
Counting for Random Testing

Marie-Claude Gaudel

Université Paris-Sud 11, LRI, Orsay, F-91405,
and CNRS, Orsay, F-91405

mcg@lri.fr
http://www.lri.fr/~mcg

Abstract. The seminal works of Wilf and Nijenhuis in the late 70s
have led to efficient algorithms for counting and generating uniformly
at random a variety of combinatorial structures. In 1994, Flajolet, Zim-
mermann and Van Cutsem have widely generalised and systematised the
approach. This extended abstract presents several applications of these
powerful results to software random testing, and random model explo-
ration.

Keywords: software testing, random walks, combinatorics

1 Introduction

In the area of analytic combinatorics, the seminal works of Wilf and Nijenhuis
in the late 70s have led to efficient algorithms for counting and generating uni-
formly at random a variety of combinatorial structures [13, 19]. In 1994, Flajolet,
Zimmermann and Van Cutsem have widely generalised and systematised the ap-
proach [7]. The recent book by Flajolet and Sedgewick [8] presents a detailed
survey of this corpus of knowledge. These works constitute the basis of powerful
tools for uniform random generation of complex entities, such as graphs, trees,
words, paths, etc.

This extended abstract summarises several applications of these powerful
results to software random testing, and random model exploration.

Random methods look attractive for testing large programs or checking large
models. However, designing random methods that have a good and assessable
fault detection power is not so easy: the underlying probability distribution of
inputs or paths must be carefully designed if one wants to ensure a good coverage
of the program or model, or of potential fault locations, and to quantify this
coverage.

This extended abstract continues as follows: Section 2 recalls some basic facts
on software random testing and random walks; Section 3 briefly presents methods
for uniform generation of bounded paths that are completely described in [17]
and [5]; Section 4 studies on how to take into account other coverage criteria,
gives a definition of randomised coverage satisfaction [5] ; finally Section 5 gives
some hints of the application of these methods to LTL model-checking [18].



2 Marie-Claude Gaudel

2 Some preliminaries on random testing and random
walks

There are three main categories of methods for software random testing: those
based on the input domain of the system under test, those based on some knowl-
edge of its environment, and those based on some model of its behaviour.

We focus on the third case, where some graphical description of the behaviour
of the system under test is used. Random walks [1] are performed on the set
of paths of this description. Classical random walk methods, sometimes called
isotropic, progresses from one state by drawing among the successors uniformly
at random. The big advantage of this method is that is easy to implement and
only requires local knowledge of the model. A serious drawback is that in case
of irregular topology of the underlying graph, uniform choice of the next state is
far from being optimal from a coverage point of view: some examples are given
in [4] and [5] . similarly, getting an estimation of the coverage obtained after
one or several random walks would require some complex global analysis of the
topology of the model.

The works presented in this extended abstract aim at improving the quality
of random walks with respects of various coverage criteria: bounded paths cov-
erage, transitions/branches coverage, states/statements coverage, lassos. There
is a price to pay: some non-local knowledge of the models is required, based on
counting the elements to be covered accessible from each successor of the current
state. Thank to the powerful results mentioned above, and to sophisticated im-
plementation methods, it is possible to get good compromises between memory
requirement, efficiency of drawing, and quality of the achieved coverage.

All the works below rely on combinatorial algorithms, based on a repre-
sentation of models or programs by some automaton or a by some product of
several automata, synchronised or not. The basic algorithms are implemented
and available in the RUKIA C++ library (http://rukia.lri.fr/en/index.html)

3 Improvements of recursive uniform path generation

3.1 The classical recursive method

This classical method was first presented in [19, 7] Let us consider a deterministic
finite automaton of A with q states {1, 2, . . . , q} among which are distinguished
an initial state and some final states. For each state s, let ls(n) be the number
of paths of length n starting from s and ending at a terminal state. Such values
can be computed with the following recurrences on n (where F denotes the set
of final states in A): 

ls(0) = 1 if s ∈ F
ls(0) = 0 if s 6∈ F
ls(i) =

∑
s→s′

ls′(i− 1) ∀i > 0
(1)



Counting for Random Testing 3

If we note the vector Ln = 〈l1(n), l2(n), . . . , lq(n)〉, the principle of the recur-
sive method is in two steps:

– Compute and store Lk for all 1 ≤ k ≤ n. This calculation is done starting
from L0 and using euation (1).

– Generate a path of length n by choosing, when the current state is s and the
path has already n−m states, successor si with the probability:

P(si) =
lsi(m− 1)

ls(m)
. (2)

When using floating point arithmetic as in [6], the complexity of the algo-
rithm is in O(qn) space and time for the preprocessing stage and O(n) for the
generation, where n denotes the length of the path to be generated, and q denotes
the number of states.

For big models and long paths, this method does not scale up well. This was
the motivation for two pieces of work presented below.

3.2 A dichotomic algorithm for the uniform random generation of
paths

In [17] Oudinet et al. have presented the so-called dichopile method, which is
based on a divide-and-conquer approach, avoids numerical instability and offers
an excellent compromise in terms of space and time requirements.

Note that to choose the successor of the initial state, we only need Ln and
Ln−1. Then, Ln−1 and Ln−2 allow to choose the next state and so on. Thus, if we
had a method that compute efficiently Ln, Ln−1, . . . , L0 in descending order, we
could store the two last vectors only and reduce space complexity. This inverse
approach constitutes the principle of Goldwurm’s method [10]. However, in [15],
Oudinet showed that this method is numerically instable, thus forbidding the
use of floating-point arithmetics.

The idea of the dichopile algorithm is as follows. Compute the number of
paths of length n from the number of paths of length 0 while saving in a stack a
logarithmic number of intermediate steps: the number of paths of length n/2, of
length 3n/4, of length 7n/8, etc. For computing the number of paths of length
n− i, it is computed again from the intermediate stage that is at the top of the
stack. Recall that Lj denotes the vector of q numbers of paths of length j, that
is the ls(j)’s for all states s.

Unlike the classical recursive method, there is no preprocessing phase. In [17]
it is proved that using floating-point numbers with a mantissa of size O(log n),
bit complexities of drawing are O(q log2 n) in space and O(dqn log2 n) in time,
where d stands for the maximal out-degree of the automaton.

The classical recursive method is much faster after the preprocessing stage,
but it is unusable for long paths and large models due to its space require-
ment. dichopile is an excellent compromise when considering both space and
time complexities. In our experiments with automata from the VLTS benchmark
suite (Very Large Transition Systems, http://tinyurl.com/yuroxx), examples of



4 Marie-Claude Gaudel

limits for the recursive method were 8879 states, 24411 transitions and paths
of length 64000, or 10849 states 56156 transitions and paths of length 16000,
where dichopile was able to generate paths of length 128000 and more. dichopile
was able to deal with 12323703 states, 27667803 transitions and paths of length
8000. Both methods are implemented in the RUKIA library.

3.3 Uniform path exploration in very large composed models

Fortunately, huge models are rarely stated from scratch. They are obtained by
composition of smaller ones, the main source of state number explosion being
parallel compositions.

When there is no synchronisation, the parallel composition of r models
Mod1, . . . ,Modr is the product of the underlying automata [2]. A brute force
method to uniformly drawing paths is to build the product and to use the meth-
ods above. Since it is possible for moderate sizes only we have developed an al-
ternative method that avoids the construction of the global model. This method
is presented in detail in [4] [14] and [5]. We sketch it below.

– Given n the length of the global path to be drawn
– Choose some lengths n1, . . . , nr such that

∑
i=1,...,r ni = n, with adequate

probabilities (see below)
– For each Modi, draw uniformly at random some path wi of length ni

– Interleave the r wi in a randomised way that ensures uniformity among
interleavings.

Let `(n) be the number of global paths of length n, and `i(k), i = 1, . . . , r the
number of paths of length k in Modi. The choice of the n1, . . . , nr should be
done with the probability below:

Pr(n1, . . . , nr) =

(
n

n1,...,nr

)
`1(n1) . . . `r(nr)

`(n)
(3)

where the numerator is the number of interleavings of length n that can be built
with r local paths of lengths n1, . . . , nr. Since computing the exact value of `(n)
would require the construction of the global model and of the corresponding
tables, we use the following approximation from [8]:

`(n) ∼ Cωn. (4)

where C and ω are two constants. A sufficient, but not necessary, condition for
this approximation to hold is aperiodicity and strong connectivity of the automa-
ton, which is satisfied by any LTS with a reset. Details of weaker conditions can
be found in [8]. This approximation is precise enough even for small values of n
since Cωn/`(n) converges to 1 at exponential rate.

Using the same approximations for the `i(ni), i = 1, . . . , r, we get (see [4]):

`(n) ∼ C1 . . . Cr(ω1 + . . . + ωr)n (5)



Counting for Random Testing 5

and then

Pr(n1, . . . , nr) ∼
(

n
n1,...,nr

)
ωn1
1 ωn2

2 . . . ωnr
r

(ω1 + ω2 + . . . + ωr)n
. (6)

This avoids the computation of `(n), and the constants ωi, i = 1, . . . , r are com-
putable in polynomial time with respect to the size of the Modi. It means that
the complexity is dependent on the size of the components only, and not of the
size of the global model.

In [4], we provide an algorithm for drawing n1, . . . , nr with this probability
without computing it: draw a random sequence of n integers in {1, . . . , r}, with
the probability to choose i equal to Pr(i) = ωi

ω1+ω2+...+ωr
; then take as ni the

number of occurrences of i in this sequence.
This concludes the issue of the choice of the n1, . . . , nr. A classical randomised

way of interleaving r wi of lengths ni that ensures uniformity is used.
This method is available in the RUKIA library. Experiments have been suc-

cessfully led on models with 1034 states, with performances that show that the
approach makes it possible to uniformly explore even larger models [14].

The generalisation one synchronisation is given in [9]. The case of several
synchronisations is studied in Oudinet’s Ph.D. thesis [16]
(available at http://www.lri.fr/ oudinet/en/research.html#publications). It turns
out be practicable in the case of a small number of synchronisations only. The
number of synchonisations can be increased by considering partial order reduc-
tion, i.e. by collapsing interleavings. Besides, in presence of many synchronisa-
tions, the synchronised product is smaller and a brute-force method, where it is
constructed and used for uniform drawings, may become feasible. Actually, prac-
tical solutions are probably combinations of these two approaches depending on
the architecture of the global system.

4 Randomised coverage of states, transitions, and other
features

Path coverage is known to be too demanding, due to the path number explosion.
Thus it is of interest to consider other coverage criteria. In [11] [3] [5], we have
defined a notion of randomised coverage satisfaction for random testing methods.

What does it mean for a random exploration method to take into account a
coverage criterion? Let EC(G) be the set of elements characterising a coverage
criterion C for a given graph G, for instance the vertices or the arcs of G, or some
subset of them.. The satisfaction of this coverage criterion C by some random
exploration of the graph G can be characterised by the minimal probability
qC,N (G) of covering any element of EC(G) when drawing N paths. qC,N (G) can
be easily stated as soon as qC,1(G) is known: it is given by the distribution
associated to the method. One has qC,N (G) = 1− (1− qC,1(G))N .

Given a coverage criteria and some given random testing method, the ele-
ments to be covered have generally different probabilities to be reached by a
test. Some of them are covered by all the tests. Some of them may have a very



6 Marie-Claude Gaudel

weak probability, due to the structure of the graph or to some specificity of the
testing method.

Let EC(G) = {e1, e2, ..., em} and for any i ∈ (1..m), pi the probability for
the element ei to be exercised during the execution of a test generated by the
considered random testing method. Then

qC,N (G) = 1− (1− pmin)N (7)

where pmin = min{pi|i ∈ (1..m)}. This definition corresponds to a notion of
randomised coverage satisfaction. It makes it possible to assess and compare
random exploration methods with respect to a coverage criterion.

Conversely, the number N of tests required to reach a given probability of
satisfaction qC(G) is

N ≥ log(1− qC(G))

log(1− pmin)
(8)

By definition pmin gives qC,1(G). Thus, from the formula above one immediately
deduces that for any given G, for any given N , maximising the quality of a ran-
dom testing method with respect to a coverage criteria C reduces to maximising
qC,1(G), i. e. pmin. Note that uniform drawing of bounded paths, as presented
in Section 3 maximises pmin on the set of paths to be covered.

A more developed discussion of these issues can be found in [5], together
with the treatment of state coverage and transition coverage, i.e. some method
for computing their probabilities for a given model . These methods were first
developed, implemented and experimented for C programs in [11] [3].

5 Uniformly randomised LTL model-checking

The big challenge of model-checking is the enormous sizes of the models. Even
when the best possible abstractions and restrictions methods have been applied,
it may be the case that the remaining size is still significantly too large to
perform exhaustive model explorations. Giving up the idea of exhaustivity for
model-checking leads to the idea of using test selection methods for limiting the
exploration of models.

One of these methods is randomisation of the search algorithm used for model
exploration. A first introduction of randomisation into model-checking has been
described and implemented in [12] as a Monte-Carlo algorithm for LTL model-
checking. The underlying random exploration is based on a classical uniform
drawing among the transitions starting from a given state. As said in Section
2 the drawback of such random explorations is that the resulting distribution
of the exploration paths is dependent on the topology of the model, and some
paths may have a very low probability to be traversed.

In [18], we have studied how to perform uniform random generation of las-
sos, which are the kind of paths of interest for LTL model-checking. This implies
counting and drawing elementary circuits, which is known as a hard problem.
However, efficient solutions exist for specific graphs, such as reducible data flow



Counting for Random Testing 7

graphs which correspond to well-strucured programs and control-command sys-
tems. An immediate perspective is to embed this method in an existing model-
checker such as SPIN or CADP, with the aim of developing efficient randomised
methods for LTL model-checking with as result a guaranted probability of sat-
isfaction of the checked formula.

This approach maximises the minimal probability to reach a counter-example,
and makes it possible to state a lower bound of this probability after N drawings,
giving an assessment of the quality of the approximation.

6 Conclusion

In this set of works, we study the combination of coverage criteria with random
walks. Namely, we develop some methods for selecting paths at random in a
model. The selection is biased toward a coverage criterion. We have introduced
a notion of randomised coverage satisfaction of elements of the model such as
states, transitions, or lassos which are of interest for checking or testing LTL
formulas.

We use methods for counting and generating combinatorial structures, pre-
senting several original applications of this rich corpus of knowledge. They open
numerous perspectives in the area of random testing, model checking, or simu-
lation of protocols and systems.

Acknowledgments. The works reported here have been led in the RASTA
working group (RAndom System Testing and Analysis), which involves mem-
bers of various research teams of LRI (Algorithms and Complexity, Bioinfor-
matics, Formal Testing and System Exploration) and of the Equipe de Logique
Mathématique at University Paris 7 . The current and past members are: Alain
Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard Lassaigne,
Johan Oudinet, and Sylvain Peyronnet.

References

1. Aldous, D.: An introduction to covering problems for random walks on graphs. J.
Theoret Probab. 4, 197–211 (1991)

2. Arnold, A.: Finite Transition Systems. Prentice-Hall (1994)
3. A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic method for statistical

testing. In IEEE Int. Symp. on Software Reliability Engineering (ISSRE), pages
25–34, 2004.

4. A. Denise, M.-C. Gaudel, S.-D. Gouraud, R. Lassaigne, and S. Peyronnet. Uni-
form random sampling of traces in very large models. In 1st International ACM
Workshop on Random Testing, pages 10 –19, July 2006.

5. Alain Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard Las-
saigne, Johan Oudinet, and Sylvain Peyronnet. Coverage-biased random explo-
ration of large models and application to testing. STTT, International Journal on
Software Tools for Technology Transfer, Online First, 2011. 26 pages.



8 Marie-Claude Gaudel

6. Denise, A., Zimmermann, P.: Uniform random generation of decomposable struc-
tures using floating-point arithmetic. Theoretical Computer Science 218, 233–248
(1999)

7. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random genera-
tion of labelled combinatorial structures. Theoretical Computer Science 132, 1–35
(1994)

8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

9. Gaudel, M.C., Denise, A., Gouraud, S.D., Lassaigne, R., Oudinet, J., Peyronnet,
S.: Coverage-biased random exploration of large models. In: 4th ETAPS Workshop
on Model Based Testing. Electronic Notes in Theoretical Computer Science, vol.
220, Issue 1, 10, pp. 3–14 (2008), invited lecture

10. Goldwurm, M.: Random generation of words in an algebraic language in linear
binary space. Information Processing Letters 54(4), 229–233 (1995)

11. S.-D. Gouraud, A. Denise, M.-C. Gaudel, and B. Marre. A new way of automat-
ing statistical testing methods. In IEEE International Conference on Automated
Software Engineering (ASE), pages 5–12, 2001.

12. Grosu, R., Smolka, S.A.: Monte-Carlo Model Checking. In: Proc. of Tools and
Algorithms for Construction and Analysis of Systems (TACAS 2005). LNCS, vol.
3440, p. 271286. Springer-Verlag (2005)

13. Nijenhuis, A., Wilf, H.S.: The enumeration of connected graphs and linked dia-
grams. J. Comb. Theory, Ser. A 27(3), 356–359 (1979)

14. Johan Oudinet. Uniform random walks in very large models. In RT ’07: Proceedings
of the 2nd international workshop on Random testing, pages 26–29, Atlanta, GA,
USA, November 2007. ACM Press.

15. Oudinet, J.: Random exploration of models. Tech. Rep. 1534, LRI, Université Paris-
Sud XI (June 2010), 15 pages

16. Oudinet, J.: Approches combinatoires pour le test statistique à grande échelle.
Tech. Rep. 1534, LRI, Université Paris-Sud 11, Université Paris-Sud XI (November
2010), 118 pages

17. Johan Oudinet, Alain Denise, and Marie-Claude Gaudel. A new dichotomic algo-
rithm for the uniform random generation of words in regular languages. In Con-
ference on random and exhaustive generation of combinatorial objects (GASCom),
Montreal, Canada, September 2010. To appear. 10 pages.

18. Oudinet, J., Denise, A., Gaudel, M.C., Lassaigne, R., Peyronnet, S.: Uniform
Monte-Carlo model checking. In: FASE. LNCS, vol. 6603, pp. 127–140. Springer
(2011)

19. Wilf, H.: A unified setting for sequencing, ranking, and selection algorithms for
combinatorial objects. Advances in Mathematics 24, 281–291 (1977)


