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Abstract. Motivated by recent experiments, we consider a Schrödinger cat
superposition of two widely separated coherent states in thermal equilibrium.
The time development of our system is obtained using Wigner distribution
functions. In contrast to our discussion for a two-Gaussian wave packet [Phys.

Lett. A 286 (2001) 87], we find that, in the absence of dissipation, the interfer-
ence term does not decay rapidly in time, but in common with the other two
terms, it oscillates in time and persists for all times.
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Decoherence phenomena are at the forefront of cutting-edge research in fundamental
and applied quantum mechanics, as summarized in [1], where we stressed that, at
variance with common lore, decoherence without dissipation could occur in the
case of a prototypical Schrödinger cat state of two widely separated Gaussians.
The question arises as to whether this is a general phenomena so here, motivated
by the NIST experiments on trapped ions [2, 3], we examine decoherence without
dissipation for the case of a widely separated pair of equilibrium coherent states.

Consider any quantum state consisting of two identical components separated
by a distance d. Then, it is not difficult to show that the corresponding Wigner
distribution function, W (2)(q, p) at time t = 0, say, is given by
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where W (q, p, 0) is the Wigner function for one of the pairs at t = 0 and N0 is a
normalization factor. We wish to examine the case where W (q, p, 0) is an oscillator

state and where W (q ± d/2, p, 0) corresponds to the pair of coherent (displaced
oscillator) states.

Decoherence is a measure of how the interference term in (1) decays in time
relative to the other terms. Thus, we need to calculate W (2)(q, p, t). This calculation
is facilitated by the fact that the equation of motion for the Wigner function of an
oscillator is the same as the classical equation of motion [4]. Hence

W (q, p, t) = W (q(−t), p(−t), 0) , (2)

where

q(t) = q cosωt +
( p

mω

)

sinωt , (3)

and

p(t) = p cosωt − mωq sin ωt, (4)

where ω is the oscillator frequency. It follows that

W (2)(q, p, t) = A
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and A is now the appropriate normalization factor.
We now consider the case where the system is in thermal equilibrium. The

equilibrium Wigner function for the oscillator is [4]
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where the subscript “0” indicates equilibrium and
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It follows from (3), (4) and (6) that

W0(q(−t), p(−t), 0) = W0(q, p, 0) . (8)

Hence
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where
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As before, decoherence is given a quantitative measure by defining an atten-
uation coefficient aw(t), which is the ratio of the factor multiplying the cosine to
twice the geometric mean of the first two terms (and here the subscript w indicates
decoherence in phase space to distinguish it from the more physically meaningful
quantity a(t) corresponding to decoherence in coordinate space). Hence

aw(t) = exp

{

d2

2〈q2〉

}

. (11)

Next, we obtain the coordinate probability by integrating (9) over p. First, we
note, using (6), that
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It follows, from (9) and (12), that

P (2)(q, t) = A0P0(q, t)
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Hence
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It is clear that we do not have an interference term which decays rapidly in
time but instead, in common with the other terms, it oscillates in time and persists
for all time. This is in contrast to what we found for a two-Gaussian state of a free
particle [1, 5]. However, for small times after the times for which the attenuation
factor has its maximum value of unity, and for negligibly small frequencies, we
obtain a decoherence decay time which is consistent with our results for a free
particle [5].
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