
A “Piano Movers” Problem Reformulated

David Wilson, James H. Davenport, Matthew England & Russell Bradford
Department of Computer Science, University of Bath, Bath, BA2 7AY, UK

E-mail: {D.J.Wilson, J.H.Davenport, M.England, R.J.Bradford}@bath.ac.uk

Abstract—It has long been known that cylindrical algebraic
decompositions (CADs) can in theory be used for robot motion
planning. However, in practice even the simplest examples can be
too complicated to tackle. We consider in detail a “Piano Mover’s
Problem” which considers moving an infinitesimally thin piano
(or ladder) through a right-angled corridor.

Producing a CAD for the original formulation of this problem
is still infeasible after 25 years of improvements in both CAD
theory and computer hardware. We review some alternative
formulations in the literature which use differing levels of
geometric analysis before input to a CAD algorithm. Simpler
formulations allow CAD to easily address the question of the
existence of a path. We provide a new formulation for which
both a CAD can be constructed and from which an actual path
could be determined if one exists, and analyse the CADs produced
using this approach for variations of the problem.

This emphasises the importance of the precise formulation of
such problems for CAD. We analyse the formulations and their
CADs considering a variety of heuristics and general criteria,
leading to conclusions about tackling other problems of this form.

I. INTRODUCTION

A. A “Piano Movers” problem

In [24] the authors describe a “Piano Movers” Problem
as follows: “given a body B and a region bounded by a
collection of walls, either find a continuous motion connecting
two given positions and orientations of B during which B
avoids collisions with the walls, or else establish that no such
motion exists.” Such problems commonly arise in robotics.

A simple example from [14] is the problem of moving a
ladder of length 3 through a right-angled corridor of width 1
(moving from position 1 to position 2 in Figure 1). A simple
analysis shows there is no solution to this particular problem,
and that it would only be possible to traverse the corridor
with a ladder of length less than

√
8. We are interested in

how this and similar piano movers problems may be decided
automatically, with paths calculated when a solution exists.

1

2

Fig. 1. The piano movers problem considered in [14]

In [25] the authors proposed a generic approach to piano
movers problems in which the problem is described using

polynomial algebra and then solved using the cylindrical
algebraic decomposition (CAD) algorithm. However, for even
very simple examples this approach can be computationally
infeasible. In [14] the author applied the approach of [25] to
the simple problem of the ladder just described, demonstrating
the scale of the computations that would be required. Despite
25 years of improvements in both CAD theory and computer
hardware, producing a CAD for the algebraic formulation
given in [14] is still infeasible.

In Section II we provide a new formulation for which
a CAD has been produced and from which path could be
deduced. First we complete the introduction with a reminder
of the theory of CAD, details of the original formulation and a
summary of other formulations found in the literature. Some of
these can solve the existential question of whether a path exists
very quickly, but they cannot then give the actual path that
would be required by a robot, which the formulation presented
in Section II can. In Section III we consider generalisations of
the problem and how the some of the formulations could be
adapted while in Section IV we consider further adaptations to
CAD technology for use with piano movers problems. Finally
we give our conclusions in Section V.

B. Cylindrical algebraic decomposition

A cylindrical algebraic decomposition (CAD) is a partition
of Rn into cells, constructed with respect to an input, usually
either polynomials or formulae, in n ordered variables. Each
cell is described by a semi-algebraic set (a finite sequence
of polynomial equations and inequalities) and the cells are
cylindrically arranged (meaning the projection of any two cells
on the first k coordinates is either equal or disjoint).

A CAD is sign-invariant if the input polynomials have
constant sign on each cell. Such a CAD allows for the
solution of many problems defined by the polynomials. Collins
provided the definition and first algorithm [1], motivated as
a tool for quantifier elimination in real closed fields. Other
applications range from robot motion planning to algebraic
simplification technology [5], [15].

Collins’ algorithm has two phases. The first, projection,
applies a projection operator repeatedly to a set of polyno-
mials, each time producing another set in one fewer variables.
Together these contain the projection polynomials. The second
phase, lifting, then builds the CAD incrementally from these
polynomials. First R is decomposed into cells which are points
and intervals corresponding to the real roots of the univariate
polynomials. Then R2 is decomposed by repeating the process
over each cell using the bivariate polynomials at a sample point
of the cell. The output for each cell consists of sections of
polynomials (where a polynomial vanishes) and sectors (the
regions between these). Together these form the stack over the



cell, and taking the union of these stacks gives the CAD of
R2. This process is repeated until a CAD of Rn is produced.
The projection operator must be chosen in order to conclude
that the CAD of Rn produced in this way is sign-invariant.

We note that CADs can depend heavily on the ordering of
the variables. In [10] a problem was described which led to a
cell count doubly exponential in the number of variables for
one ordering, but constant in another. Heuristics to help pick
the variable ordering are developed in [16], [7].

Since Collins published the original algorithm there has
been much research into improvements with a summary of de-
velopments over the first twenty years given by [12]. Important
advances include: the definition of finer projection operators to
use in the first phase [20]; the introduction of Partial CAD to
make use of the quantified structure of a formula when lifting
[13]; the use of equational constraints to reduce the number of
projection polynomials required [23]; the use of truth-table-
invariant CADs (TTICADs) to apply equational constraint
techniques more widely [6]; and an alternative approach to
projection and lifting where the problem is solved in complex
space and then refined to a CAD of real space [11].

C. Original formulation of the problem

In [14] Davenport considered building a CAD to solve the
problem of moving a ladder of length 3 through a right-angled
corridor of width 1 (as in Figure 1). Denoting the endpoints of
the ladder as (x, y) and (w, z) and assuming the outer corner
of the corridor is the origin, the formulation provided was[

(x− w)2 + (y − z)2 − 9 = 0
]

∧
[
[yz ≥ 0] ∨ [x(y − z)2 + y(w − x)(y − z) ≥ 0]

]
∧
[
[(y − 1)(z − 1) ≥ 0]

∨ [(x+ 1)(y − z)2 + (y − 1)(w − x)(y − z) ≥ 0]
]

∧
[
[xw ≥ 0] ∨ [y(x− w)2 + x(z − y)(x− w) ≥ 0]

]
∧
[
[(x+ 1)(w + 1) ≥ 0]

∨ [(y − 1)(x− w)2 + (x+ 1)(z − y)(x− w) ≥ 0]
]
. (1)

The first equation in (1) describes the length of the ladder,
and the remaining inequalities describe the valid positions,
ensuring the ladder does not intersect any of the four walls.

In [14] the author completed the projection phase of
Collin’s CAD algorithm, finding over 250 distinct univariate
projection factors with total degree as high as 26. The technol-
ogy available for the paper did not allow for the simultaneous
root isolation of these. With current hardware1 and software
incorporating the latest CAD theory (QEPCAD-B 1.69 [8]
and MAPLE 16 [11]) it still remains outside the realm of
computation to complete the construction of the CAD.

D. Other approaches

In robotics, piano mover’s problems would typically be
tackled using numerical methods to produce paths efficiently
at the expense of the possibility of rounding errors. We are
concerned with the development of symbolic approach and so
do not examine numerical methods in this paper.

1Experiments in this paper were run on a Linux desktop with a 3.1Ghz
Intel processor and 8.0Gb total memory

In [24] the authors of [25] proposed a separate approach
for the piano movers problems restricted to the plane, which
did not make use of CAD. This algorithm will typically run
more efficiently than the CAD based approach but does not
generalise to higher dimensional problems.

Tackling the problem with CAD has been revisited several
times in the literature. In [19], the author discussed the
problem suggesting the question of traversing the corridor was
equivalent to the question as to whether there is a position of
the ladder for which both extremities are in the two branches
of the corridor. The verbal description of this reformulation
seems misleading since a ladder could be positioned as such
while still being unable to turn the corner as in Figure 2.

Fig. 2. A configuration of a ladder in which the endpoints are in opposite
branches of the corridor.

Later in [19] the author reports on another reformulation
using only one endpoint and the tangent of the half-angle
between the x-axis and the ladder, reporting that a CAD can
be produced for this using Collins’ algorithm sufficient to
conclude that the problem has no solution. Since no details
of the algebraic formulation were provided we are unable to
verify this or analyse this formulation further.

(b,0)

(0,a)

(d,1)

(-1,c)

Fig. 3. A configuration of a ladder in which all four walls are intersected.

In [28], Wang uses “simple reasoning” to deduce that the
ladder cannot traverse the corridor if and only if it intersects
all four walls simultaneously. From this deduction the problem
can be reformulated as follows: Let a, b, c, d be coordinates
defining the intersection points as in Figure 3 and r be the
length of the ladder). Then there is no solution if

(∃a)(∃b)(∃c)(∃d)[a2 + b2 = r2 ∧ r > 0

∧ a ≥ 0 ∧ b < 0 ∧ c ≥ 1 ∧ d < −1
∧ c− (1 + b)(c− a) = 0 ∧ d− (1− a)(d− b) = 0]. (2)

Due to its simplicity and the small number of free variables
(only r is unquantified) QEPCAD can almost instantly deduce
that the maximal length of the ladder is

√
8, using a CAD of 19

cells. When considering the same problem in [27] Wang noted
that if the ladder intersected the outer walls and one of the inner
walls then it must also intersect the other. Hence equation (2)
could be simplified further by removing the final conditions



on lines 2 and 3. This further topological reasoning actually
makes no difference here (QEPCAD’s timings and cell counts
are unchanged) but could be powerful for other problems.

In [22] McCallum approaches path-finding by considering
transformations of objects by a translation (x, y) and a rotation
θ. This produces a formulation of the ladder problem involving
21 equations and inequalities in a comparatively complicated
boolean formula. Appealing to equational constraints and par-
tial CAD techniques McCallum constructs a four-dimensional
CAD of 16,138 cells in 429 seconds.

In [31] Yang and Zeng considered the problem in the case
of a rectangular piano instead of a ladder and used geometric
analysis to achieve a simple condition for the problem to have
a solution. They parametrize the problem according to the
position of a corner and the angle the rectangle makes with
the horizontal axis. Through some highly non-trivial analysis
they obtain a condition on a polynomial which, if true, implies
the existence of a valid route. Applying their techniques to the
case of the ladder of length L we see that the existence of a
valid route is equivalent to the truth of

(∀x) 4x8−4(L−3)x6−2(3L−6)x4−2(L−3)x2+1 > 0. (3)

It takes QEPCAD just 1.936 seconds (mostly initialization time)
and 5 cells to return: L2 − 8 < 0 ∨ L < 0.

The approaches of [28] and [31] are highly efficient but
limited. They require, not insignificant, geometric deductions
before presentation to CAD, and inform you only whether
the ladder can or cannot pass through the corridor, revealing
no information about possible paths. It would make sense
to therefore use these sort of approaches as an initial test
for a problem before constructing an inevitably far more-
complicated CAD sufficient for planning routes.

Also, these reformulations give descriptions in the real
space, meaning they describe the geometry of the plane in
which the ladder exists. This is opposed to [25], [14] and the
new formulation in Section II which describe the geometry in a
four-dimensional configuration space, specifically coordinates
of the endpoints that fix the ladder within the plane. This
distinction is important since the former allows us to analyse
whether a ladder can move through the corridor, but cannot
provide the explicit path for it to do so. It can be said that
[22] also works within a configuration space, however a non-
trivial one where positions are encoded by transformations.

By not considering the whole configuration space in their
formulations, Wang and Yang–Zeng also cannot consider
whether the ladder is able to rotate within the corridor to
exit in the opposite orientation (an important point for the
generalisations of the problem discussed in Section III-B).

II. NEW FORMULATION OF THE PROBLEM

We consider the problem in configuration space, but from
a different perspective than [14]. First we give a formula
describing all possible invalid regions, then take its negation
as a description of the valid regions. As in (1) we denote the
endpoints of the ladder by (x, y) and (w, z).

A. Describing the invalid regions

We describe four canonical invalid configurations for the
ladder. Each is identified with an equivalent Tarski formula
and examples of each are given in Figure 4.

A x < −1∧y > 1 or w < −1∧z > 1: this describes
any collision with the ‘inside’ walls along with the
ladder being on the other side of these.

B x > 0 or w > 0: this describes any collision with
the rightmost wall along with the ladder being on
the other side.

C y < 0 or z < 0: this describes any collision with
the bottommost wall along with the ladder being
on the other side.

D (∃t)[0 < t ∧ t < 1 ∧ x + t(w − x) < −1 ∧ y +
t(z − y) > 1]: this ensures no inner point of the
ladder lies in the invalid top-left region.

A
B

C

D

Fig. 4. Four canonical invalid positions of the ladder. Note from the algebraic
descriptions that for positions A–C only one end need be outside the corridor.

We can hence characterise the invalid regions with:

[x < −1 ∧ y > 1] ∨ [w < −1 ∧ z > 1] ∨ [x > 0]

∨ [w > 0] ∨ [y < 0] ∨ [z < 0] ∨ (∃t)
[
0 < t ∧ t < 1

∧ x+ t(w − x) < −1 ∧ y + t(z − y) > 1
]
. (4)

This formula contains the “new” variable t used to represent
any point on the ladder. We can use QEPCAD to eliminate t
from (4) in just over 2 seconds, constructing 681 cells and
returning the equivalent quantifier-free formula:

[y < 0] ∨ [w > 0] ∨ [x > 0] ∨ [z < 0]

∨ [x+ 1 < 0 ∧ y − 1 > 0] ∨ [w + 1 < 0 ∧ z − 1 > 0]

∨ [w + 1 < 0 ∧ yw − w + y + x ≥ 0

∧ xz + z − yw + w − y − x > 0]

∨ [yw − w + y + x < 0 ∧ z − 1 > 0

∧ xz + z − yw + w − y − x < 0]

∨ [y − 1 > 0 ∧ yw − w + y + x < 0]. (5)

B. New formulation for CAD

We now have a description of the invalid regions, (5), so
we can describe the valid regions by taking its negation:

[w ≤ 0] ∧ [x ≤ 0] ∧ [y ≥ 0] ∧ [z ≥ 0] ∧ [x ≥ −1 ∨ y ≤ 1]

∧ [w ≥ −1 ∨ z ≤ 1] ∧
[
wy − w + x+ y < 0 ∨ w + 1 ≥ 0

∨ xz + z − yw + w − y − x ≤ 0
]

∧
[
yw − w + y + x ≥ 0 ∨

[
[z − 1 ≤ 0

∨ xz + z − yw + w − y − x ≥ 0] ∧ y − 1 ≤ 0
]]
. (6)



Although (6) describes the valid regions in terms of the
endpoints it is missing any description of the relationship
between these (fixing the length of the ladder). Hence our new
formulation of the problem for CAD is

[(x− w)2 + (y − z)2 = 9] ∧ (6). (7)

C. Applying CAD

The formula (7) was given to QEPCAD (with initialisation
parameters +N500000000 +L200000) under the variable
ordering x ≺ y ≺ w ≺ z. After a little under 5 hours
(16,933.701 seconds) of computation time a CAD of R4

was constructed with 285,419 cells. The following equivalent
formula to (7) was given:

x ≤ 0 ∧ y ≥ 0 ∧ w ≤ 0 ∧ z ≥ 0 ∧ (y − z)2 + (x− w)2 = 9

∧
[
[x+ 1 ≥ 0 ∧ w + 1 ≥ 0] ∨

[
y − 1 ≤ 0 ∧ w + 1 ≥ 0

∧ y2w2 − 2yw2 + x2w2 + 2xw2 + 2w2 − 2xy2w

+ 4xyw − 2x3w − 4x2w − 4xw + x2y2 − 2x2y

+ x4 + 2x3 − 7x2 − 18x− 9 ≥ 0
]

∨
[
x+ 1 ≥ 0 ∧ yw − w + y + x ≥ 0 ∧ w2 − 2xw + y2

− 2y + x2 − 8 > 0 ∧ z − 1 ≤ 0
]

∨
[
x+ 1 ≥ 0 ∧ yw − w + y + x ≥ 0 ∧ y2w2 − 2yw2

+ x2w2 + 2xw2 + 2w2 − 2xy2w + 4xyw − 2x3w

− 4x2w − 4xw + x2y2 − 2x2y + x4 + 2x3 − 7x2

− 18x− 9 ≤ 0 ∧ z − 1 ≤ 0
]

∨ [y − 1 ≤ 0 ∧ z − 1 ≤ 0]
]
. (8)

The first line gives the conditions of the problem which
are in conjunction with any valid configuration. The remain-
ing lines give a large disjunction of clauses describing such
configurations. The first clause is characterizing the positions
where the ladder is entirely in the vertical corridor and the last
clause where the ladder is entirely in the horizontal corridor.
There are then three more clauses characterising positions in
between. Any analysis of the decomposition of these equations
requires knowledge of the adjacency of the four-dimensional
CAD: this is highly non-trivial and discussed in Section II-D.

QEPCAD uses, amongst other theory, partial CAD tech-
niques [13] to simplify its calculations and output. These can
be suppressed by issuing the full-cad command. We note
that doing so greatly increases the difficulty of the problem.
Calculating a full-cad of (7) resulted in the construction
of 1,691,473 cells taking just over a day of computation time
(88,238.442 seconds). The quantifier-free formula returned is
almost identical to the partial CAD version (8) (with a couple
of cases split slightly differently).

We can attempt to speed up the construction by introducing
quantifiers on one endpoint leading to a CAD of valid positions
for one endpoint of the ladder, by prefixing (7) with (∃w)(∃z).
Using QEPCAD this took just over 50 minutes (3052.753
seconds) and produced only 5453 cells. The sharp reduction
is a result of partial CAD techniques as described in [13]. The
resulting quantifier-free formula is simply,

x ≤ 0 ∧ y ≥ 0 ∧ [x+ 1 ≥ 0 ∨ y − 1 ≤ 0], (9)

which is the definition of the original corridor. The quantified
version of (7) is simply asking for those points where it is
possible to place an end of the ladder and have it in a valid
position and so this formula is as expected. We note that
the CAD used to construct the formula contains far more
information than is needed — a CAD with only 17 cells is
sufficient to describe the corridor.

The existential CAD is not sufficient to solve the path
finding problem, and for our example the output (9) gives little
useful information. However, providing quantified variables
has drastically reduced the complexity of the problem and
so can be a useful test for the feasibility of the problem (a
CAD for the original formulation (1) remains infeasible under
quantification). It can also be used in some cases (when the
valid region for the endpoint is not the entire corridor) to show
a ladder traversal is impossible: for example, if an invalid
region were to ’block’ the corridor.

QEPCAD can produce a visualisation of two-dimensional
CADs through the p-2d-cad command. Figure 5 shows the
output for the problem in the preceding paragraphs (so it refers
to the existential CAD; the diagram for the non-quantified
formulation is similar, but omits all cell boundaries within the
corridor). The diagram is for x in the range [−7, 2] and y in
the range [−2, 7] with a step of 0.025 (therefore if stacks are
within 0.025 (with respect to x) or intra-stack cells are within
0.025 (with respect to y) they will not be distinguishable).

Figure 5 makes clear just how complicated the problem is
when being tackled by CAD. There are certainly boundaries
to cells that seem to be related to ‘boundary cases’ of the
problem: when the ladder is ‘stuck’ trying to get around
the corner. However, there are many boundaries with little
significance for the real problem and so further development
of the CAD technology to remove these would be beneficial.

D. Adjacency

The four-dimensional CADs of configuration space we
have produced from (7) could be used to both determine the
existence of a solution and then construct a path. However,
to do the latter we need to first analyse the adjacency and
connectedness of cells in the four-dimensional CAD. This is
not currently possible with any existing technology and is cer-
tainly non-trivial. The process is described in two dimensions
by [2] (which has been implemented in QEPCAD) while [3]
generalises the approach to three dimensions. Further general-
isations are not trivial however [4], with adjacency algorithms
likely to work (without a change of coordinates) only for well-
behaved input. We also note that in [25] the authors consider
adjacencies between n and (n−1)-dimensional cells, but since
we have an equational constraint, we are actually interested in
adjacencies between (n− 1) and (n− 2)-dimensional cells.

E. Choosing a formulation

An important question is why (7) is a better formulation
for CAD than (1), and whether we could have predicted this.

On first glance, we see that the new formulation involves
polynomials of lesser degree. One measure of CAD complexity
is sotd (introduced in [16] as the sum of total degree of each
monomial in each polynomial). Using this measure applied



Fig. 5. A two-dimensional CAD of the (x, y) configuration space constructed
from (7).

to the input polynomials as a heuristic certainly favours the
new formulation: (1) has sotd 100 compared to (7) with
an sotd of 33. The benefit is less obvious when taking an
sotd of the full projection factor sets. The new formulation
is still lower, but there is a smaller relative difference: 2006
is reduced to 1693. There are over 100 univariate polynomials
in the projection sets of both formulations. Calculating ndrr
(introduced in [7] as the number of distinct real roots of
the univariate projection polynomials) also favours the new
formulation, but again, not by an amount that indicates the
changes in feasibility: 367 reduces to 301.

For comparison, we note that the approach by Wang leads
to an sotd of 19 for the the top level projection polynomials,
98 for the full projection factor set and an ndrr of 17.
McCallum’s formulation has sotd’s of 68 and 32 (lower due
to repeated factors) and an ndrr of 5. Yang-Zeng’s approach
gives sotd’s of 35 and 39, and an ndrr of 2. Hence full
sotd and ndrr correctly predict that the CADs related to
these approaches will be smaller than our reformulation.

These heuristics do not take into account the number of
quantifiers which can be hugely influential in the complexity
of a problem. The fact that Wang’s formulation contained only
a single unquantified variable is hugely instrumental in such an
efficient construction. The effect of these quantifiers suggests
the creation of more sophisticated heuristics. For example:
sum of weighted total degrees. This would weight variables
according to two properties: the overall variable ordering and
which variables are quantified.

Let the CAD be created with respect to variables x1 ≺
x2 ≺ · · · ≺ xn where x1 decomposes R1, {x1, x2} decom-
poses R2 and so forth. Then assign a weight of i to variable
xi so that the polynomial x35 − x1 would have sowtd 16
rather than just an sotd of 4. In addition to this, if a variable

is quantified then reflect this by halving its effect on sowtd.
For the above polynomial, if x5 was quantified then the sowtd
would become 8.5. Applying these to the various formulations
we get the following:

• Davenport (unquantified): sowtd = 148.

• Davenport (quantified): sowtd = 92.

• New formulation (unquantified): sowtd = 72.

• McCallum’s formulation: sowtd = 70.

• New formulation (quantified): sowtd = 46.

• Wang’s formulation: sowtd = 27.

• Yang–Zeng’s formulation: sowtd = 23.

The sowtd measure gives an ordering matching the difference
in cell counts, and has plausible-looking differences.

III. GENERALISING THE PROBLEM

A. Ladders of different length

The reformulation described in Section II was for a ladder
of length 3. We know already that the maximum length of a
ladder able to traverse the corner is

√
8 and similar geometric

reasoning shows that the maximum length of a ladder able to
reverse its orientation is

√
2. We compare the CAD for (7) (in

which the ladder can not traverse the corridor) to the equivalent
formulations with a ladder of shorter length. We consider four
canonical cases which exhaust the possible scenarios:

Length 3: Ladder cannot traverse the corridor.
Length 2: Ladder can traverse the corridor but is unable

to reverse its orientation.
Length 5

4 : Ladder can traverse the corridor and is able
to reverse its orientation, but only within the
‘corner’.

Length 3
4 : Ladder can traverse the corridor and reverse its
orientation at any point within the corridor.

All the results are summarized in Table I. We compare
both non-quantified and quantified versions (where the input
formula was preceded by (∃w)(∃z) as indicated by ∃). Note
the length of the ladder is an explicit equational constraint and
so QEPCAD automatically applies the theory of [23].

TABLE I. CADS OF (7) MODIFIED BY VARYING LADDER LENGTH.

EC-CAD ∃ EC-CAD
Length Cells Time (s) Cells Time (s)

3 285419 16286.431 5453 2941.024
2 314541 9863.950 5353 1922.837

5/4 404449 33042.101 5589 7312.347
3/4 446787 13146.195 4347 69.690

3 full-cad 1691473 88238.442 — —

B. Angled corridors

We consider how the problem may be generalised to a
non-right angled corridor. There are two canonical cases: that
where the angle is obtuse as in Figure 6 and that where the
angle is acute as in Figure 7.

For a general obtuse angled corridor the right hand corridor
walls have equations y = tan(θ)x and y = tan(θ)x+ 1. This
results in the following formulation of the invalid positions:



[x < 0 ∧ y > 1] ∨ [y < 0] ∨ [x > 0 ∧ y > tan(θ)x+ 1]

∨ [y < tan(θ)x] ∨ [w < 0 ∧ z > 1] ∨ [z < 0]

∨ [w > 0 ∧ z > tan(θ)w + 1] ∨ [z < tan(θ)w]

∨ (∃t)[0 < t ∧ t < 1]

∧
[
[x+ t(w − x) < 0 ∧ y + t(z − y) > 1]

∨ [y + t(z − y) < 0] ∨ [x+ t(w − x) > 0

∧ y + t(z − y) > tan(θ)(x+ t(w − x)) + 1]

∨ [y + t(z − y) < tan(θ)(x+ t(w − x))]
]
. (10)

For a general acute angled corridor the right hand corridor
walls have equations y = − tan(ψ)x and y = − tan(ψ)(x +
1). This results in the following formulation of the invalid
positions:

[y < 0] ∨ [y > − tan(ψ)x]

∨
[
x < −

(
tan(ψ) + 1

tan(ψ)

)
∧ y > 1 ∧ y < − tan(ψ)(x+ 1)

]
∨ [z < 0] ∨ [z > − tan(ψ)w]

∨
[
w < −

(
tan(ψ) + 1

tan(ψ)

)
∧ z > 1 ∧ z < − tan(ψ)(w + 1)

]
∨ (∃t)[0 < t ∧ t < 1] ∧

[
x+ t(w − x) < −

(
tan(ψ) + 1

tan(ψ)

)
∧ y + t(z − y) > 1

∧ y + t(z − y) < − tan(ψ)(x+ t(w − x) + 1)
]
. (11)

If tan of the angle in question is an algebraic number
(for example if the angle is a rational multiple of π) then we
can compute an exact solution to these problems using CAD.
However for other cases we would either need to approximate
the value of tan(θ) or treat it as an additional variable in
configuration space.

θ

θ

Fig. 6. Generic obtuse angled corridor

ψ

ψ

Fig. 7. Generic acute angled corridor

As with the formulation for the right angled corridor we
then eliminate the extra parameter t, take the negation of
the quantifier free formula, conjunct the equational constraint
describing the length of the ladder, and construct a CAD
according to this new formula. Hence the new formulation
in Section II may be generalised easily, although constructing
the CAD may be more computationally difficult. Generalising
Wang and Yang–Zeng’s methods is not always straightforward
due to them being so reliant on geometrical reasoning, as
demonstrated in the examples below. It should be possible to
adapt [22] for angled corridors, although care may need to be
taken that certain trigonometric identities hold.

1) Obtuse π/4-angled corridor: Let the walls of the right
angled corridor make an angle of π/4 with the horizontal.

We can generalise Wang’s idea and consider when the
ladder intersects all four walls at once. As with the right-angled
corridor, this provides us with the maximal length of the ladder.
This approach would work for all obtusely angled corridors
(under the same constraint of tan(θ) being algebraic).

QEPCAD can answer this question with 27 cells in 5.717
seconds to return

r = 0 ∨ 2r6 − 93r4 − 172r2 − 125 ≥ 0.

The appropriate solution is√
1

6

3

√
667143 + 4452

√
159 +

(2539/2)
3
√
667143 + 4452

√
159

+
31

2

which is approximately 6.6786.

Tackling this problem with our method, we first we elim-
inate t from the invalid regions. This takes 170,597 cells
and 230.881 seconds. After forming the complete formulation,
QEPCAD fails to construct the relevant CAD after constructing
50,000,000 cells (the self-imposed limit of the +N50000000
parameter when calling QEPCAD). The extra complexity is
because the diagonal corridor is not aligned with the directions
of projection.

2) Acute π/4-angled corridor: Let the walls of the right
angled corridor make an angle of 3π/4 with the horizontal to
form an acutely angled corridor with angle π/4.

We can naı̈vely apply Wang’s method to the acutely angled
corridor. QEPCAD uses 39 cells in 4.520 seconds to return

r = 0 ∨ 2r6 + 9r4 − 17r2 − 125 ≥ 0.

The appropriate solution is√
1

6

3

√
4644 + 249

√
249 +

61

2
3
√

4644 + 249
√
249
− 3

2

which is approximately 1.8443.

Unfortunately this does not give a complete answer to the
problem. It is possible to fit a rod of length

√
5 (greater than

the above value) by placing it within the corner. This disparity
is because naı̈vely applying Wang’s idea does not take into
account the possibility of reversing the orientation of the ladder
necessary for ladders of larger lengths. To adapt Wang’s idea to
include this reverse orientation would require some non-trivial
geometric reasoning.



As our formulation is based within configuration space, it
acknowledges the extra condition of orientation, but with added
complexity expense. If we try our formulation with r = 2
(as 1.8443 < 2 <

√
5) we first eliminate t from the invalid

regions. This takes 91,583 cells and 86.647 seconds. If we then
try to solve the problem by constructing the relevant CAD we
fail after constructing 50,000,000 cells (the self-imposed limit
of the +N50000000 parameter when calling QEPCAD).

IV. ADAPTING CAD TECHNOLOGY FOR FUTURE WORK

QEPCAD makes use of the theory of equational constraints
to reduce the number of projection polynomials (and hence
the number of cells in the CAD) along with partial CAD
techniques. However, we note that there are further savings
that could be made given the presence of the equation and we
discuss these ideas and their potential in this section.

A. Extending Equational Constraints

First, as pointed out in [18], the theory of [23] allows us
to only lift with respect to the equational constraint for the
the final lift. However, QEPCAD appears to lift with respect to
all projection polynomials (including the non-equational con-
straints). Considerable savings can be made by implementing
this idea. If more than one equational constraint is present in
a problem (for example if there were multiple ladders) then
the full power of TTICAD (as described in [6]) can be used
to simplify the resulting CAD further.

B. Building a layered CAD for the problem

As mentioned earlier we are concerned with the adjacencies
and connectedness of our CAD of configuration space. For
this problem we are mainly concerned with those cells in
the CAD of full-dimension as these describe regions where
the configuration of the ladder is free to move. We note that
the key adjacencies for these cells are those through two-
dimensional cells: an adjacency of two three-dimensional cells
through a one- or zero-dimensional cell would correspond to
an infeasible situation in the real physical space for all but
boundary cases (i.e. the ladder having to “tightrope walk” a
one-dimensional subspace of R2).

The idea of building CADs containing only cells of full-
dimension has been investigated previously in [21], [26], [9].
We have generalised the idea to produce CADs with cells of
specified dimension and higher, which we call layered CADs.
Algorithms to produce these are presented in [30] along with a
discussion of their topological properties, possible applications
and an implementation in MAPLE built over the authors’
ProjectionCAD package, [17], [18]. Work on these objects
and their properties is ongoing.

C. Lifting to a manifold

In the configuration space, all valid cells must lie on the
three-dimensional manifold described by the equation (x −
w)2+(y−z)2 = 9 so we are only concerned with cells where
the equation is satisfied (and the ladder has the desired length).
We can therefore construct an order-invariant CAD of three-
dimensional space using the projection polynomials for input
with an equational constraint [23], and when lifting over this

with respect to the equation, discard all sectors. This leaves
just the sections: precisely the cells on the manifold. We have
implemented this approach using our MAPLE package [18].

Within the manifold, the most important cells are those
of full-dimension (with respect to the manifold) as cells of a
lower dimension relate to physically infeasible situations (i.e.
one-dimensional subspaces of R2). We can restrict our CAD
to produce only these cells through a smarter lifting stage.

Any full-dimensional cell on the three-dimensional mani-
fold must project onto a three-dimensional cell in the induced
CAD of R3 (as it is a section of the equational constraint).
We start by constructing the projection set with respect to the
equational constraint, producing 11 polynomials in y, w, z. We
then build just the full-dimensional CAD cells in R3: 64,764
cells in 16,991.400 seconds.

We can now lift over these cells with respect to the
manifold (an equational constraint). We construct a stack over
each cell and extract any sections (those cells lying on the
manifold). This process is relatively quick, produces 101,924
cells in 1020.860 seconds. The total time to construct the
three-dimensional decomposition of the manifold is therefore
18,012.3 seconds, producing 101,924 cells.

It is not yet feasible to construct all cells on the manifold
(or indeed the three-dimensional CAD to lift over) using
MAPLE, partly as our implementation does not yet take
advantage of partial CAD techniques. We expect that with
further improvements a CAD of the manifold sufficient for
constructing valid paths (one with two and three-dimensional
cells) could be built.

V. CONCLUSIONS

We considered a classic example of a piano mover’s
problem, how a ladder can traverse a corridor, and the solution
via CAD. Despite years of improvements to CAD theory and
computer hardware, building a CAD for the original formu-
lation in [14] remains infeasible. However, by reformulating
the problem CADs can be produced in a matter of seconds,
demonstrating how problem formulation is essential to the
feasibility of a CAD problem. Further evidence of this was
presented in [7].

We presented a new formulation of the problem for which
a CAD can be produced. There are other solutions in the
literature [28], [22], [31] but these differ in important ways.
In [28], [31] the authors relied heavily upon mathematical
deduction performed by hand before input to CAD. While
this is the most powerful reformulation tool available it is not
trivial to automate or generalise. In [22] the author described
configurations in a non-trivial manner involving translations
and rotations which may complicate subsequent analysis of
the space. Our reformulation in Section II uses only a simple
negation of the problem, a technique that could be performed
algorithmically by CAD technology, using heuristics to decide
the appropriate formulation to use.

Another distinction is that the approaches in [28], [31] are
firmly rooted within the two-dimensional space of the corridor
while the new formulation presented here deals with the
configuration space of the ladder: a three-dimensional manifold
within four-dimensional space. This means that whilst the



approaches in [28], [31] are able to answer the question “Can
the ladder get through the corridor?” they cannot answer the
question “How can the ladder get through the corridor?”. The
approach of [22] would be able to answer the latter question,
but only after some non-intuitive analysis of the trigonometric
space described by the formulation.

These distinctions may seem trivial for the problem at hand,
but they would become far more important in generalisation.
Indeed, even for a ladder in an acute-angled corridor it may be
that the only feasibility path involves rotating the ladder in the
corner (reversing its orientation). This would not be provided
by a simple affirmation that a path existed and in the case of
Wang’s formulation the possibility would not be considered
since this formulation requires the orientation to be fixed. It is
hard to think of a mathematical argument that takes this into
account without needing the full configuration space.

Finally, we have also introduced the idea of restricting
lifting in CAD, to cells of full dimension lying on the given
manifold. This is much more efficient than producing a full
CAD, returning just over a third of the cells for our example.
These techniques could be applied to any problem with an
equational constraint (lifting to appropriate manifold, or indeed
hypersurface) and have now been investigated in generality and
formalised in [29].

Although a generic symbolic solution to robot motion
planning was provided in theory by [25], in general it remains
infeasible to the present day, with numerical methods providing
the only practical approach. The ideas presented in this paper
show that progress is still possible, but that it will likely follow
from more appropriate formulations of problems just as much
as advances in theory and technology.

ACKNOWLEDGEMENTS

This work was supported by EPSRC grant: EP/J003247/1.

REFERENCES

[1] D. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic
decomposition I: The basic algorithm. SIAM J, Comput., 13:865–877,
1984.

[2] D. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic
decomposition II: An adjacency algorithm for the plane. SIAM J,
Comput., 13:878–889, 1984.

[3] D.S. Arnon, G.E. Collins, and S. McCallum. An adjacency algorithm
for cylindrical algebraic decompositions of three-dimensional space. J.
Symb. Comput., 5(1/2):163–187, 1988.

[4] S. Basu, A. Gabrielov, and N. Vorobjov. Semi-monotone sets. J. Eur.
Math. Soc., 15:635–657, 2013.

[5] R. Bradford and J.H. Davenport. Towards better simplification of
elementary functions. In Proc. ISSAC ’02, pages 16–22. ACM, 2002.

[6] R. Bradford, J.H. Davenport, M. England, S. McCallum, and D. Wilson.
Cylindrical algebraic decompositions for boolean combinations. In
Proc. ISSAC ’13, pages 125–132. ACM, 2013.

[7] R. Bradford, M. England, J.H. Davenport, and D. Wilson. Optimising
problem formulations for cylindrical algebraic decomposition. In
J. Carette, D. Aspinall, C. Lange, P. Sojka and W. Windsteiger, editors,
Intelligent Computer Mathematics, volume 7961 of Lecture Notes in
Computer Science, pages 19–34, Springer Berlin, 2013.

[8] C.W. Brown. QEPCAD B: A program for computing with semi-
algebraic sets using CADs. ACM SIGSAM Bulletin, 37(4):97–108, 2003.

[9] C.W. Brown. Constructing a single open cell in a cylindrical algebraic
decomposition. In Proc. ISSAC ’13, pages 133–140. ACM, 2013.

[10] C.W. Brown and J.H. Davenport. The complexity of quantifier elim-
ination and cylindrical algebraic decomposition. In Proc. ISSAC ’07,
pages 54–60, ACM, 2007.

[11] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical
algebraic decomposition via triangular decomposition. In Proc. ISSAC
’09, pages 95–102. ACM, 2009.

[12] G.E. Collins. Quantifier elimination by cylindrical algebraic decompo-
sition – 20 years of progress. In B. Caviness and J. Johnson, editors,
Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts
& Monographs in Symbolic Computation, pages 8–23. Springer-Verlag,
1998.

[13] G.E. Collins and H. Hong. Partial cylindrical algebraic decomposition
for quantifier elimination. J. Symb. Comput., 12:299–328, 1991.

[14] J.H. Davenport. A “Piano-Movers” Problem. SIGSAM Bull., 20(1-
2):15–17, 1986.

[15] J.H. Davenport, R. Bradford, M. England, and D. Wilson. Program
verification in the presence of complex numbers, functions with branch
cuts etc. In 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC 2012, pages 83–88.
IEEE, 2012.

[16] A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection orders for
CAD. In Proc. ISSAC ’04, pages 111–118. ACM, 2004.

[17] M. England. An implementation of CAD in Maple utilising
McCallum projection. Department of Computer Science Tech-
nical Report series 2013-02, University of Bath. Available at
http://opus.bath.ac.uk/33180/, 2013.

[18] M. England. An implementation of CAD in Maple utilising problem
formulation, equational constraints and truth-table invariance. Depart-
ment of Computer Science Technical Report series 2013-04, University
of Bath. Available at http://opus.bath.ac.uk/35636/, 2013.

[19] J. Marchand. The algorithm by Schwartz, Sharir and Collins on the
piano mover’s problem. In J.-D. Boissonnat and J.-P. Laumond, editors,
Geometry and Robotics, volume 391 of Lecture Notes in Computer
Science, pages 49–66. Springer, 1989.

[20] S. McCallum. An improved projection operation for cylindrical al-
gebraic decomposition of three-dimensional space. J. Symb. Comput.,
5(1-2):141–161, 1988.

[21] S. McCallum. Solving polynomial strict inequalities using cylindrical
algebraic decomposition. The Computer Journal, 36(5):432–438, 1993.

[22] S. McCallum. A computer algebra approach to path finding in the
plane. In J. Harland, editor, Proc. Computing: The Australasian Theory
Symposium (CATS), pages 44–50, 1997.

[23] S. McCallum. On projection in CAD-based quantifier elimination with
equational constraint. In Proc. ISSAC ’99, pages 145–149. ACM, 1999.

[24] J.T. Schwartz and M. Sharir. On the “Piano-Movers” Problem: I.
The case of a two-dimensional rigid polygonal body moving amidst
polygonal barriers. Communications on Pure and Applied Mathematics,
36(3):345–398, 1983.

[25] J.T. Schwartz and M. Sharir. On the “Piano-Movers” Problem: II. Gen-
eral techniques for computing topological properties of real algebraic
manifolds. Adv. Appl. Math., 4:298–351, 1983.

[26] A. Strzeboński. Solving systems of strict polynomial inequalities. J.
Symb. Comput., 29(3):471–480, 2000.

[27] D. Wang. Reasoning about geometric problems algebraic methods.
DOC Technical Report, Imperial College, Univ. of London, 1991.

[28] D. Wang. Geometry machines: From AI to SMC. In J. Calmet, J.A.
Campbell, and J. Pfalzgraf, editors, Artificial Intelligence and Symbolic
Mathematical Computation (AISMC), volume 1138 of Lecture Notes in
Computer Science, pages 213–239. Springer, 1996.

[29] D. Wilson, R. Bradford, J.H. Davenport and M. England. Cylindrical
algebraic sub-decompositions. Submitted for publication, exp. 2014.

[30] D. Wilson and M. England. Layered cylindrical algebraic
decomposition. Department of Computer Science Technical
Report series 2013-05, University of Bath. Available at
http://opus.bath.ac.uk/36712/, 2013.

[31] L. Yang and Z. Zeng. Symbolic solution of a piano movers’ problem
with four parameters. In H. Hong and D. Wang, editors, Automated
Deduction in Geometry, volume 3763 of Lecture Notes in Computer
Science, pages 59–69. Springer Berlin Heidelberg, 2006.


