers are in between [1.07, 2.61] and
[0.34, 9.79], respectively. In the present simulations, the fluid flow and the particle
motion including particle-particle collisions are based on different temporal discretiza-
tion. Hence, an adaptive time stepping scheme is introduced. The particle motion as well
as the occurrence of inter-particle collisions is characterized among others by Lagran-
gian correlation functions, the velocity angles between colliding particles and the colli-
sion frequencies. Initially, a fluid-free particle system is simulated and compared with the
principles of the kinetic theory to validate the implemented deterministic collision model.
Moreover, a selection of results obtained for homogeneous isotropic turbulence is com-
pared with in literature available DNS and LES results as well. According to the per-
formed simulations, the collision rate of particles with large Stokes numbers strongly
depends on the adopted volume fraction, whereas for particles with small Stokes numbers
the influence of particle volume fraction is less pronounced. [DOI: 10.1115/1.4005681]

Keywords: solid volume fraction, Lattice-Boltzmann method, turbulence, point-particles,
collision model

1 Introduction

In nature and many industrial applications, collision as well as
coagulation or agglomeration processes have a significant effect
on the fluid dynamic transport of particles. Clotting of blood, col-
loidal systems and pneumatic conveying of solid particles are
only a few examples. In order to calculate the coagulation rates of
particles within a specified flow configuration, the influence of
different particle properties and fluid parameters on particle
motion must be well understood (Ho and Sommerfeld [1]). The
rate at which particles collide is the critical quantity required to
model the evolution of such particle systems. In the past, a huge
number of theoretical analyses on the collision rate of particles in
turbulent flows have been carried out. Saffman and Turner [2]
provided an approximation for the collision rate of drops in
atmospheric turbulence. In their analysis, the particles were small

compared to the smallest length scales of the flow, so the particles
followed the turbulence completely. The resulting collision rate
for mono-disperse particles is given by:
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where nP is the particle number concentration, dP is the particle
diameter, e is the dissipation rate of turbulent energy and � is the
kinematic fluid viscosity. In Eq. (1) and in the equations men-
tioned below, N is a collision rate per unit volume and time inter-
val. Another limiting case was studied by Abrahamson [3]. He
analyzed the motion of heavy particles suspended in high intensity
turbulence neglecting external forces. According to the kinetic
theory, the particle motion was completely uncorrelated concern-
ing the fluid motion. Under assumption that all components of the
particle fluctuating velocity u0P are isotropic, the resulting collision
rate for one particle class is given by Ref. [3]:
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It is well known that both limiting cases are rather rarely found in
practical gas-solid systems. For this reason, Williams and Crane
[4] analyzed the fluctuating relative motion of two particles in a
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turbulent gas flow and derived an expression for the collision rate
of particles in turbulent flows. A more general analytical deriva-
tion based on the formulation of Williams and Crane [4] was pro-
posed by Kruis and Kusters [5]. They took into account the effects
of the particle inertia as well as the difference in densities of fluid
and particles. The resulting collision rate was determined as func-
tion of the relative velocity between two equal-sized particles uPij:

N ¼
ffiffiffiffiffiffi
8p
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In contrast to the Saffman and Turner limit, Eq. (1), and the ki-
netic theory, Eq. (2), where the collision timescales are based ei-
ther on the turbulent dissipation rate or on the mean particle
velocity fluctuations, the collision frequency is determined in this
equation by the relative velocity of particle pairs. A detailed
description for the calculation of the relative particle velocity for
an accelerative and a shear flow can be found in Ref. [5]. Based
on the derivations mentioned above, Mei and Hu [6], Alipchenkov
and Zaichik [7] as well as Wang et al. [8] and Zaichik et al. [9]
developed later more general statistical models for the description
of the collision rate in turbulent flows.

In contrast, You et al. [10] investigated the collision rate in a
vertical two-phase flow by applying particle tracking velocimetry
(PTV) measurements. A detailed comparison between experi-
ments and direct numerical simulations (DNS) of colliding inertial
particles in a nearly isotropic turbulence was published by Salazar
et al. [11]. The experimental setup consisted of a cubic box with
single fans in the eight corners. This made it possible to sustain
nearly isotropic turbulence in the center of the box [11].

Furthermore, numerical methods can be used for analyzing the
influence of particle properties on collision behavior. Sundaram and
Collins [12], Wang et al. [13] and Février et al. [14] examined in a
deterministic frame inter-particle collisions of hard spheres in a
forced isotropic turbulence applying a particle tracking method
under the assumption of point-particles. Furthermore, the influence
of sub-grid fluid turbulence effects on the statistics of heavy collid-
ing particles suspended in steady homogeneous isotropic turbulence
was analyzed by Fede and Simonin [15]. However, these
approaches suffer from the limitations that the particle size must be
smaller than the Kolmogorov length scale and the particle Reynolds
number should be small to ensure Stokes flow around the particle.
In the recent years, some groups overcame those limitations by
applying fully-resolved simulations of finite-sized particles, e.g.,
Ten Cate et al. [16], Uhlmann [17], Lucci et al. [18] and Dietzel
et al. [19]. In those simulations, the volume fraction of the dispersed
phase was considered up to 10%. An extensive overview of the
actual developments in the field of the turbulent collision of inertial
particles using DNS was recently published by Wang et al. [20].

Notwithstanding of diverse investigations mentioned above, a
multitude number of questions with regard to transport and colli-
sion of primary particles in turbulent flows are still unanswered.
One of the major challenges is to understand the motion and
hydrodynamic interaction of finite-sized particles suspended in
turbulent fluid flows. At this, a subject of specific interest is the
short-range hydrodynamic interaction during the approach of par-
ticles, e.g., the displacement of fluid shortly before a collision. In
addition to this, the combination of other local phenomena such as
the relative motion between particles, particle-particle collisions
and particle segregation are of particular interest as well. For
example, a specific condition is the influence of the volume frac-
tion of the dispersed phase on the relative motion of colliding par-
ticles in turbulent flows. In literature, this effect was already
partly analyzed by applying DNS [12] and large eddy simulations
(LES) [21] of nonsettling spherical particles suspended in homo-
geneous isotropic turbulence.

Sundaram and Collins [12] compared the collision frequencies
at various particle number densities by maintaining the same par-
ticle response times to ensure that the dynamic spatial arrange-

ment and velocity distributions of particles remain identical. They
observed that with increasing volume fraction the collision fre-
quencies follow a conventional squared dependence. However, a
more general implication could not be derived, since the particle
Stokes number was kept constant at 1.0 [12]. Another analysis
based on LES was performed by Laviéville et al. [21]. As it is to
be expected, the collision frequency computed from LES was
smaller than the one given by the kinetic theory and increases
with increasing volume fraction with respect to the particle Stokes
number. This trend was qualitatively reproduced by an analytical
approximation proposed by Williams and Crane [4] (see discus-
sion above), but the agreement is not fully satisfactory, especially
for smaller Stokes numbers. Furthermore, the obtained differences
between the various volume fractions were unfortunately not eval-
uated. Hence, the present investigations are precisely addressed to
this issue.

The main objective of this contribution is to analyze the volume
fraction effects of the dispersed phase on the collision statistics of
nonsettling inertial particles suspended in unsteady homogeneous
isotropic turbulent flow under the assumption of point-particles.
The present analyses are particular focused on how an increasing
volume fraction affects the relative motion of colliding particles.
Moreover, this study aims to identify how the collision frequency
is affected by the number concentration of particles. It would also
be interesting to discover whether there are any significant differ-
ences between DNS and LES, especially when the particle diame-
ter is smaller than the Kolmogorov length scale. For this purpose,
the significance for different particle Stokes numbers is investi-
gated and parameterized. The acquired knowledge about basic
collision behavior will be necessary to improve an efficient sto-
chastic Lagrangian collision model, proposed by Sommerfeld
[22], which is principally based on the fluctuating velocity compo-
nents of the real and fictitious collision partners. The present study
is intended to provide the basis for aspired enhancements.

The fluid behavior is computed using a three-dimensional
Lattice-Boltzmann method (LBM) including a spectral forcing
scheme to generate the turbulence field. The LBM is a numeri-
cally very efficient approach for simulating laminar and turbulent
flows [23]. Moreover, this method has great advantages for con-
sidering a flow with fully-resolved finite-sized particles or
agglomerates which is the final objective of this study, but not
part of this contribution. However, collisions between particles,
either Lagrangian mass points or fully-resolved finite-sized par-
ticles, are modeled by the same deterministic collision algorithm.
Hence, another goal of this study is to present a validation of the
implemented collision routines using the Lagrangian approach
and to compare the observed results with in literature available
DNS and LES results.

The third and last objective of the present investigations is to
provide a detailed dataset about collision statistics which will be
used for a direct comparison of Lagrangian mass points with fully-
resolved finite-sized particles. Unfortunately, at present in literature
existing datasets cannot be used, since most particle properties such
as volume fraction aP or the ratio of particle diameter to Kolmo-
gorov length scale dP/kK are by definition too small for a currently
practicable application of fully-resolved particles, e.g., dP/kK� 1
and aP� 0.001. The necessary fluid domain dimensions would be
too large for the resolution of the required turbulent length scales,
having regard to currently available computing capacities.

The present paper is organized as follows. The simulation
method including governing equations required for the performed
DNS are presented in Sec. 2. In Sec. 3, first, the new implemented
deterministic collision model is validated using a fluid-free particle
system. Then, the turbulent carrier fluid, more precisely homogene-
ous isotropic turbulence, is characterized. The last subsections are
dedicated to the analysis of the main results concerning particle
motion as well as collision statistics. Additionally, a comparison of
the obtained results with those reported in Refs. [12–21] is carried
out. And finally, in Sec. 4, a conclusion of the paper as well as an
outlook about further investigations is presented.
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2 Method Description

In the following, the applied methods and models which were
implemented in this framework are briefly described. This
includes the basic equations of the Lattice-Boltzmann method, a
general summary of the spectral forcing of the turbulent velocity
field as well as the Lagrangian tracking of the injected primary
particles and; finally, a detailed derivation of time-sequenced col-
lision detection and the implemented algorithm.

2.1 Lattice-Boltzmann Method. The computation of the
fluid flow is performed using a three-dimensional Lattice-Boltz-
mann method (LBM). Basically, the LBM is predicated on a
highly simplified description of the micro dynamic of single fluid
molecules. In doing so, the interaction between the fluid particles
is not directly resolved, but modeled by the Boltzmann equation.
Therefore, the discretized Boltzmann equation describes the
behavior of fluids on a so-called mesoscopic level [24,25],
whereas conventional models such as the Navier-Stokes equa-
tions are based on the conservation laws formulated on the mac-
roscopic level. By applying the LBM, fictive fluid elements
represented by a probability distribution function move along a
lattice mesh and collide at the lattice nodes. Besides the spatial
discretization realized by the numerical grid, velocity and time
are discretized as well. Information is allowed to propagate to a
neighboring lattice node in one of the discrete lattice directions
at one time step only, followed by a collision step. The key vari-
able of the Boltzmann equation is the discrete distribution func-
tion fri. It represents the number of fictive fluid elements which
have the velocity nri at the location x and the time t. Fluid den-
sity and momentum can be derived as moments of the discrete
distribution function:

q x; tð Þ ¼
X

r

X
i

fri x; tð Þ (4)

q x; tð Þ u x; tð Þ ¼
X

r

X
i

nri fri x; tð Þ (5)

The Lattice-Boltzmann equation, Eq. (6), characterizes the tempo-
ral development of fri. It is solved with the help of the single
relaxation time collision operator approximated by the Bhatnagar-
Gross-Krook (BGK) approach [26]:

fri xþ nri Dt; tþ Dtð Þ � fri x; tð Þ

¼ �Dt

s
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ð0Þ
r i x; tð Þ
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where f
ð0Þ
ri is the discrete equilibrium distribution function, Dt the

length of one time step, Dx ¼ nri Dt the width of the spatial dis-
cretization and s the relaxation time. The forcing term Fext,i is
used to introduce an external vector-valued force F into the
Lattice-Boltzmann equation. In this study, the forcing term of
Guo et al. [27] is applied:

Fext;i ¼ 1� 1

2s
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Here, parameter cs is the speed of sound and u is the fluid veloc-
ity. The number of available discrete velocity directions ri that
connect the lattice nodes with each other depends on the applied
model. This study uses the D3Q19 model shown in Fig. 1 which
applies to a three-dimensional grid and provides 19 propagation
directions. These directions can be distinguished in six vertical
and horizontal velocity vectors (r¼ 1), twelve diagonal velocity
vectors (r¼ 2) and one direction for zero velocity (r¼ 0). During

the propagation step, information is transported along these lattice
directions—left side of Eq. (6)—followed by the collision step—
right side of Eq. (6). The discretized equilibrium distribution f

ð0Þ
ri

and the appropriate weighting factors for the D3Q19 model xri

are given below:

f
ð0Þ
ri ð x; tÞ ¼ xri q 1þ 3 nri u
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2c2

 !
(8)

xri ¼
1=3

1=18

1=36

;
;
;

8<
:
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r ¼ 2; i ¼ 1:::12

(9)

Furthermore, a grid constant c can be defined as a ratio of spa-
tial and temporal discretization which is related to the speed of
sound cs. The local pressure can be derived from the local density
and the speed of sound using Eqs. (10) and (11):

c ¼ Dx

Dt
¼

ffiffiffi
3
p

cs (10)

p x; tð Þ ¼ c2
s q x; tð Þ ¼ 1

3

Dx2

Dt2
q x; tð Þ (11)

The relation between the dynamic viscosity of the Lattice-
Boltzmann scheme and the relaxation parameter s can be
described in the following way:

g ¼ 1

6
q c2 2s� Dtð Þ (12)

A more detailed method description as well as examples of end
use fields of the applied LBM can be found in Dietzel et al. [19]
and Dietzel and Sommerfeld [28].

2.2 Turbulence Forcing. The spectral forcing scheme of
Eswaran and Pope [29] is used to generate isotropic turbulence.
Turbulence is realized by generating a force in spectral space
and introducing it as a change of velocity in the flow field. As a
result, motion is created at large length scales. This is the basis
for the development of motion at small length scales in form of
an energy cascade which dissipates over time. For this purpose,
the complete three-dimensional velocity field is transformed dur-
ing each time step into spectral space by the following Fourier
transformation:

~u k; tð Þ ¼ 1

NCells

X
l1

X
l2

X
l3

u x; tð Þe �ikxð Þ (13)

where NCells is the total number of cells. The parameter ~u k; tð Þ
indicates the corresponding Fourier coefficient of the fluid veloc-
ity at the wave number k and the time t. In the applied scheme,

Fig. 1 Velocity direction vectors of the D3Q19 model
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the forcing is performed by adding a forcing acceleration ~aF to the
given fluid acceleration ~a during a fluid time step [29]:

d ~u k; tð Þ
dt

¼ ~a k; tð Þ þ ~aF k; tð Þ (14)

Since large eddies should be created, the forcing acceleration is
only applied in a low wave number band. Hence, the largest
forced wave number kF,max is equal to or less than two. For each
forced wave number, the implemented procedure combines six in-
dependent Uhlenbeck-Ornstein stochastic processes [30]:

<;= : ~aF k; tþ Dtð Þ ¼ 1� Dt

TF

� �
~aF k; tð Þ

þ C ZF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 r2

F Dt

TF

s
(15)

This process is characterized by the correlation timescale TF, the
forcing amplitude rF and a Gaussian random number C with a
mean of zero and variance of one. The forcing is limited to the
range of wave numbers by a forcing cut-off function ZF, proposed
by Overholt and Pope [31]:

ZF ¼ tanh
kF;max � k

f kF;max

� �
H kF;max � k
� �

(16)

The abruptness of the cut-off was determined experimentally and
is defined as f¼ 0.2 [31]. After the forcing within the given time
step is completed, the three-dimensional velocity field is trans-
formed back into physical space via an inverse Fourier transfor-
mation (in analogy to Eq. (13)). Under application of these
equations and fully periodic boundary conditions, the homogene-
ous isotropic turbulence field is generated over the entire compu-
tational domain.

2.3 Lagrangian Particle Tracking. The transport of mono-
disperse spherical particles is simulated by the Lagrangian
approach which considers a discrete particle traveling in a contin-
uous fluid medium. Since periodic boundary conditions are
applied, particles leaving the computational domain are re-
injected on the opposite side with the same velocity. The change
of the particle location and the linear components of the particle
velocity are calculated by solving a set of ordinary differential
equations along the particle trajectory [32]:

dxP

dtP
¼ uP (17)

mP
duP

dtP
¼
X

Fi (18)

Here, xP is the particle position vector, uP is the particle linear ve-
locity vector, mP is the particle mass, DtP the Lagrangian particle
time step and Fi represents the different relevant forces acting on
the particle. These equations, which are solved simultaneously for
all particles in the computational domain, determine the momen-
tum transfer from the fluid phase to the particles and vice versa.

Since the particles are restricted to densities much larger than
the fluid and to diameters explicitly larger than the molecular free
path of the fluid, a random force due to Brownian motion is
neglected. Moreover, by applying particle densities much larger
than the fluid density, the particle motion may be dominated by
the drag force Fd. This assumption is underlined through the
investigations by Hjelmfelt and Mockros [33], in which the influ-
ence of different forces within the equation of motion was succes-
sive analyzed. For this reason, Fd is considered in the equation of
motion for the particles only and is given by:

Fd ¼
mP u� uPð Þ

sP
(19)

where the particle response time sP is defined as:

sP ¼
qP d2

P

18 g
24

cd ReP
(20)

with the particle Reynolds number:

ReP ¼
q dP u� uPj j

g
(21)

The fluid velocity u is extracted at the position of the particles
(locally undisturbed by the particles), whereby the vector-valued
components are determined by a trilinear interpolation method
using the eight nearest fluid nodes neighbored to the given particle
position. Nevertheless, this approach could lead to deviations,
since the applied interpolation procedure reconstructs the fluid
velocities of a complex eddy structure only to a certain degree.

For the drag coefficient cd the following correlation for a single
sphere, proposed by Schiller and Naumann [34], is used:

cd ¼
24

ReP
1þ 0:15 Re0:687

P

� �
; ReP < 1000

cd ¼ 0:44 ; ReP � 1000

(22)

However, the drag coefficient of a particle in a two-phase flow is
partly affected by the existence and movement of neighboring
particles. In addition, the presence of fluid shortly before a colli-
sion causes a lubrication force. Those short-range phenomena
may partly influence the interaction between particles. But in
order to realize a comparison with previously published DNS
results such as [12,15], the modification of turbulence by the par-
ticles and the hydrodynamic interaction between particles is not
considered. Nevertheless, it should keep in mind that these simpli-
fications may have certain effects on the observed collision
statistics.

In order to calculate the particle motion, the Eqs. (17) and (18)
were integrated over DtP. The integration was performed using an
analytical approach presented by Sommerfeld [35]. The relevant
time step is calculated in an adaptive way and is chosen by the
global minima of the time required to cross the half length of a
computational cell, the particle response time and the time to
cross a turbulent eddy. At this, the time between two particle-
particle collisions plays only a subordinate role, since the deter-
ministic resolution of inter-particle collisions is realized by a
time-sequenced collision algorithm. However, to avoid the occur-
rences of interpenetrations, the resulting maximum time step is in
turn limited through an additional condition which is defined as
will be described below (Eq. (25)).

Fluid flow and particle motion are calculated with different
temporal discretization. Generally, the time step Dt for the LBM
is larger than the time step restrictions for the particle tracking.
After the simulation of the flow field all particles are tracked
simultaneously with the identical time step DtP until the new time
level is reached. Then the fluid flow is recalculated until the next
time level. Hence, during the Lagrangian tracking the particles
view a frozen flow field.

2.4 Deterministic Collision Algorithm. In a particulate tur-
bulent flow, the determination of particle trajectories and particle
collisions depends both on the particle-particle interactions and on
the temporal and spatial varying turbulence. Because the particles
are affected by the time-varying flow field, inter-particle collisions
cannot be projected forward in time indefinitely. In the framework
of the presented study, the detection and modeling of particle-
particle collisions is computed using a deterministic collision
model proposed by Sundaram and Collins [36]. This model
assumes that the collisions are binary and quasi-instantaneous.
Furthermore, the inelastic contact between two hard spheres
occurs in a single point. In order to determine whether a collision
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occurs, a time-sequenced collision detection and accomplishment
algorithm is applied. A program flow chart of the implemented
method is shown in Fig. 2.

At first, all particles are tracked to the end of the present
Lagrangian particle time step. Inter-particle collisions have
occurred, if particles overlap after the actual time interval. In the
case of a collision, the distance between the centers is equal to or
less than the half sum of the two particle diameters. This condition
can be written as:

xPij tþ Dtð Þ
		 		 � 0:5 dPi þ dPj

� �
(23)

The determination of all existing collision pairs is realized under
application of the cell-index method [37]. The potential collision
partners of a given particle are found among the other particles in
the cell plus the particles in all 26 neighboring cells. The list of
particles in each cell is set up and updated using linked lists.
Assuming that the particles move at constant velocities during the
particle time step, the collision time for each overlapping pair
Dtij,c is calculated by solving the following quadratic equation:

xPij tþ Dtð Þ þ uPij tþ Dtð Þ Dtij; c

		 		 ¼ 0:5 dPi þ dPj

� �
(24)

Equation (24) suffers from the limitation that it will not detect a
particle-particle collision, if complete interpenetration occurs dur-
ing the given particle time step. To minimize the occurrences of
interpenetrations the particle time step should satisfy the next con-
dition [36]:

uP;max DtP
dP

� 1:0 (25)

Subsequently, the determined collision times (i.e., the time
between the beginning of the actual time step and the time of parti-

cle collisions) are sorted in descending order. In the time-
sequenced implementation, the first overlapping pair is moved
backward in time to the position of collision. The determination of
the post-collision velocities u�Pi and u�Pj of the collision couple is
based on the laws of impact provided by Tanaka and Tsuji [38].
The new linear velocity components of both particles u�P are calcu-
lated in terms of the velocity components before the collision uP:

u�Pi ¼ uPi þ
J

mPi
(26)

u�Pj ¼ uPj �
J

mPj
(27)

In the above equation, mPi and mPj are the masses of each particle
and J is the vector of the momentum. As presented in Fig. 3, the
momentum vector can be divided into normal Jn and tangential Jt

components:

J ¼ Jn en þ Jt et (28)

where en is the normal and et is the tangential unit vector. The
normal unit vector directed from particle i to j is given by:

en ¼
xPj � xPi

xPj � xPi

		 		 (29)

Using the relative velocity between both particles uPij, the tangen-
tial slip velocity of the particle j to particle i at the point of contact
uPij,t and the tangential unit vector et can be written as:

uPij; t ¼ uPij � en � uPij

� �
en (30)

et ¼
uPij; t

uPij; t

		 		 (31)

A relationship between the normal relative velocity of the par-
ticles before and after the impact is created by introducing the nor-
mal restitution coefficient e:

e ¼ �
en � u�Pij

en � uPij

(32)

The following equation describes the skew of an impact. During a
head-on collision the skew parameter w is zero while with w
greater than zero a skew collision occurs.

Fig. 2 Program flow chart for the deterministic collision model
(in analogy to Ref. [36]). Fig. 3 Pictorial representation of two colliding particles [38]
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w ¼
uPij; t

		 		
en � uPij

(33)

In case of a nonsliding impact, the tangential restitution coeffi-
cient becomes zero and the dynamic coefficient of friction ld

must be replaced by the static friction coefficient ls. Under appli-
cation of this relationship, the limiting skew parameter w0 can be
defined as:

w0 ¼ 3:5 ls 1þ eð Þ (34)

For a nonsliding collision, the skew parameter is equal to or less
than the limiting skew parameter. In this case, the new linear
velocities of both particles u�P can be calculated by:

u�Pi ¼ uPi �
mPeff

mPi
1þ eð Þ en � uPij

� �
en þ

2

7
uPij; t et


 �
(35)

u�Pj ¼ uPj þ
mPeff

mPj
1þ eð Þ en � uPij

� �
en þ

2

7
uPij; t et


 �
(36)

where the effective particle mass mPeff is defined as:

mPeff ¼
mPi mPj

mPi þ mPj
(37)

If the skew parameter is greater than the limiting one, a sliding
collision occurs. The new components of the particle velocities
depend in this case on the dynamic coefficient of friction, see Eqs.
(38) and (39). A detailed derivation of the present collision opera-
tors can be found in the Ph.D. thesis of Decker [39].

u�Pi ¼ uPi � 1þ eð Þ mPeff

mPi
en � uPij

� �
en � ld etð Þ (38)

u�Pj ¼ uPj þ 1þ eð Þ mPeff

mPj
en � uPij

� �
en � ld etð Þ (39)

After the executed inelastic collision, both particles are again
moved forward to complete the actual particle tracking time step.
New overlaps may be added to the list of colliding particles, i.e.,
in the case of multiple particle collisions within one tracking time
step, while processed or nonexistent ones are deleted. These colli-
sion computations are carried out until no overlaps are left.

3 Discussion of Results

In this section, the main results of the performed direct numeri-
cal simulations are discussed. After a short validation of the
implemented deterministic collision model using a fluid-free parti-
cle system (i.e., granular medium), the characterization of the tur-
bulent fluid phase is introduced. Subsequently, the motion of
colliding particles, which are suspended in unsteady homogeneous
isotropic turbulence, is analyzed among others through the
obtained collision frequencies as a function of various solid vol-
ume fractions.

As already mentioned, the used method basically consists of a
spectral turbulence forcing scheme based on LBM and a Lagran-
gian point-mass particle tracking including a drag-law model and
a deterministic description of inter-particle collisions. This is a
standard approach and well established in literature. Therefore,
the present results may allow a review as well as a possible reas-
sessment of previously published results with respect to the
observed influence of the volume fraction.

3.1 Fluid-Free Particle System. In accordance with Sun-
daram and Collins [12], the previously described deterministic
collision model was validated in a fluid-free particle system. The
computational domain is a cubic box with fully periodic bounda-

ries. At the beginning of these calculations, all particles are initial-
ized with random nonoverlapping initial positions. Based on the
kinetic theory, the initial velocities of the injected particles corre-
spond to a Maxwellian velocity distribution [12]. The collision
between two hard spheres is adopted as fully inelastic. Hence, the
coefficients of restitution, static friction and dynamic friction are
set to 1.0, 0.0 and 0.0. Since no fluid forces are considered, the
particle motion is solely affected by inter-particle collisions. For
this reason, the total momentum of two colliding particles as well
as the total kinetic energy summed up over all particles in the sys-
tem should be preserved.

Figure 4 presents the time-dependent developing of the colli-
sion rate observed from the simulation related to the collision rate
obtained from the principles of the kinetic theory. According to
the kinetic theory, the relative motion of the particles is com-
pletely uncorrelated to each other. This behavior was analyzed by
Abrahamson [3] and is given by Eq. (2). As illustrated in Fig. 4,
the ratio of the observed collision rate to the theoretical collision
rate fluctuates around the given analytical solution of 1.0. The
maximum difference is about 5.0%. This small deviation may be
caused by variations in the spatial distribution of the particles
such as preferential concentration.

For verifying the energy conservation of the present fluid-free
system, the probability density functions of the particle velocity
modulus at the beginning of a simulation as well as the velocity
modulus of colliding particles measured during a simulation are
compared in Fig. 5. In this case, the velocity distribution of the
initialized particles corresponds to the kinetic theory. As a result,
the shapes of both distributions show an adequate agreement. For
this reason, the energy content of the system is preserved when
inter-particle collisions take place. The present comparison of nu-
merical and theoretical results (see Figs. 4 and 5) indicates the
correctness of the implemented collision routines.

3.2 Homogeneous Isotropic Turbulence. In the present
analysis, Lagrangian particles are tracked in a homogeneous iso-
tropic turbulent flow. The particles are suspended in a fluid with
density qF¼ 1.17 kg/m3 and kinematic viscosity �¼ 1.47� 10�5

m2/s. The computational domain is a cubic box of 643 cells with
fully periodic boundaries. This is a standard configuration in turbu-
lence research and allows comparison with literature, e.g., Sun-
daram and Collins [12], Fede and Simonin [15], Laviéville et al.
[21] and Sommerfeld [22]. To generate a statistically well founded
initial turbulent flow field, the particle-free fluid flow was forced
for six eddy turnover times. Typical turbulence characteristics
resulting from this simulation are summarized in Table 1, similar to
the model studies in Refs. [12,15], which are additionally listed in
Table 1 for easy comparison.

Fig. 4 Fluctuation of collision rates N observed in a fluid-free
particle system as a function of the nondimensional tracking
time (closed symbols). The solid line indicates the theoretical
reference value based on the kinetic theory, cf. Eq. (2).
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Turbulent kinetic energy kF and dissipation rate e of the turbu-
lent fluid flow are evaluated from the three-dimensional energy
spectrum E(k), which is computed using the Fourier-transformed
turbulent velocity field:

kF ¼
ð kmax

0

E kð Þ dk (40)

e ¼ 2�

ð kmax

0

k2 E kð Þ dk (41)

In homogeneous isotropic turbulence, the integral length scale kInt

can be computed also from the three-dimensional energy spectrum
as follows:

kInt ¼
3p

4 kF

ð kmax

0

E kð Þ
k

dk (42)

The root mean square (r.m.s.) of the turbulent fluid velocity fluctu-
ations u0 and the related integral timescale sInt are given by:

u0 ¼ 2kF

3

� �1=2

(43)

sInt ¼
kInt

u0
(44)

The Taylor microscale kT is obtained by the following equation,
where Ex(k) is the transverse one-dimensional energy spectrum
[15]:

kT ¼
2u0Ð kmax

0
k2 Ex kð Þ dk

(45)

The corresponding Taylor Reynolds number ReT is defined as:

ReT ¼
u0 kT

�
(46)

Finally, the Kolmogorov length and time scales, kK and sK, are
given by:

kK ¼
�3

e

� �1=4

(47)

sK ¼
�

e

� �1=2

(48)

In a general way, the present Taylor Reynolds number may be
slightly too high with respect to the realized computational grid
which was a compromise between spatial resolution and computa-
tional time. It is well established that higher resolutions ensure a
better separation of the turbulent length scales and a more pro-
nounced inertial range. However, this study is focused on particles
which are smaller than the Kolmogorov length scale. Here, the
transport of particles is mainly controlled by the fluid phenomena
based on the smallest scales. For this reason, a detailed resolution
of larger turbulent length scales is not mandatory. Nevertheless,
the dynamics in the dissipation range are as well represented at
the applied resolution as in higher ones. Figure 6 shows an exem-
plary turbulent flow field generated by the spectral method. The
corresponding three-dimensional energy and dissipation spectra as
well as the universal Kolmogorov spectrum are shown in Figs. 7
and 8.

Due to the still low Taylor Reynolds number reached in the
simulation, an exact inertial sub-range cannot exist. This fact is
pointed out by the Kolmogorov spectrum (slope �5/3) which rep-
resents the theoretical shape of the inertial sub-range at the same
ReT (see Fig. 7). However, a limitation of the Kolmogorov
hypotheses is that they apply only to high-Reynolds-number flows
[40]. But an exact criterion for sufficiently high Reynolds number
is not provided. Nevertheless, for a good resolution of the smallest
turbulent length scales, the below-mentioned criteria should be
satisfied.

Table 1 Turbulence characteristics computed from the present DNS based on LBM and, besides, turbulent fluid flow statistics
from other DNS, published by Sundaram and Collins (S & C) [12] and Fede and Simonin (F & S) [15].

Parameter Symbol LBM S & C F & S

Number of cells NCells 643 643 1283

Length of box (m) LBox 3.84� 10�2 6.28� 10 1.28� 10�1

Kinematic fluid viscosity (m2/s) � 1.47� 10�5 1.26� 10�2 1.47� 10�5

Turbulent kinetic energy (m2/s2) kF 6.15� 10�2 1.10� 10 6.56� 10�3

r.m.s. fluid velocity (m/s) u0 2.03� 10�1 8.55� 10�1 6.61� 10�2

Dissipation rate (m2/s3) e 2.18� 10�1 2.15� 10�1 1.63� 10�2

Integral length scale kInt/LBox 0.24 0.26 0.11
Integral timescale sInt/sK 5.59 7.96 7.15
Taylor microscale kT/kInt 0.51 0.49 0.56
Kolmogorov length scale kK/kInt 3.74� 10�2 3.35� 10�2 4.80� 10�2

Kolmogorov timescale (s) sK 8.21� 10�3 2.42� 10�1 2.88� 10�2

Kolmogorov velocity uK/u0 0.21 0.27 0.36
Max. possible wave number kmax kK 1.82 1.77 2.01
Spatial discretization Dx/kK 1.72 1.79 1.47
Taylor Reynolds number ReT 65.26 54.20 34.10

Fig. 5 Comparison of the probability density functions of the
velocity modulus between colliding particles with theoretical
results from the kinetic theory. The kinetic theory corresponds
to the velocity distribution of the injected particles.
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It is widely accepted that the product of maximum possible
wave number and Kolmogorov length scale kmax kK should be
greater than unity. Moreover, the ratio of spatial discretization to
the Kolmogorov length scale Dx/kK should be equal to or less than
two [41]. Another indicator for an adequate resolution of the
smallest length scales is the maximum appearing in the dissipation
spectrum kPeak kK (see Fig. 8). The dissipative scales are well
resolved when the maximum of the dissipation spectrum is well
before k kK 	 1 [29]. In the present DNS, all three criteria are ful-
filled, namely Dx/kK¼ 1.72, kmax kK¼ 1.82 and kPeak kK¼ 0.09.

Even though the in Table 1 specified Taylor Reynolds numbers
are somewhat different (i.e., ReT¼ 65.26 (present study),
ReT¼ 54.20 [12] and ReT¼ 34.10 [15]), the computed Kolmo-
gorov length scales are more comparable (see Table 1). For this
reason, the in Refs. [12,15] published particle statistics are used
for comparison with results obtained from the present study. In
addition to that, the obtained Taylor Reynolds number may be
suitable for a comparison with particle-resolved simulations of
turbulent flows laden with solid particles, where ReT was main-
tained at 60.98 [16]. Figure 9 illustrates the probability density
functions (PDF) of the fluid velocity fluctuations. All three curves
show the typical shape of a normal distribution with a mean of
zero. By reason of the nearly identical distributions, the generated
turbulence can be identified as isotropic. Isotropy is reached, since
the turbulence was generated with random numbers, which suffice
a normal distribution with a mean of zero.

3.3 Properties of the Dispersed Phase. At the beginning of
a simulation, all particles are introduced with a random nonover-
lapping position inside the entire computational domain. The ini-
tial particle velocity equals the local instantaneous fluid velocity.
In order to have particle response times which are in the order of
the Kolmogorov timescale, the ratio of particle material density to
fluid density was varied between 21 and 684 (see Table 2).

The particle diameter dP is smaller than the Kolmogorov
length scale kK and selected as dP/kK¼ 0.58, having regard to
spatial resolution versus currently available computing capaci-
ties. In addition, this ratio is oriented to previous DNS based on
point-particle approaches as well, where the ratio dP/kK was set
to 0.36 [12] and 0.92 [15], respectively. It is recalled that the
used particle diameter may be slightly too large with respect to
the smallest scales of the present turbulent carrier fluid, since the
point-particle approach is valid beyond doubt for dP/kK� 1, cf.,
Maxey and Riley [42]. The constriction of the applied ratio dP/
kK should be kept in mind for the analysis of the obtained results.
Nevertheless, the particle motion is solely affected by turbulence
and inter-particle collisions, since the drag force is considered
only.

Fig. 7 Three-dimensional energy spectrum of the turbulent
flow field (solid line with symbols: ReT 5 65.26) and Kolmo-
gorov spectrum (dashed line: universal Kolmogorov constant
C 5 1.5) as a function of the nondimensional wave number.

Fig. 8 Viscous dissipation spectrum computed from the pres-
ent DNS (ReT 5 65.26) and plotted against the nondimensional
wave number.

Fig. 9 Probability density functions of the fluid velocity fluctu-
ations for the three velocity components averaged over a single
eddy turnover time.

Fig. 6 Fluid velocity field (vector plot) and particle field distri-
bution (spheres, St 5 2.57, aP 5 0.01) for a single plane in the
computational domain.
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To realize fully inelastic collisions the coefficients of restitu-
tion, static friction and dynamic friction are set to 1.0, 0.0 and 0.0.
The calculation of collisions statistics is started when the particles
are in equilibrium with the turbulent fluid flow. Figure 6 illustrates
a typical snapshot of a cutting plane with particles suspended in
the turbulent fluid flow. In addition, Table 2 gives an overview of
several nondimensional particle properties and collision statistics
which were averaged over the last ten eddy turnover times. In the
following, the Kolmogorov scales are used to normalize the spe-
cific particle properties and collision statistics such as the collision
time sC, since the particle diameter is smaller than the smallest
turbulent length scales.

The reference volume fraction of the dispersed phase aP is set
to 0.001, so that the given system is within the dilute limit, with
regard to Elghobashi [43]. Moreover, as shown in Table 2 Case
A-F, the mass loading mP/mF is sufficiently small to neglect the
influence of the particle phase on the fluid flow, also known as
one-way coupling. But as the effect of aP especially for higher
collision frequencies is of interest, the volumetric fraction of the
dispersed phase is stepwise increased to 0.005 (Case G-M) and
0.01 (Case N-S). In order to achieve results, which are methodo-
logical comparable to the results obtained by the reference volume
fraction aP¼ 0.001 as well as to previous studies (cf., Sundaram
and Collins [12] and Fede and Simonin [15]), the assumption of
one-way coupling is consistently maintained.

However, this simplification is partly affected by errors, since
for larger density ratios the application of two-way coupling (i.e.,
turbulence modulation by the particles) may be more appropriate,
e.g., Case L-M and Q-S. Nevertheless, the resulting enlarged mass
loadings coincide with those used in Ref. [12]. Finally, the proba-
ble position of two colliding particles is not influenced by their fi-
nite size (i.e., no close-packing effect), since the volume fraction
is less than 0.05 [15].

3.4 Free Path Between Particle Collisions. Nevertheless,
the used solid volume fractions are small enough to ensure that
the mean free path of particles is of the order of the Kolmogorov
length scale. Here, the free path is defined as a traveled distance
of a single particle between two subsequent inter-particle colli-
sions. Figure 10 shows exemplarily the probability density func-
tion of the free path of particles as a function of three different
particles Stokes numbers St. In the present work, St characterizes
the particle response behavior regarding to the smallest turbulent

structures and is defined as ratio of particle response time to Kol-
mogorov timescale St¼ sP/sK. The resulting Stokes numbers are
between 0.34 and 9.79 (see Table 2).

According to Fig. 10, the global maxima of the PDFs are gener-
ally in the range of the particle radius or rather a quarter of the
Kolmogorov length scale. However, the width of the distributions
is shifted with increasing Stokes number towards smaller values.
This qualitative impression may be underlined by the mean free
path kFP=kK which was averaged over all tracked particles and
normalized by the Kolmogorov length scale. Hence, particles with
Stokes numbers smaller than unity mostly collide with neighbor-
ing particles after at least one turnover of a Kolmogorov eddy,
whereas particles with larger Stokes numbers collide shortly
before a rotation of such an eddy is finished. Moreover, the pres-
ent mean free paths illustrate that even for the largest used volume
fraction collisions of particles are based on small scale phenom-
ena and are not affected by the applied artificial forcing scheme.

3.5 Analysis of Solid Volume Fraction Effects. In this
study, the probability of inter-particle collisions mainly depends
on the fluctuating motion of the particles, the volume fraction of
the dispersed phase and the inertia of solid particles, defined by
particle diameter and material density. The following subsections
characterize the influence of various volume fractions on the
mean time between successive particle interactions. In this frame-
work, the fluctuating particle velocity as well as the relative veloc-
ity of colliding particles and their importance to the collision
behavior is also analyzed. Again, it should be pointed out that
short-range phenomena such as hydrodynamic interaction of
neighboring particles and the effect of fluid shortly before a colli-
sion (referred to as lubrication force) are not considered in this
study.

3.5.1 Inter-Particle Collision Time. At first, the influence of
various particle densities on the mean time between collisions sC

is investigated. Here, the particle density is represented by the par-
ticle response time sP and; thus, by the particle Stokes number
too. As shown in Fig. 11, the time between two successive inter-
particle collisions is continuously decreased with increasing
Stokes number. Moreover, the collision time seems to converge
asymptotically to a finite value when the inertia of particles is
becoming more and more important. In more general terms, the
computed collision times are decreasing with increasing volume
fraction while retaining a constant Stokes number. This trend is
valid along the varied range of Stokes numbers. The resulting off-
set between the different aP will be analyzed in more detail by

Fig. 10 Probability density function of the free path between
particle collisions depending on the particle Stokes number St
(aP 5 0.01). The indicated particle mean free path kFP is also nor-
malized by the Kolmogorov length scale kK.

Table 2 Nondimensional particle properties and collision
statistics from the DNS averaged over ten eddy turnover times
(Case A-F: aP 5 0.001, Case G-M: aP 5 0.005, and Case N-S:
aP 5 0.01).

Case qP/qF mP/mF ReP sP/sK sL,P/sK sL,F/sK sC/sK sP/sC

A 21.37 0.02 1.07 0.34 2.25 1.55 91.73 3.71� 10�3

B 42.74 0.04 1.29 0.67 2.62 1.52 79.55 8.40� 10�3

C 85.47 0.09 1.51 1.31 3.24 1.53 43.45 3.02� 10�2

D 170.94 0.17 1.80 2.57 4.08 1.45 29.82 8.62� 10�2

E 341.88 0.34 2.16 5.02 5.51 1.47 27.01 1.86� 10�1

F 683.76 0.68 2.56 9.79 7.91 1.46 26.78 3.66� 10�1

G 21.37 0.11 1.06 0.34 2.29 1.59 31.89 1.07� 10�2

H 42.74 0.21 1.29 0.67 2.65 1.54 16.50 4.05� 10�2

I 85.47 0.43 1.51 1.31 3.19 1.51 7.47 1.76� 10�1

K 170.94 0.85 1.79 2.57 3.84 1.43 5.53 4.65� 10�1

L 341.88 1.71 2.16 5.02 4.97 1.45 5.11 9.83� 10�1

M 683.76 3.42 2.61 9.76 6.15 1.48 5.03 1.94� 10

N 21.37 0.21 1.08 0.34 2.15 1.47 15.33 2.22� 10�2

O 42.74 0.43 1.27 0.67 2.61 1.52 8.17 8.18� 10�2

P 85.47 0.85 1.51 1.31 3.07 1.45 3.79 3.46� 10�1

Q 170.94 1.71 1.80 2.57 3.66 1.41 2.48 1.04� 10
R 341.88 3.42 2.15 5.02 4.66 1.47 2.31 2.17� 10
S 683.76 6.84 2.57 9.78 5.38 1.50 2.25 4.34� 10
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means of Fig. 12. A summary of all computed collision times is
given in Table 2 as well.

At this point, the particle collision frequency fC is introduced. It
is equal to the reciprocal of the collision time. For further consid-
erations, the collision frequency is normalized by the particle
response time. In Fig. 12, the resulting timescale ratios sP/sC are
plotted against their corresponding Stokes numbers. As a result,
the collision frequency is increased with increasing Stokes num-
ber and volume fraction as well. It may be also interesting that the
obtained collision frequencies constitute, at same volume fraction,
a nearly linear slope into the presented double logarithmic plot.
Furthermore, the resulting straight lines may differ from each
other by their scalable offset only. In accordance to Sundaram and
Collins [12], squared law dependence between the analyzed vol-
ume fractions can be observed, even for Stokes numbers smaller
and larger than unity.

In summary, it becomes apparent that the fluid dynamic trans-
port of the particles is the dominant transport effect, since the
time between inter-particle collisions is larger than the particle
response time (see Ref. [22] for more cases). The particle motion
may be mainly governed by small scale fluid phenomena such as
shear and acceleration mechanism. Only for the Cases M, R and
S, the mean collision time is smaller than the particle response
time, whereby the particles are not able to completely respond to
the fluid flow between successive collisions (see Fig. 12). Due to
high collision frequencies, their motion is dominantly influenced

by inter-particle collisions. Here, effects by fluid dynamic trans-
port are of minor importance.

According to Crowe [44], two regimes may be identified. For
timescale ratios sP/sC smaller than unity, the transport of particles
is based on the kinetic regime, called dilute two-phase flow. This
is basically valid for most of the analyzed cases in Fig. 12. How-
ever, only for the largest analyzed Stokes numbers and volume
fractions a collisional dominated regime is rudimentary reached,
referred as dense two-phase flow.

3.5.2 Evaluation of Collision Frequencies. Based on the
Stokes number, two limiting cases for the collision rate due to tur-
bulence may be identified. For particles which are small compared
to the Kolmogorov length scale and completely follow the turbu-
lence, Saffman and Turner [2] provided an approximation for the
collision rate due to isotopic turbulent shear, cf. Eq. (1). In this
case, the Stokes number tends to zero. As previously mentioned,
the other limiting case was studied by Abrahamson [3]. He ana-
lyzed the motion of heavy particles suspended in high intensity
turbulence neglecting external forces, cf. Eq. (2). According to ki-
netic theory, particle motion is completely uncorrelated with the
fluid motion. Here, the Stokes number tends to infinity. In order to
be able to evaluate the collision rates determined by the DNS, the
present results are compared with these two limiting cases. In this
frame, the collision rates given in Eqs. (1) and (2) are simplified
through the collision frequency. This is done by multiplying the
obtained collision rates with the volume of the turbulent flow
field. Since the particles may partially respond to turbulence, the
measured collision frequencies should lie between the two analyti-
cal theories.

As shown in Fig. 13, the simulated collision frequencies begin
near the Saffman and Turner limit, then rapidly increase with the
Stokes number and for the larger Stokes numbers approaches the
kinetic theory limit. According to the particular model limitations
given in the introduction, the collision frequency given by the
Saffman and Turner limit is almost solely controlled by the time-
scale of the smallest turbulent eddies. A similar behavior can be
obtained from the present study, since for the smallest Stokes
numbers the time between two successive particle-particle colli-
sions is basically caused by fluid structures in the range of the
Kolmogorov scale. On the other hand, the kinetic theory leads to a
collision frequency which is mainly based on the particle velocity.
This limit is nearly reached in the simulations, since with increas-
ing particle inertia the particles become progressively less respon-
sive to the turbulent velocity fluctuations; for example, at
St¼ 9.78 (see Fig. 13).

Fig. 12 Averaged collision frequencies fC, which are normal-
ized by their corresponding particle response times sP, as a
function of the Stokes number St and solid volume fraction aP .

Fig. 13 Computed collision frequencies fC as a function of the
Stokes number St (aP 5 0.01): Comparison of results obtained
by direct numerical simulations (present study) with the analyti-
cal Saffman and Turner limit [2] as well as the kinetic theory
limit [3].

Fig. 11 Effect of the particle response behavior (i.e., St) on the
mean time between two particle-particle collisions sC: Here, the
particle response time sP is normalized by the constant Kolmo-
gorov timescale sK and plotted against the Stokes number St
with the solid volume fraction aP as a parameter.
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An additional comparison with other analytical and numerically
evaluated turbulent collision frequencies is presented in Figure
14. Here, the computed collision frequencies are normalized by
their corresponding collision frequencies obtained from the ki-
netic theory limit, which is more probable in numerous industrial
two-phase flows than the Saffman and Turner limit. Since Lavié-
ville et al. [21] did not specify values for the Kolmogorov time-
scale in their large eddy simulations (LES), which are used for
comparison among others, the presented Stokes numbers are
based in Fig. 14 on the ratio of particle response time sP to fluid
Lagrangian integral timescale sL,F, given in Table 2 as well. Fig-
ure 14 demonstrates that in the present DNS for small Stokes
numbers the variation of volume fraction has no considerable
effect on the rate at which particles collide. As discussed above,
the motion of light particles is almost controlled by the small scale
velocity fluctuations. For this reason, collisions between particles
have no remarkable influence, since the post-collision velocities
immediately retrieve their underlying fluid streamlines. Hence,
different volume fractions are insignificant with regard to the
achieved collision frequencies.

But as shown in Figure 14, the influence of the volume fraction
on the collision frequency increases rapidly with increasing
Stokes number. Moreover, the collision frequencies themselves
approach successively the upper limiting value of unity, which
stands for an ideal realization of the kinetic theory and; thus, a
completely random particle motion. It should be pointed out that
with increasing particle inertia the corresponding centrifugal
forces, which act on the particles, are increasing as well. There-
fore, the particle velocities become more and more uncorrelated
to the fluid velocities viewed by the particles. The observed differ-
ences between the investigated volume fractions are discussed in
more detail within the next subsections. Nevertheless, the colli-
sion frequency is basically increased with increasing volume frac-
tion, while retaining an almost constant Stokes number.

Furthermore, previously performed large eddy simulations,
published by Laviéville et al. [21], are consulted for an additional
comparison. It must be mentioned that a concrete differentiation
between the various volume fractions obtained from the LES is
unfortunately not possible with the data available in the paper
[21]. Notwithstanding, large differences between the DNS and
LES can be observed in the range of small Stokes numbers (see

Figure 14). On the other hand, the DNS and LES tend to approach
each other for larger Stokes numbers. This rapprochement can be
explained by the fact that heavy particles partly respond to small
scale velocity fluctuations only. As a result, the motion of inertial
particles is less dependent by the smallest turbulent eddies.
Besides, it is well known that in large eddy simulations the large
scales of the turbulent fluid flow are directly resolved, whereas the
sub-grid fluid turbulence effects are described either by a func-
tional or by a structural model. Therefore, the collision frequency
of heavier particles is more similar between LES and DNS results,
cf. diamonds at StInt 	 4.0 in Figure 14.

In contrast, the main reason for the observable discrepancy
between LES and DNS at lower Stokes numbers is founded in the
modeling of the fluid field, since in the LES the effect of sub-grid
turbulence on the particle motion is not accounted for [21]. At this
point, investigations by Fede and Simonin [15] are used for fur-
ther considerations. In that study, effects of sub-grid fluid turbu-
lence on the motion of nonsettling colliding particles suspended in
steady homogeneous isotropic turbulent flow were analyzed by a
successive low-passed flow field. They demonstrated that for par-
ticles with small Stokes numbers the sub-grid fluid velocity fluctu-
ations are perceptible as a random force. According to Ref. [15],
the calculation of the motion of point-particles should be supple-
mented by a Langevin or eddy-lifetime model. Regrettably, none
of those models were applied or mentioned in the article about the
given LES [21].

In addition, Fede and Simonin [15] suggested that in case of
very small Stokes numbers a complex interaction between particles
and the smallest turbulent eddy structures occurs. However, the rel-
evant sub-grid fluid velocity gradients are unknown in LES [15]. In
conclusion, it can be pointed out that the LES is only partly suitable
for investigations of phenomena driven by particle interaction with
small-scale turbulence structures, especially for small Stokes num-
bers. Hence, the differences between LES and DNS with decreasing
Stokes number become more apparent (see Fig. 14).

Another analytical expression for the collision rate was pro-
posed by Kruis and Kusters [5]. Following their conclusions [5],
the acceleration mechanism is only considered for the expression
of the relative particle velocity, whereas the contribution due to
viscous shear is neglected. Moreover, the Cunningham slip factor
is set to unity, since the particle size is far beyond the Brownian
regime. In addition, the influence of the particle phase on the fluid
flow is neglected as well as inter-particle collisions. More limita-
tions were not provided for the universal solution given in Eq. (3).
In conclusion, the developed approximation mainly depends on
the relative velocity of particle pairs as well as on large scale fluid
properties such as the turbulent velocity fluctuations u0, the inte-
gral timescale sInt and the turbulent dissipation rate e.

Both the results obtained from theoretical approximation and
direct numerical simulations follow the same trend about the
whole range of Stokes numbers. The theory [5] agrees very well
with the LBM simulations for the smallest volume fraction of sol-
ids over the entire range of Stokes numbers. This is expected,
since the theory neglects inter-particle collisions and their impor-
tance in the DNS is still not very large. With increasing particle
volume fraction in the DNS, the collision frequency is decisively
rising for StInt> 1. In the case of StInt< 1, there is almost no effect
as discussed above.

3.5.3 Fluctuating Particle Motion. This subsection analyzes
the effect of the solid volume fraction on the particle fluctuating
motion which may be characterized by the Lagrangian integral
timescale. This timescale can be integrated along the particle tra-
jectories using the following Lagrangian correlation function
RP,u(s) which is based on the recorded particle velocities:

RP;u tþ iDtð Þ ¼ 1

Nk

Xk

i

uP t0ð Þ � uP tþ iDtð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uP

2 t0ð Þ � uP
2 tþ iDtð Þ

q (49)

Fig. 14 Ratio of the computed collision frequency to the colli-
sion frequency obtained from kinetic theory plotted against the
Stokes number StInt which is based on the fluid Lagrangian in-
tegral timescale: Comparison of results obtained by direct nu-
merical simulations (open and partly filled symbols: present
study), large eddy simulations for different volume fractions
(closed symbols: Laviéville et al. [21]) and analytical approxima-
tions (solid line: Kruis and Kusters [5]). Note: Symbols of one
shape represent a comparable Stokes number, e.g., circle,
square or triangle. Moreover, symbols of one filling level (pres-
ent DNS) indicate the results for different volume fractions, i.e.,

:aP 5 0.001, :aP 5 0.005, :aP 5 0.01.
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where Nk is the total number of particle samples. In order to
improve the fundamental understanding, different RP,u(s) are
firstly compared on the basis of the particle inertia (see Fig. 15).
The curve progression shifts with increasing Stokes number
towards larger correlation coefficients. Since inertial particles are
less responsive with respect to turbulence, their velocity changes
to a large extent by inter-particle collisions which are more fre-
quent than for small particle Stokes numbers (see Fig. 12). As a
consequence, between successive particle collisions their velocity
is hardly changing. Particles with small Stokes numbers experi-
ence less collisions and acquire more easily fluid fluctuations
between collisions through the smallest turbulent eddies. This
implies that the velocity of particles with large Stokes numbers is
more correlated than that of particles with small St (see Fig. 15).

This effect can be also identified from the ratio of the particle
Lagrangian integral timescale sL,P to the mean time between two
successive inter-particle collisions sC, which is also shown in
Fig. 15. Unfortunately, the exact transition point between a parti-
cle motion uncorrelated by the induced fluid dynamic transport
and the prevailing occurrence of inter-particle collisions could not
be resolved with the data available. In summary, the computed
particle Lagrangian integral timescales are also summarized in
Table 2.

Moreover, the volume fraction as well as the absence or pres-
ence of inter-particle collisions has a visible influence on the
shape of the particle Lagrangian correlation functions (see Som-
merfeld [22]). As shown in Fig. 16, the absence of particle-
particle collisions leads to higher correlation coefficients, since
the particle motion is solely affected by the turbulent flow field. In
consideration of inter-particle collisions, the shape of the correla-
tion functions is shifted with increasing volume fraction towards
smaller correlation coefficients. With increasing volume fraction
the trajectories of particles are increasingly deflected through the
occurrence of particle-particle collisions, leading to a more uncor-
related motion of the particles, i.e., decrease of sL,P. On the other
hand, the collision time is reduced at a faster rate with increasing
volume fraction yielding a remarkable decrease of the timescale
ratio sL,P/sC (see Fig. 11).

For the smallest volume fraction, the particle Lagrangian inte-
gral timescale is smaller than the mean time between two succes-
sive inter-particle collisions. Based on aP¼ 0.001, the particle
transport is mainly affected by the motion through the unsteady
eddies yielding sL,P/sC¼ 0.30. As already mentioned, for larger
volume fractions the probability of particle-particle collision is
much higher (Fig. 11). As a consequence, the ratio sL,P/sC is no-
ticeable increased towards larger values with increasing volume
fraction (see Fig. 16). In case of the largest volume fraction

aP¼ 0.01, the particle Lagrangian integral timescale is more than
two times larger than the mean collision time. It becomes apparent
that the particle motion is more pronounced affected by inter-
particle collisions, i.e., decorrelation of particle velocities.

In order to manifest the relative importance of turbulence and
collision induced particle transport as well as particle inertia (i.e.,
St), the timescale of particle velocity change sL,P may be com-
pared with the Kolmogorov and the inter-particle collision time-
scale and plotted versus the Stokes number with the particle
volume fraction as a parameter (Fig. 17). A general trend of the
change of both timescale ratios with regard to rising Stokes num-
bers is a continuous increase. This is associated with an increase
of the particle Lagrangian integral timescale sL,P as particle inertia
increases and their motion is less influenced by turbulence, i.e.,
particles move on more or less straight paths between successive
collisions (see Fig. 15). This comprises that the particle motion
becomes more correlated. Although sL,P is becoming larger with
the Stokes number, the timescale ratio sL,P/sC is also increasing as
the collision timescale is reduced at a faster rate (see Fig. 11).

Naturally, the collision rate between particles is increasing (i.e.,
decreasing sC) with increasing particle volume fraction. As an
outcome, the timescale ratio sL,P/sC is also rising, more

Fig. 15 Averaged Lagrangian correlation functions of the par-
ticle velocities RP,u(s) and their corresponding Lagrangian inte-
gral timescales sL,P as a function of the particle Stokes number
St (aP 5 0.01).

Fig. 16 Influence of the volume fraction aP on the Lagrangian
correlation functions of the particles RP,u(s) in presence as well
as in absence of inter-particle collisions (St 5 9.78). In case of
particle-particle collision, the ratio of the particle Lagrangian in-
tegral timescale to the mean time between two successive
inter-particle collisions sL,P=sC is given as well.

Fig. 17 Particle Lagrangian integral timescales sL,P as function
of the Stokes number St with the solid volume fraction aP as a
parameter: The calculated timescales are normalized by the
Kolmogorov timescale sK as well as the mean time between suc-
cessive inter-particle collisions sC .
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pronounced, however, for particles with Stokes numbers larger
than unity. For small particle Stokes numbers, this timescale ratio
does not change very much as they easily follow turbulence,
whereby the collision rate does not vary significantly with volume
fraction (Fig. 17). Also the timescale ratio sL,P/sK is not very
much dependent on particle volume fraction for Stokes numbers
below about 1.5 implying that the Lagrangian particle velocity
correlation function should be almost identical. For larger Stokes
numbers, however, the timescale ratio sL,P/sK is remarkably
decreased with increasing particle volume fraction. This means
that the particle motion becomes more and more decorrelated as a
consequence of the increasing collision rate and the resulting
faster change of particle velocity (Figs. 16 and 17). As a result,
the values of sL,P/sK and sL,P/sC are shifted towards each other
with increasing volume fraction (i.e., sL,P/sK decreases and sL,P/sC

increases) indicating the growing importance of inter-particle col-
lisions. For all considered cases, the values of sL,P/sK are much
larger than those for sL,P/sC. This indicates that the particle veloc-
ity change is primarily affected by the competition between turbu-
lence and particle inertia.

As already indicated above, the occurrence of inter-particle col-
lisions has only a minor effect on the mean kinetic energy of the
particles. In support of this statement, the ratio of the kinetic
energy of the particle fluctuating motion kP to the turbulent kinetic
energy of the flow field kF as a function of the particle Stokes
number is given in Fig. 18. In compliance with other DNS such as
Ref. [15], kF was extracted at the particle position, whereby the
inter-phase transfer of turbulent kinetic energy and; thus, the dissi-
pation at the particle surface might not be correctly captured.
Nevertheless, kP decreases continuously, since the particles
become less responsive to the turbulent fluctuations with increas-
ing Stokes number. Furthermore, different volume fractions have
no considerable influence on the measured kinetic energy of the
particles. This is expected, since the energy in the system should
be conserved when treating inter-particle collisions as ideal (i.e.,
e¼ 1 and l¼ 0).

Besides, the present ratio kP/kF is also compared with results
from other DNS, published by Sundaram and Collins [12] and
Fede and Simonin [15]. As a result, the computed ratios of the ki-
netic energy show a quantitative good agreement with the results
available in the literature. The visible offset between the plotted
values may be identified by their different Taylor Reynolds num-

bers ReT applied in the simulations. In this connection, a larger
ReT represents for instance a higher energy content of the turbu-
lent fluid structures. Hence, the kinetic energy ratios of the present
DNS are shifted towards smaller values.

3.5.4 Relative Velocity of Colliding Particles. The last sub-
section describes the influence of the solid volume fraction on the
relative motion between colliding particles. To get a basic idea
about the initial relative motion during the approach of particles,
the probability density functions of the relative velocity modulus
juPijj between colliding particles at constant volume fraction are
firstly analyzed. According to the previously discussed results, it
is not surprising that the velocities of light colliding particles are
strongly correlated. Hence, the relative velocity modulus juPijj is
generally of the order of the smallest eddy-turnover velocities,
also known as Kolmogorov velocity uK (see Fig. 19). For such
Stokes number particles, the probability of small relative veloc-
ities is increased, because fluid and particle velocities tend to be
aligned. In this regime, the correlation between fluid and particle
velocities is more pronounced as the probability of correlated ve-
locity modulus between approaching particles, since the mean
juPijj is smaller than uK.

Due to the increasing inertia of heavier particles, this behavior
is less distinct. For this reason, the maximum of the PDFs is
shifted towards larger relative velocities as well as the width of
the distributions increase. As a consequence, the mean relative ve-
locity of colliding particles exceeds the magnitude of the Kolmo-
gorov velocity (Fig. 19). Hence, possible collision partners may
also originate from different neighboring eddy structures. More-
over, large Stokes number particles may travel largely on almost
straight paths from different regions.

In Fig. 20, the mean relative velocity and the associated mean
angle upon particle collision are shown in dependence of the
Stokes number with the particle volume fraction as a parameter.
Here, the particle velocity angle u at the time of collision is
defined as:

u ¼ arccos
uPi � uPj

uPij j � uPj

		 		
 !

(50)

As shown in Fig. 20, the obtained mean relative velocity and the
mean velocity angle at the instant of collision show the same
trends with regard to Stokes number and particle volume fraction.
With increasing Stokes number, both values (i.e., uPij

		 		=uK and u)
are rapidly increasing approaching a limiting value. This is

Fig. 18 Comparison of the ratio of kinetic energy of the parti-
cle fluctuation motion kP to the turbulent kinetic energy of the
flow field kF obtained by the present DNS (triangle: ReT 5 65.26)
with results from other DNS, published by Sundaram and Col-
lins [12] (circle: ReT 5 54.20) and Fede and Simonin [15]
(square: ReT 5 34.10), depending on the Stokes number St
(Note: (1) symbols of one kind indicate the results for the differ-
ent volume fractions, and (2) the results of all three DNS are
based on a one-way momentum coupling of the dispersed
phase with the fluid flow).

Fig. 19 Probability density function of the relative velocity
modulus of colliding particles juPijj which is normalized by Kol-
mogorov velocity uK with the Stokes number St as a parameter
(aP 5 0.01). In addition, the mean values of relative velocity mod-
ulus are printed for easy comparison.
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basically the result of growing randomness of colliding particle
trajectories, i.e., inertial colliding particles may come on rather
straight trajectories from completely different directions as they
are less responsive to turbulence and achieved a deflection from
previous collisions.

The motion of particles with small Stokes number is strongly
correlated with the fluid, whereby colliding particles move almost
with the same velocity and their collision angle is very small, i.e.,
the particles have very similar trajectories as they are moving in
the same eddy. Hence, different volume fractions and, thereby,
inter-particle collisions have no remarkable influence on the
motion of very light particles, since the particle motion is mainly
dominated through the transport induced by turbulent velocity
fluctuations (see also Fig. 17).

Besides, Fig. 20 demonstrates that the effect of volume fraction
becomes more and more important with increasing particle inertia,
particularly for Stokes numbers larger than unity. At larger aP, the
probability of a particle collision is certainly increased (see Fig.
11). The reduction of the particle relative velocity and collision
angle with increasing particle volume fraction, especially at
higher Stokes numbers, may be substantiated by the following
arguments.

At low volume fraction, highly inertial particles are almost
homogeneously distributed in the flow field and will be trans-
ported by all turbulent structures, at least partly, i.e., there is
almost no preferential concentration [45]. This yields in average
larger values of the collision velocity and angle.

With increasing volume fraction, the collision rate is enhanced
yielding a clustering of the particles. This is originated in the fact

that particles are being trapped in such clusters due to inter-
particle collisions, i.e., particles intending to move out of the clus-
ter are bounced back due to collisions with particles coming from
outside the cluster. Adopting the concept of preferential concen-
tration, these clusters are formed in regions of low vorticity and
high strain rate. As the particle residence time in these clusters is
larger compared to the other regions, the particles have more time
to align their motion with the flow field, apart from some collision
effects. This will result ultimately in reduced average particle rel-
ative velocities and collision angles (Fig. 20). However, this idea
will need further investigations.

4 Conclusions

Direct numerical simulations of particle-laden homogeneous
isotropic turbulence were performed to characterize the collision
behavior for different particle Stokes numbers and volume frac-
tions. The fluid motion was computed using a three-dimensional
Lattice-Boltzmann method including a spectral forcing scheme to
generate the unsteady turbulence field. Under assumption of
point-particles, the transport of mono-disperse spherical particles
was modeled in a Lagrangian frame of reference. Since in the
selected gas-particle system the ratio of particle material density
to fluid density was sufficient large, the drag force is dominating
the particle motion [33]. Hence, this force was considered in the
equation of motion only. The modeling of collisions between solid
particles was based on a deterministic collision model. According
to other DNS [12,15], the influence of the particle phase on the
fluid flow was neglected. Moreover, short-range phenomena such
as hydrodynamic interaction of neighboring particles and the pres-
ence of fluid shortly before a collision were also not considered,
which should be kept in mind.

As the deterministic inter-particle collision model was newly
implemented in the in-house LBM code, it was first validated for
a fluid-free granular medium yielding a very good agreement with
kinetic theory.

The main emphasis of the present contribution was, however,
directed towards the analysis of the influence of particle volume
fraction aP and; hence, inter-particle collisions on the transport of
nonsettling inertial particles in homogeneous isotropic turbulence.
In all the simulations, the particle diameter was kept constant at a
value of 0.58 times the Kolmogorov length scale, and the varia-
tion of particle Stokes number St (i.e., in the range of 0.34 to 9.79)
was achieved by adapting the particle material density. The parti-
cle response behavior was characterized by a statistical evaluation
of the simulation data with respect to collision mean free paths,
inter-particle collision times and frequencies, Lagrangian correla-
tion functions of particle velocities, including resulting integral
timescales, as well as collision angles and relative velocities. For
most of the cases considered, the particle transport was domi-
nantly affected by the smallest scales of turbulence implying that
the particle response time was smaller than the mean inter-particle
collision time, except for a few cases with the higher Stokes num-
ber and particle volume fraction.

The increase of the Stokes number for given particle volume
fractions showed that the simulations correctly predict the
increase of the collision frequency from the Saffman and Turner
limit (particles completely follow turbulence: St ! 0) to the ki-
netic theory limit (random particle motion St ! 1). Moreover,
the predicted collision frequencies as a function of Stokes number
are in close agreement to the theory of Kruis and Kusters [5] for
the lowest particle volume fraction considered. Increasing particle
concentration yields growing collision frequencies, but only for
St� 1. For smaller Stokes numbers, volume fraction has almost
no effect. It could be shown that LES does not properly predict
collision statistics, if sub-grid particle transport is neglected.

The analysis of the Lagrangian correlation function of particle
velocities with regard to particle inertia (i.e., St) and particle vol-
ume fraction allows further important conclusions regarding the
effects governing particle behavior. In summary, this can be also

Fig. 20 Influence of the volume fraction aP on (a) the mean rel-
ative velocity modulus uPij

		 		 and (b) the mean particle velocity
angles u between colliding particles as a function of the Stokes
number St.
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done by considering the timescale of particle velocity change sL,P

(i.e., particle Lagrangian integral timescale) with respect to the
Kolmogorov timescale and the inter-particle collision time. This
analysis allows for following conclusions:

• Increasing particle Stokes number for a given volume frac-
tion results in a more correlated particle motion as particle
paths between subsequent collisions become noticeably more
straight, i.e., heavier particles are less affected by turbulence.

• Hence, with increasing Stokes number sL,P is also increasing,
i.e., particle motion becomes more correlated.

• Increasing particle volume fraction decorrelates particle
motion perceptibly for larger Stokes numbers due to rising
collision frequency.

• The motion of light particles (i.e., St< 1) is hardly affected
by particle volume fraction, i.e., the timescale of particle ve-
locity change sL,P is almost constant for given Stokes
numbers.

Finally, also the relative motion of particles upon collision was
analyzed. As expected, the velocity of colliding particles is
strongly correlated for small Stokes numbers and becomes
increasingly uncorrelated with rising Stokes number. The mean
relative velocity and velocity angle of colliding particles in de-
pendence of the Stokes number showed a pronounced effect of aP,
again only for St> 1. The reduction of the relative velocity and
the velocity angle with growing volume fractions may be
explained by particle clustering occurring as a result of inter-
particle collisions, which was observed in the present simulation
results. Within a cluster, particles reside relatively long and have
a more or less mutual behavior. As a consequence, the mean colli-
sion velocity and angle are reduced with rising volume fraction.

For clarification, however, a further characterization of particle
clustering effects in dependence of particle volume fraction is
envisaged. In addition, the effect of finite particle size (i.e.,
resolved particles) will be considered, allowing also accounting
for fluid-dynamic interactions of colliding particles.
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Nomenclature
Latin Symbols

a ¼ acceleration of fluid velocity
aF ¼ forcing acceleration
C ¼ universal Kolmogorov constant
c ¼ grid constant

cd ¼ drag coefficient
cs ¼ speed of sound

DNS ¼ direct numerical simulation
dP ¼ particle diameter
E ¼ three-dimensional energy spectrum

Ex ¼ one-dimensional transverse energy spectrum
e ¼ coefficient of restitution

en ¼ normal unity vector
et ¼ tangential unity vector

Fd ¼ drag force
Fext ¼ external force

Fi ¼ different relevant forces
fC ¼ collision frequency
fri ¼ discrete distribution function

f
ð0Þ
ri ¼ discrete equilibrium distribution function

J ¼ momentum
k ¼ wave number

kF ¼ turbulent fluid kinetic energy

kP ¼ kinetic energy of particle motion
LBM ¼ Lattice-Boltzmann method
LBox ¼ length of domain in one direction
LES ¼ large eddy simulation

mF ¼ fluid mass
mP ¼ particle mass

mPeff ¼ effective particle mass
N ¼ collision rate per unit volume and time interval

NCells ¼ number of cells
Nk ¼ number of samples
nP ¼ particle number concentration

PDF ¼ probability density function
p ¼ pressure

RP,u(s) ¼ correlation function of particle velocity
ReP ¼ particle Reynolds number
ReT ¼ taylor Reynolds number

r.m.s. ¼ root mean square
St ¼ particle Stokes number
TF ¼ correlation timescale

t ¼ time
u ¼ fluid velocity
u0 ¼ root mean square of fluid velocity fluctuations

uK ¼ Kolmogorov velocity
uP ¼ particle velocity

uPij ¼ relative particle velocity
uPij,t ¼ tangential component of relative particle velocity

at the point of contact
u�P ¼ post-collision particle velocity

u�Pij ¼ post-collision relative particle velocity
x ¼ fluid position

xP ¼ particle position
xPij ¼ relative particle position
ZF ¼ forcing cut-off function

Greek Symbols
aP ¼ volume fraction of particle phase
C ¼ Gaussian random number
Dt ¼ time step of fluid phase

Dtij,c ¼ collision time for overlapping particles
DtP ¼ particle time step
Dx ¼ spatial discretization

e ¼ dissipation rate
f ¼ abruptness of cut-off
g ¼ dynamic fluid viscosity

kFP ¼ free path between two inter-particle collisions
kInt ¼ integral length scale
kK ¼ Kolmogorov length scale
kT ¼ Taylor length scale
ld ¼ dynamic coefficient of friction
ls ¼ static coefficient of friction
� ¼ kinematic fluid viscosity

nri ¼ discrete velocity of fluid elements
q ¼ fluid density

qP ¼ particle material density
rF ¼ forcing amplitude
s ¼ relaxation parameter

sC ¼ time between two inter-particle collisions
sInt ¼ integral timescale
sK ¼ Kolmogorov timescale

sL,F ¼ fluid Lagrangian integral timescale
sL,P ¼ particle Lagrangian integral timescale
sP ¼ particle response time
u ¼ particle velocity angle
w ¼ skew parameter

w0 ¼ limiting skew parameter
xri ¼ weighting factor of the discrete equilibrium

function
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