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Abstract

Water resources are economically important and environmentally extremely vulnerable. The electrical power system in Iceland is
hydropower based and due to the country’s isolation, power import is not an option as elsewhere in Europe. In the hydropower
system, a water shortage is met by flow augmentation from reservoirs. The management of these reservoirs are a human intervention
in a natural flow and therefore necessarily limited by environmental regulations. During a heavy drought, the available water stor-
age in the reservoir may not be sufficient to cater for the demand and consequently there will be a shortage of electrical power. This
is politically acceptable as long as it only touches heavy industries but not power deliveries to the common market. Empty or near
empty reservoirs cause power shortage that will be felt by homeowners and businesses, until spring thaw sets in and inflow to the
reservoirs begins. If such a power shortage event occurs, it will cause heavy social problems and a political decision making will
follow. It is commonly agreed, that management methods leading to such a disastrous event as a general power shortage in the
whole country, are not acceptable. It is therefore very important to have mathematical tools to estimate the risk of water shortage
in the system when searching for the best management method. In view of the fact that the subject is to estimate the risk of events
that have to be very rare, i.e. with large recurrence time, stochastic simulation is used to produce synthetically run-off records with
adequate length, in order to estimate very rare droughts. The method chosen is to make the run-off series stationary in the mean and
the variance and simulating the resulting stationary process. When this method is chosen, future trends in the run-off from climate
change and glacier reduction can easily be incorporated in the model. The probabilities of extreme droughts are calculated and their
frequencies are compared to theoretical distributions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Computer simulations have been used to analyze the
capacity of the Icelandic power system since about 1970.
The simulation system has steadily been upgraded and
extended to meet the various requirements for specified
information on risks and capacity figures. However,
simulations with stochastic flow models have not been
much used so far, except for a few attempts in the years

* Corresponding author. Tel.: +354 5696051; fax: +354 5688896.
E-mail address: hj@os.is (H. Jonsdottir).

1474-7065/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.pce.2005.06.007

1970-1990. One of the main questions is the risk of emp-
tying the main reservoir and the magnitude of the fol-
lowing drought. Such a drought will inevitably cause a
major power shortage. If this power shortage is long en-
ough (more than a few days) it will cause serious social
and economic problems such as degradation of food
stocks in cold storage, operational failure of large dis-
trict heating systems and immense difficulty in commu-
nication and telecommunication.

Stochastic methods have been known in hydraulic
design for quite some time, e.g., Plate (1992) but they
are still not extensively used in risk assessment. One
of the major questions in the simulation analysis of
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the Icelandic power system is the performance of the res-
ervoirs and the magnitude and the energy shortage if
they run dry (Johannsson and Eliasson, 2002, 2003).
The method of using all available flow series in order
to design a reservoir large enough to sustain a prede-
fined flow output is well known in hydraulic engineering.
The non-computerized graphical version can be seen
e.g., in Linsley and Franzini (1964). This method is still
largely used by engineers in reservoir capacity planning,
but the method cannot predict the risk of water short-
age. It is however, evident that the longer the inflow ser-
ies is, the more reliable is the resulting volume capacity,
but there is no way of presenting this knowledge in an
explicit form. However simulation with stochastic flow
models can provide that. To demonstrate this principle
we have selected a reservoir in the river Tungnaa in Ice-
land, originally proposed in 1960 but not yet built.

2. Regulated flow and volume of reservoir

The major decision of a hydropower construction is
how much power is to be produced. The power pro-
duced is linearly dependent on the flow. To supply the
power net a flow is needed that is very constant com-
pared to the natural flow; this constant outflow is known
as the regulated flow. These decisions are made on a
basis of discharge time series. Figs. 1 and 2 show the
discharge in the river Tungnad.

A diagram of a simple hydropower plant with one
reservoir is shown in Fig. 3. Such a model is used by
the National Power Company of Iceland in order to cal-
culate water values in their system simulation studies
(Johannsson and Eliasson, 2002).

It is clear that the maximum regulated flow is the
average flow Qpean of the whole series, shown in
Fig. 1, and then no flow is bypassed at any point in time.

The reservoir is high up in the mountains. Its purpose
is flow augmentation for a series of power stations, at
lower elevations, downstream in the river basin. The
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Fig. 1. Natural flow in the river Tungnad September 1st 1951-August
31st 2001 (Nat. Energy Authority of Iceland).
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Fig. 2. Natural flow in the river Tungnaa September 1st 1981-August
31st 1985 (Nat. Energy Authority of Iceland).
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Fig. 3. Schematic drawing of reservoir (V), and power station (P).

water level in the reservoir does not affect the power
capacity of any of these stations. In the following anal-
ysis it will be assumed for the sake of simplicity, that
Oreg 1s constant in time which implies that P is constant
and the outflow from the power station is constant and
equal to Q. In practice O, will be somewhat larger in
wintertime than in summertime; this will increase the
storage volume requirement somewhat, so the V" values
discussed in this article can be regarded as minimum
values.

In general the water balance is calculated as the total
inflow minus the total regulated flow at any given time
step i.e.

Balance(i) — /O () dt— i Oy (1)

Fig. 4 shows the water balance for the data in Fig. 1 with
regulated flow as the average flow, i.e. Qg = Omean- The
water balance means the balance between total inflow
and total outflow. The only evaporation and rainfall
to be considered is on the reservoirs surface itself and
that water amount is negligible.

As mentioned the largest possible flow which can be
regulated is the average flow Qmean. Define Vi as the
smallest reservoir which can serve the maximum regu-
lated flow, Omean. Considering the time series of
the water balance, Balance(i), defined by Eq. (1) and
shown in Fig. 4, it is clear that the volume V., =
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Fig. 4. The water balance.
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Fig. 5. Regulation curve for the Tungnaa river.

max[Balance(i/)] — min[Balance(7)]. This volume serves
the purpose of securing zero bypass and thus maintains
the average flow as regulated flow, i.e. Omean = Oreg. In
general for a given regulated flow Q,, there is a corre-
sponding volume V which is the smallest reservoir vol-
ume that can secure O, Without any water shortage
occurring according to the flow series in Fig. 1. In other
words, for a given V, Q... can be calculated as the max-
imum regulated flow such that no water shortage occurs.
Fig. 5 shows this curve for the Tungnaa data in Fig. 1,
note the point (Omeans Vimax) = (80.7 m’/s, 2192.8 x
10° m?).

The curve (Qreg, V) is completely based on the time
series for Q and from a deterministic point of view the
risk of water shortage is zero, when using a point
(Oreg» V) from the curve. In order to estimate the risk
of water shortage a stochastic model is required to per-
form simulation studies.

3. Stochastic model

The model chosen is a stochastic periodic model as
suggested by Yevjevich (1976). The length of the period
is denoted as 7" and number of periods is denoted as 7.
Let Q denote the matrix of discharge data

oL 1) o(1,T)

O(n, 1) O(n,T)
Define P(¢) as a periodic mean, and S(z) as a periodic
standard deviation. P(¢) is estimated as
1 )
P(ty==->"0(.t) t=1,...,T 2)

n =

and similarly S(7) is estimated as

The standardized residuals are calculated as

YUJ)_W j=1,...,n and
t=1,...,T. (4)

The matrix of standardized residuals is reorganized as a
row vector by Yieq= Y(1,1),...,Y(n1),Y(2,1),...,
Y(2,n),...,Y(T,n) and fitted to a seasonal AR model
G(B)P(BY)Y(i)=e(i), i=1,...,Tn. The operator ¢ is
a polynomial of degree p in the backward shift operator
B, ie. ¢B)Y(i)=(1—aB—---—a,B’)Y(i)= Y(i) -
arY(i—1)—---—a, Y(i — p). Similarly the operator &
is a polynomial of degree p in the seasonal backward
shift operator B', thus representing the seasonal compo-
nent of the AR model, if needed. Then the stochastic
periodic model (Yevjevich, 1976) is written as

o) =P(t) +S(OY(¢) t=1,...,T
@(B)@(BN)Y (1) = e(r) e(r) ~N(0,07)

where Y (¢) is simulated by using the seasonal AR model
asin Eq. (5) and Q(¢) is the periodic discharge, simulated
by using the ¥ ().

In this project a sampling time of one week is chosen.
The daily discharge data are low pass filtered with a se-
ven day average in order to decrease the variance of the
data, but yet the weekly sampling time is small enough
for decision making. Thus the length of the period is
52 time steps, and the data available span 49 seasonal
periods.

To ensure that physical laws are conserved, such as
nonnegative flow it was chosen to transform the data
by using the logarithm base (log.) of the data. For the
transformed data the appropriate model was found i.e.

élog(t) = Plog(t) + Slog(f)?log(l‘) t= 1, .. .7T
@(B)P(BT)Y10g(t) = £(t)  &(t) ~ N(0,0%)

()

(6)

where Pjog(f) and Sioe(?) are calculated from the log-
transformed data. Afterwards the residuals Y1) =
(Oiog(t) — Piog(1))/Siog() are modelled. This transforma-
tion implies that the residuals in the original model e(?)
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Fig. 6. The periodic average Pi,(f) and the periodic standard
deviation Sjog(?) of the log-transformed data.

as defined in Eq. (5) are lognormal distributed, which in-
deed has a physical meaning. The calculations are per-
formed in the program Splus and the result is as follows:

(1= 0.62B)Y10g(t) = e(r) () ~ N(0,0.06) (7)

ie. an AR(1) model without a seasonal component.
Fig. 6 shows the curves Pj4(f) and Sjo,(?). Note the sim-
ilarity between the derivative of the flow (i.e. VPio4(2))
and the standard deviation (i.e. Sjoe(?)).

4. The simulation study

The simulation was performed using the theoretical
model in Eq. (6) where the process Yjoq(f) is an AR(1)
model without a seasonal component as estimated in
Eq. (7), the resulting simulated series is denoted Qg;n(?).
Two droughts are defined as independent if they either
occur in two different years or if they occur in the same
year and the reservoir is refilled between the two
droughts, two or more dependent droughts are grouped
together in single independent droughts. The water
shortage is calculated as the total shortage of water
within a single independent drought. Let X denote the
total water shortage within a drought, then the required
probability is the probability of a water shortage larger
than x, i.e. P(X > x) where X denotes the random var-
iable of water shortage. Simulations were performed for
several pairs (Qycg, V) on the regulation curve shown in
Fig. 5. The goal is to estimate probabilities of events that
are very rare and it was found necessary to simulate for
50,000 years in order to achieve a stable estimate of the
water shortage probabilities. Note that the simulations
of 50,000 years does not imply prediction 50,000 years
into the future but a stochastic generation for 50,000
years given that the weather condition will be like the
past 50 years which were used for parameter estimation

in the stochastic model. However, since the deviation
series Y(¢) is stationary in mean and variance, climate
change predictions for future trends in runoff series such
as glacier melt can be taken into account either as deter-
ministic or stochastic variables depending on the climate
change model output.

None of the simulation results included events with
two independent droughts within the same year thus
the probabilities of water shortage is estimated as

P(X =x)
_ Number of years with water shortage larger or equal than x
N Number of years in simulation

(8)

Thus there are estimated n probability values py,...,p,,
where 7 is the total number of droughts which occurred
in the simulation and

p,=P(X > x) 9)

where x; is the jth largest water shortage, thus p; =
1/50,000, p> = 2/50,000, ..., p, = n/50,000.

Note that P(X > x) =~ P(X>x)=1 — F(x), where
F(x) is the probability distribution function. The pre-
sented results are from simulations where the reservoir
is 1315.7x 10° m® and regulated flow is 78.36 m3/s,
which is a point on the regulation curve illustrated in
Fig. 5. The simulations were repeated 100 times in order
to obtain information about the variations. Conse-
quently for each probability p; there correspond 100 dif-
ferent x values x(j, 1), x(j,2), . . ., x(j, 100), which yielded
the estimate p; = P(X > x(j,i)), i=1,...,100. The con-
ditional distribution of the random variable {x(j,)|p()}
is assumed to be a normal distribution N(u(j), o°(j)). The
mean, u(j), and the variance ¢%(j) are estimated (using
100 observations) with the maximum likelihood method
and the estimated mean j(j) will be denoted as xpean
and the pairs (xXpean(i), (7)) will be referred to as the sim-
ulation result. The generalized extreme value distribu-
tion (GEV), is fitted to the accumulated probabilities
(1 — p). The GEV distribution can be parameterized as
(Reiss and Thomas, 1997)

P(X > x) = GEV,;:(x)

_(1+éx;“>g]. (10)

The parameters are estimated using the least square
method and the result is shown in Table 1.

Fig. 7 shows the (Xpean,p), the 2.5% quantile,
(X0.025,p), the 97.5% quantile, (xg975,p) and the fitted
distribution (Xpmean, Pit)> 1.€. 1 — GEV(x).

The difference of the simulation result and the fitted
probabilities can hardly be detected, but from probabil-
ities around 0.1% (i.e. recurrence time 1000 years) the
fitted distribution converges to zero faster then the sim-
ulated probabilities. This can better be detected in a

= exp
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Table 1
Estimated parameters in the GEV distribution using the least square
method

o p 4
Estimation —897.95 376.86 —0.2744
Simulated and fitted probabilities
1.75 \‘ \ : I Mean from 'the 100 sinl'lulations I
AR — GEVfit
1:5F% %% ---- 2.5 % and 97.5 % quantiles

Probabilities
o

0.75}

0.5

0.25}

0 L 1 l
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Water shortage 10°m>

Fig. 7. The estimated mean value of the repeated simulations,
approximated 2.5% and approximated 97.5% quantiles and the fitted
GEYV distribution.

quantile diagram. There is an interest in the tail of the
distribution and consequently it was chosen to divide
the data into as many intervals as reasonable. Hence,
160 intervals with equal probabilities are generated, with
the expected number of observations in each interval as
5.48. Fig. 8 shows a quantile diagram for the GEV(x)
distribution, with (o, f5,¢) =(—897.95,376.86,—0.2744)
and estimated probabilities from histogram with the
160 intervals. The chi-square test statistics for test of dis-
tribution using the same intervals is z = 12.0228, and the

Quantile diagram
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Fig. 8. Quantile diagram for the data compared to the GEV
distribution with the parameter estimate according to Table 1
(o, B, &) = (—897.95,376.86, —0.2744).

90% quantile is 1(156);, = 179 and it follows that a
hypotheses that the water shortage is GEV distributed
with the estimated parameters as shown in Table 1,
(o, B, &) = (—897.95,376.86,—0.2744) is accepted. How-
ever, it must be kept in mind that the simulations are
necessary in order to estimate the parameters.

The shape parameter ¢ in the generalized extreme va-
lue distribution has been estimated as negative, thus the
extreme value distribution is identified as the Weibull
distribution (Reiss and Thomas, 1997).

The domain the of distribution is the interval
J—o00, —B/& + a] = ]—00,475.23]. Note that about 98%
of the probability mass is below zero, i.e. with negative
x values. The mean and the standard deviation of the
distribution are (Reiss and Thomas, 1997):

E(x):u:a—§+§l"(1—é):—762.96 (11)
Vix) =0’ = (%)3(1 —28) 4+ T*(1 — &) = 1791.39
(12)

The Weibull distribution can be re-parameterized with
domain ]—475.27,oc[. Then the distribution function is
reflected about the y-axis and the random variables mul-
tiplied by —1. Hence, the distribution function becomes

—1/¢
1—exp<—<l+€_x_a) ) withx > —(—f/{+a)

B
(13)
setting k=-1/¢>0, b=kB=-B/¢ and a=
—(a + kp) = —a + B/ this becomes
1 —exp (—( ;a)k> withx > a (14)

which is a more commonly used parameterization in
hydrology. Using this interpretation the random vari-
able is interpreted as the result of the water balance
equation

X(l) = /Oleim(T)dT —i- Qreg (15)

and water shortage will occur if X(i) is negative. The sto-
chastic formulation of a water shortage, using this inter-
pretation, is a peak below threshold study, with
threshold zero, see e.g. Medova and Kyriacou (2000).
On the other hand for practical purposes it is more con-
venient to work with water shortages as positive vari-
ables with decreasing probabilities. (Note that the
dynamic variable X(¢) in Eq. (15) is an unstable time ser-
ies i.e. with pole equal to one, since (1 — B)X(7) = u(¢)
with u(?) = Qsim(?) — Oreg)-

Using the quantile diagram in Fig. 8, the probability
of water shortage of 155 million m* is 0.5% and thus the
recurrence time for a water shortage of 155 million m? is
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200 years or larger. A water shortage of 155 million m?
means that the power station is out of operation for
about three weeks. There is a 15-30% probability that
a large drought like that will occur in the economical
lifetime of the project, which is 30-60 years for hydro-
power stations in Iceland.

5. Conclusions

The risk of water shortage in a hydropower plant has
been estimated through stochastic modeling and simula-
tions. In general the available data are used for design of
a hydropower plant. Thus the recurrence time of
drought is large and therefore a very long time series
is needed in order to estimate the drought risk. The sto-
chastic simulations produce a time series long enough
for achieving an estimate of the probability distribution
function of a water shortage. Furthermore the repeated
simulations provide an estimate of uncertainty of the
probability function estimation. The simulation study
in this project was performed for a simple system with
one hydropower plant and one reservoir, but using the
tools already developed for power system studies in Ice-
land, it is straightforward to extend the model for more
complicated systems.

As mentioned the recurrence time for water shortage
of 155 million m? is estimated to be 200 years or larger,
which means the power station is out of operation for
about three weeks. For a water power station with a life
time of 50 years, there is a probability of 25% that water
shortage of this magnitude will occur in the economical

lifetime. On top of that, there is a great probability that
water shortage will occur in other reservoirs as well due
to spatial correlation in Icelandic run-off data. A power
failure of this magnitude will most likely be considered
socially and politically unacceptable with disastrous
consequences for power system management practices.
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