Automated Mapping from Goal Models to Self-Adaptive Systems

Mirko Morandini
FBK-IRST
Via Sommarive 18
[-38050 Trento, Italy
morandini@fbk.eu

Abstract

Self-adaptive systems should autonomously adapt at
run time to changes in their operational environment,
guided by the goals assigned by their stakeholders.

We present a tool that supports goal-oriented mod-
elling and generation of code for goal-directed, self-
adaptive systems, supporting Tropos4AS, an extension
of the software engineering methodology Tropos.

1 Introduction

Goal-oriented software engineering approaches pro-
vide suitable design abstractions to capture the require-
ments of complex systems that have to autonomously
adapt to their operational environment at run-time, us-
ing mentalistic abstractions such as actors, goals, and
alternatives [1].

In this paper we illustrate a tool that supports the
modelling of adaptivity features and code generation,
following Tropos4AS, an extension of the agent ori-
ented software engineering methodology Tropos [4] for
self-adaptive systems [2]. Up to our knowledge, no goal
oriented methodology provides tool support to design-
ers to model requirements for adaptive systems and to
generate code from them.

In detail, we extended the Tropos modelling tool
TAaoM4E to deal with adaptivity modelling and intro-
duced the tool 2z ', which covers the implementation
phase of Tropos/AS by providing an automated map-
ping from goal models to code.

The mapping, proposed in [3] and further extended
in [2] for adaptivity concepts, creates a Belief-Desire-
Intention (BDI) agent-based implementation for a self-
adaptive system, on the target platform Jadez [5]. In

L Actual versions of t2z (Tropos to JadeX) and the modelling
tool TAOM4E are available at http://se.fbk.eu/en/tools.

Loris Penserini
Universiteit Utrecht
Padualaan 14, De Uithof
Utrecht, The Netherlands
loris@cs.uu.nl

Anna Perini
FBK-IRST
Via Sommarive 18
[-38050 Trento, Italy
perini@fbk.eu

the next sections we briefly present the tool features on
a simple cleaner robot case study. The robot’s goal is
to clean a room, dealing also with battery loading and
dust box emptying.

2 Tropos for Self-Adaptive Systems

Tropos [4] is an agent-oriented software develop-
ment methodology that proposes the use of knowledge
level concepts such as actor, goal, plan and dependency
along the whole software development process, with an
emphasis on alternatives modelling. It covers all soft-
ware development phases, from requirements analysis
to design and implementation, and uses a specific vi-
sual modelling language supported by TAOM4E.

In [2] we enrich Tropos to model self-adaptive sys-
tems by: the introduction of goal types and goal re-
lationships to characterise the run-time behaviour of
goals; the definition of the environment which sur-
rounds the system; and the definition of conditions
to correlate goal achievement with the environment.
These activities are supported in our extensions to
TaoM4E.

3 Automated Mapping
3.1 Specification for the mapping

t2x supports the implementation phase, after mod-
elling the system architecture with TAOM4E. It pro-
vides an automated mapping between goal models and
software agents founded on a BDI architecture. The
mapping of Tropos goal models has been conducted
along basic concept mappings (goals, softgoals, plans)
and structure mappings (AND/OR decompositions,
means-end, contribution, and dependency links) [3].
Moreover, t2x includes a mapping for the features in-
troduced for adaptive systems modelling, such as differ-

ent goal types (achieve, maintain, perform), whose def-
inition enriches the expressiveness of goal models, mak-
ing it possible to deal with goal creation and achieve-
ment conditions at run-time (Figure 1).

Annotations:

@ AchieveGoal
® MaintainGoal
@® PerformGoal

AchievementCondition
actualpos_dirty=false

Environment [Room | [Dusttin
Model

Figure 1. Goal model and Environmental
model, with the correlations between them.

Environment entities are mapped to the agent’s be-
lief base and also directly to Java classes, using avail-
able UML tools. In the Cleaner robot example (Fig-
ure 1) a condition is modelled between the goal Main-
tainBatteryLoaded and the entity battery, relating the
state of the goal to a state in the environment. The use
of different types of conditions (creation, target, main-
tain,...) allows to guide the goal achievement process,
triggering or guarding transitions between goal states.

3.2 The tool t2z

On the Jadex platform, agents are implemented by
defining their beliefs, goals and plans in an Agent Def-
inition File (ADF). The tool t2x analyses an actor’s
goal model and generates an ADF with goals and plans,
resembling the source goal model hierarchies. The
plans in means-end relation to leaf goals are mapped
also to JAVA files, where the implementation of each
single plan can be carried out. Figure 2 shows the def-
inition of a goal of type achieve, which triggers the ex-
ecution of associated plans, until reaching the defined
target condition.

Conditions are directly mapped to a goal definition.
They use boolean formulas to link the goal achieve-
ment process to facts in the belief base, which repre-
sent the environment entities, implemented in JAVA
classes. Also intra-goal relations, like inhibition, are
directly mapped to this goal definition.

The agent generated by t2x is ready to be executed
and exhibits the modelled behaviour, related to goal
dispatching and plan execution orders.

<achievegoal name="EmptyFullDustbox">
<targetcondition>
$beliefbase.dustbin.empty ()
</targetcondition>

<deliberation>
<inhibits ref=’’CleanField’’/>
</deliberation>
</achievegoal>

Figure 2. Excerpt of a goal definition gener-
ated for the Jadex agent definition file.

4 Conclusions

In this demo we present an extension of TAOM4E
and the tool t2x, to support the development of self-
adaptive systems. Our development framework, Tro-
pos4AS, is based on both an extended version of the
Tropos agent oriented software engineering method-
ology and a set of mapping specifications from the
extended goal models to an implementation as BDI
agents. The tools provide an important contribution
towards two directions: extending the TAOM4E tool
to allow designers for a visual modelling of the require-
ments of self-adaptive systems, and providing an auto-
mated mapping process for the generation of BDI agent
code for the Jadex platform.

References

[1] H. J. Goldsby, P. Sawyer, N. Bencomo, D. Hughes, and
B. H. C. Cheng. Goal-based modeling of dynamically
adaptive system requirements. In ECBS 08, Belfast,
Northern Ireland, April 2008.

[2] M. Morandini, L. Penserini, and A. Perini. Towards
goal-oriented development of self-adaptive systems. In
Workshops on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS’08) at ICSE, Leipzig,
Germany, pages 9-16, May 2008.

[3] L. Penserini, A. Perini, A. Susi, M. Morandini, and
J. Mylopoulos. A Design Framework for Generat-
ing BDI-agents from Goal Models. In 6th Int. Conf.
on Autonomous Agents and Multi-Agent Systems (AA-
MAS’07), Honolulu, Hawaii, 2007.

[4] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos.
High variability design for software agents: Extending
tropos. TAAS, 2(4), 2007.

[5] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex:
A bdi reasoning engine. In J. D. R. Bordini, M. Das-
tani and A. F. Seghrouchni, editors, Multi-Agent Pro-
gramming, pages 149-174. Springer, USA, 9 2005. Book
chapter.

