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Abstract

Motivated by recent experiments on grain boundary migration in Al, we examine the question: does interface mobility depend on

the nature of the driving force? We investigate this question in the Ising model and conclude that the answer is ‘‘no.’’ This conclusion

highlights the importance of including the second derivative of the interface energy with respect to inclination c00 in the Herring

relation in order to correctly describe the motion of grain boundaries driven by capillarity. The importance of this term can be traced

to the entropic part of c00, which can be highly anisotropic, such that the reduced mobility (i.e., the product of interface stiffness

cþ c00 and mobility) can be nearly isotropic even though the mobility itself is highly anisotropic. The cancellation of these two

anisotropies (associated with stiffness and mobility) originates in the Ising model from the fact that the number of geometrically

necessary kinks, and hence the kink configurational entropy, varies rapidly with inclination near low-energy/low mobility, but

slowly near high-energy/high-mobility interfaces, where the kink density is high. This implies that the stiffness is high where the

mobility is low and vice versa. Consequently, the grain shape can appear isotropic or highly anisotropic depending on whether its

motion is driven by curvature or an external field, respectively, but the mobility itself is independent of driving force. We discuss the

implications of these results for interpreting experimental observations and computer simulations of microstructural evolution,

where c00 is routinely neglected.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Most thermal processing strategies are designed to

modify microstructure via physical processes that com-

monly involve interface motion (phase transformations,

grain growth, etc.). Interface migration can occur in

response to disparate driving forces, such as those as-

sociated with concentration gradients [1], stresses [2],

and magnetic fields [3]. Typically, the driving force P is
small, such that the net interface velocity v can be de-

scribed by the simple linear relation

v ¼ MP ; ð1Þ
where M is the interface mobility.

Another important driving force for microstructure

evolution is related to interface curvature, i.e., capillar-
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ity. This driving force differs from the ones discussed
above in that it is associated with the interface itself,

rather than external conditions or bulk thermodynam-

ics. Herring [4] showed that this force is

Pj ¼ ðcþ c00Þj; ð2Þ
where j is the interface curvature, c is the interface free

energy and c00 is its second derivative with respect to

interface inclination. Inserting the driving force from

Eq. (2) into Eq. (1), we find

v ¼ Mðcþ c00Þj ¼ M�j; ð3Þ
whereM� is known as the reduced mobility, and the sum

cþ c00 as the interface stiffness. The importance of the

stiffness is well-established for solidification where c00

plays a crucial role in selecting both the orientation and

the growth rate of dendrites [5]. The role of the stiffness

in solid systems is comparatively less well understood.

Experimentally determined interface free energies are
only available in limited situations and interface stiffness
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data are rare. Because of this, the common practice has

been to neglect the unknown c00 and to approximate,

without a real justification, Eq. (3) by

v ¼ Mcj: ð4Þ
The primary goal of the present work is to determine

whether the approximation in Eq. (4) is reasonable or

whether it can introduce important errors.
The mobility is usually considered to be independent

of the driving force. The validity of this assertion is

brought into question by some recent experiments [2]

which investigated the migration of h111i tilt grain in-

terfaces in high purity Al under the action of two dis-

tinct forces: an applied shear stress and capillarity. It

was shown that migration under these two distinct

driving forces were characterized by different values of
the enthalpy of migration. On the basis of this obser-

vation, these authors [2] concluded that the mechanism

of grain boundary migration was different under these

different driving forces. This is a strong conclusion. The

common assumption that interface mobility is inde-

pendent of the source of the driving force is a funda-

mental tenet of the theory of the microstructure

evolution. As such, this assumption and the apparent
contradiction arising from the experimental results de-

serve careful attention.

Interface motion in the presence of two distinct

driving forces was investigated within the framework of

an Ising model on a triangular lattice [6]. This study

demonstrated that while the interface free energy is only

weakly anisotropic, the mobility of a nominally flat in-

terface driven by an external field is strongly anisotropic
at low temperature. However, no indication of anisot-

ropy was observed when an initially circular grain

shrank under the action of capillarity and with no ap-

plied field. Similarly, the shrinking of a half-loop grain

yielded an interface profile which was consistent with the

assumption of isotropy. On the other hand, when an

external field which increases the shrinking rate was

imposed, the interface profile exhibited a pronounced
6-fold symmetry consistent with that of the underlying

lattice. The reason why the imposition of an isotropic

applied field led to the development of an anisotropic

profile remained unclear. The pronounced differences

between interface profiles with and without an externally

applied field led the authors [6] to speculate that inter-

face mobility does indeed depend on the nature of the

driving force. However, since the mobility of the curved
interfaces always lied between the maximum and mini-

mum of the anisotropic flat-interface mobilities, it was

not possible to unambiguously conclude that interface

mobility is not unique.

Of course, the Ising model is a rather crude model for

interfaces in real materials. Yet, the fact that this model

is so simple provides us with an ideal test bed for ex-

amining such fundamental questions as ‘‘is interface
mobility unique?’’ Further, if we cannot understand the

behavior of an interface in such a simple model, we have

little hope of understanding it in real materials, where

interface structure is much more complex and experi-

ments are not as well controlled. Therefore, the main
goal of our investigation is to determine whether the

interface mobility depends on the nature of the driving

force. Our negative answer to this question highlights the

importance of including both the entropic part of c and
the second derivative term c00 in Eqs. (2) and (3) in order

to correctly describe curvature-driven interface motion.

We explain why the inclusion the entropic part of c00

resolves the apparent paradox that curvature-driven
motion can be seemingly isotropic while the mobility is,

in contrast, highly anisotropic. Furthermore, we argue

that a similar answer should apply to real grain bound-

aries despite the fact that these interfaces are, admittedly,

much more complex than the ones studied here.
2. Monte Carlo simulations

Let us consider the Ising model as a prototypical

system with interfaces. The state of the system is de-

scribed in terms of a set of spin values on each site of a

lattice, si ¼ �1, where i labels lattice sites. Contiguous

like spins are part of the same domain, while a domain

wall separates nearest neighbor spins of opposite sign.

The energy of the Ising model may be written in terms of
the spatial distribution of spins and the two parameters

J and H as

E ¼ � J
2

X
i;jh i

sisj � H
X
i

si; ð5Þ

where the sum on i is over all N lattice sites in the system

and the sum on hi; ji is over all nearest neighbor pairs of
lattice sites. The interface energy in this model is pro-

portional to J ð> 0Þ and a non-zero value of H lowers
the energy of one type of domain relative to the other.

As such, H provides an external driving force for in-

terface migration.

The evolution of the model was simulated using the

Monte Carlo method with spin-flip dynamics (i.e.,

Glauber dynamics) [7]. In this approach, a site is chosen

at random and an attempt is made to flip its sign (i.e.,

s ! �sÞ. If the energy change, DE, is less than zero, this
spin change is accepted. If DEP 0, a random number R
uniformly distributed on the domain 0 < R6 1, is gen-

erated. If R6 e�DE=kT , this spin change is accepted;

otherwise, the spin is returned to its original orientation.

The present simulations were performed on a two-di-

mensional triangular lattice with lattice spacing a. Time,

in these simulations, is proportional to the number of

spin flip attempts. The time s corresponds to N spin flip
attempts.



Fig. 2. Orientational dependence of the mobility of the flat interface

driven by an external field at T ¼ 0:20 J/K. The squares represent the

kinetic Monte Carlo simulation. The dashed line represents an ana-

lytical solution obtained with an assumption that c00 is negligible and

the reduced mobility is isotropic. The dotted line represents an ana-

lytical solution assuming that the reduced mobility is isotropic but

using the stiffness rather then interface free energy (Eq. (23)). The solid

line represents the analytical solution using the anisotropic reduced

mobility and the stiffness (Eq. (25)).
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The orientation dependence of the mobility was de-

termined using Monte Carlo simulations with flat in-

terfaces, in an applied field, H , using the simulation

geometry shown in Fig. 1(a) (see [6] for details). We

employed Mobius interface conditions in the x-direc-
tion, such that a flat interface can repeatedly traverse the

simulation cell interface without perturbation (see [6]).

Along the y-axis we employed a skew-periodic interface

condition, such that the periodic images of the lattice are

shifted from the original by Ly in the y-direction and by

Lytanu in the x-direction (see Fig. 1(a)). The lattice

orientation was chosen such that u ¼ 0 corresponds to

the flat interface with the largest linear site density (see
Fig. 1(b)). By analogy with the close-packed plane ori-

entation in FCC lattice, we label this orientation [11].

The migration of this interface is well described by the

classic kink theory which considers the rates of double

kinks nucleation and kink propagation [6]. The mobility

of the [11] flat interface exhibits an Arrhenius tempera-

ture dependence. The second limiting case is labeled [10]

and is formed by rotating the interface by u ¼ p=6 from
the [11] interface orientation (see Fig. 1(c)). The [10]

interface moves athermally (i.e., the activation energy

for migration is zero) and at low temperature moves

with a much larger mobility than does the [11] interface.

With increasing temperature, the mobilities of both in-

terfaces approach the same value [6].

The orientation dependence of the flat interface mo-

bility at T ¼ 0:20 J/K is shown in Fig. 2. This figure
shows that the interface mobility is a monotonic func-
Fig. 1. (a) Schematic illustration of the simulation geometry for a flat

interface. Two limiting cases of the flat interface corresponding to two

different inclinations: (b) u ¼ 0 (labeled [11]) and (c) u ¼ p=6 (labeled

[10]).
tion of u in which the [11] and [10] interfaces are limiting

cases. The mobility of the [10] interface is as much as
� 25 times larger than that of the [11] interface at T ¼
0:20 J/K. The orientation dependence of the mobility

can be understood through the examination of the mi-

croscopic migration mechanism. The interface velocity is

determined by the density of kinks and their velocities.

While the equilibrium density of kinks on the [11] in-

terface is zero in the limit that T ! 0, the [10] interface

structure can be viewed as consisting of kinks spaced
one lattice spacing apart (see Fig. 1(c)). Therefore, mi-

gration of the [11] interface requires the nucleation of

double kinks, while no such nucleation event is neces-

sary to move the [10] interface. At high temperature, the

two interfaces are thermally roughened to the extent

that they contain similar densities of microscopic [10,11]

segments and hence move with nearly the same mobility.

Interfaces in the Ising model can also be driven using
a capillarity driving force, in which the interface velocity

is proportional to the local interface curvature. Addi-

tional simulations were performed in which the interface

was initially circular. An image of such a shrinking grain

is shown in Fig. 3(a). This figure shows that the grain

remains roughly circular while shrinking (see also [6]).

However, the imposition of an external field of either

sign leads to interface profiles that exhibit the 6-fold
symmetry of the underlying lattice.

The shape of a shrinking grain in the half-loop ge-

ometry was also investigated. Fig. 4 shows the half-loop

boundary profile, averaged over 10,000 instantaneous

configurations. If the reduced mobility of the boundary



Fig. 3. The grain shape evolution at T ¼ 0:20 J/K and (a) H ¼ 0, (b)

H ¼ 0:01 J and (c) H ¼ �0:01 J. Solid and dotted lines represent the

continuum model and kinetic Monte Carlo (kMC) results, respectively.

In all simulations the initial grain shape was a circle with radius of 700

a in the cases (a) and (b) and 500 a in the case (c). The time of evolution

in each case was the same for both the kMC and the continuum model.

In the case (a), the continuum model was based on Eq. (4) and in the

cases (b) and (c), it was based on Eq. (8).
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does not depend on boundary orientation, the steady-

state half-loop boundary profile (for curvature-driven

migration) can be described analytically by [8]

y ¼ w
p
arccos½e�ðp=wÞx�; ð6Þ

where the locus of points ðx; yÞ describes the boundary

profile (the boundary moves in the x-direction) and w is

the half-loop width. The shape obtained from Eq. (6) is

also shown in Fig. 4. Examination of this figure dem-

onstrates that in spite of the fact that the boundary

mobility is strongly anisotropic; the half-loop is de-

scribed by the continuum theory with an isotropic re-
duced mobility.

Taken together, these results present an apparent

paradox. The kinetic Monte Carlo simulations show that

the interface mobility is strongly anisotropic (at low

temperature) and the interface free energy is nearly iso-

tropic (only a 10% variation with inclination at low
Fig. 4. The average shape of the half-loops determined from simula-

tions at T ¼ 0:10 J/K. The intensity of the gray level at each point is

proportional to the probability that a spin at this location (relative to

the half-loop tip) is equal to )1. The solid lines represent the predicted

shape assuming isotropy (Eq. (6)).
temperature [6]). These results suggest that the reduced

mobility should be strongly anisotropic. On the other

hand, the shapes of the half-loop and circular grains

shrinking under the sole influence of capillarity are well

described assuming that the reducedmobility is isotropic.
3. Sharp interface simulations

We can resolve the apparent paradox raised in the

previous section by answering the following questions:

(i) Is the measured interface mobility anisotropy suffi-

ciently large to significantly alter the grain shape
in the absence of an external field?

(ii) Is the paradox attributable to the inherent discrete-

ness of the Ising model? In other words, can the ki-

netic Monte Carlo results (e.g., the combined effects

of curvature and external field driven motion) be re-

produced in a continuum model?

To address these questions, we compare the Monte

Carlo results to those obtained with a sharp-interface
model parameterized in terms of the anisotropic mo-

bility found in the kinetic Monte Carlo simulations. The

sharp interface equations (Eq. (7) or (8) given below) are

solved using a numerical scheme that is especially de-

signed to surface tension driven interface motion [9]. In

brief, the interface is parameterized by the position

vector Xða; tÞ ¼ ðxða; tÞ; yða; tÞÞ where a ¼ s=LðtÞ is the

ratio of the arc length along the interface to the total arc
length LðtÞ; a is known as the relative arc length and

varies from zero to unity for an arbitrarily shaped in-

terface. The evolution is formulated using the angle

uða; tÞ between the normal to the interface and a fixed

x-axis as basic dynamical variable together with LðtÞ. In
this formulation, the curvature is simply j ¼
LðtÞ�1

ouða; tÞ=oa and the evolution equation for uða; tÞ
has the form of a diffusion equation that is coupled to a
separate equation of motion for LðtÞ. This diffusion

equation is solved [9] using a pseudo-spectral method

where the partial derivatives of uða; tÞ with respect to a
are calculated in Fourier space, and a semi-implicit

scheme is used for time stepping. These ingredients

make this scheme extremely accurate and all results re-

ported here are independent of the arc length step Da
and time step Dt.

We first investigate the shrinking of a circular grain

with no external field. Since c was found to be nearly

isotropic (e.g., c½10�=c½11� ¼ 1:07 at T ¼ 0:20 J/K [6]), we

start from the standard grain growth assumption that

M� ¼ Mc (i.e., we neglect c00Þ, where c is a constant and

M is the function of inclination determined from the

kinetic Monte Carlo simulations (e.g., M½10�=M½11� � 25

at T ¼ 0:20 J/K). Fig. 3(a) shows interface profiles from
both the sharp interface and Monte Carlo simulations at

the same simulation time. At the time at which these

profiles were recorded, the rate of change of the grain
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area was independent of time. While the interface profile

obtained from the Monte Carlo simulation is circular,

the interface profile predicted by the sharp interface

model has a pronounced 6-fold symmetry – the same as

the symmetry of MðuÞ extracted from the triangular
lattice Ising model. The discrepancy between the Monte

Carlo and sharp interface model results demonstrates

that either the widely used [8] equation of motion for

capillarity driven grain boundaries (Eq. (4)) is invalid or

the discreteness of the Ising model is essential.

To exclude the possibility that the discreteness of the

Ising models is essential, we look for a continuum model

that is capable of reproducing the kinetic Monte Carlo
simulation results. The Monte Carlo simulation results

themselves suggest an appropriate continuum model.

Since an initially circular grains shrinks isotropically

(i.e., as a circle), we can describe the shape evolution as

v ¼ M�j; ð7Þ
where M� is isotropic (independent of uÞ and can be

extracted directly from the Monte Carlo simulations,

M� ¼ ðdA=dtÞMC=2p, where ðdA=dtÞMC is the rate of

change of the grain area). This will also predict the ap-

propriate half-loop shape evolution (which was shown,
in the previous section, to be consistent with an isotropic

reduced mobility). Since this expression only describes

capillarity driven motion, it must be extended to also

include the effects of an external field. Hence, we write

v ¼ �M�jþM uð ÞPe; ð8Þ

where Pe is the driving force associated with the external

field. Fig. 3(b) and (c) compare the grain shapes pre-

dicted by the sharp interface model and those from the

kinetic Monte Carlo simulations for different signs of

the external driving force Pe. These figures clearly dem-

onstrate that the discrete Monte Carlo results can be

accurately reproduced with the continuum, sharp in-

terface model and Eq. (8). This answers the second
question raised at the beginning of this section.

The calculations performed with the continuum,

sharp interface model above demonstrate that the re-

duced mobility in the triangular lattice is isotropic (or, at

least, only weakly anisotropic). However, the kinetic

Monte Carlo certainly demonstrates that the mobility is

strongly anisotropic while the interface free energy (in

the case of triangle lattice case studied here) is nearly
isotropic. Clearly, the strong anisotropy of the mobility

cannot be canceled by the weak anisotropy of the in-

terface free energy. This conclusively demonstrates that

the reduced mobility is not the product of the interface

mobility and free energy, i.e.,M� is not equal toMc. One

possible interpretation of this conclusion is that ne-

glecting the c00 in the equation of motion (Eq. (3)) is

inappropriate, i.e., M� ¼ Mðcþ c00Þ, where ðcþ c00Þ is
the interface stiffness. Since M� is nearly isotropic and M
is strongly anisotropic, ðcþ c00Þ must also be strongly
anisotropic (i.e., much more anisotropic than c itself). In
order to investigate this assertion, we must indepen-

dently determine the interface stiffness.
4. Analytical prediction of the interface stiffness

We now derive an expression for the stiffness of an

interface in the triangular lattice Ising model. Consider a

segment of a flat boundary of length L and inclination

angle u. The geometrically necessary number of kinks

on this segment is

K ¼ L

a
ffiffiffi
3

p
=2

sinu; ð9Þ

where a
ffiffiffi
3

p
=2 is the kink height. Note that there may be

additional, thermally generated kinks of equal numbers

of both signs. The number of such kinks decreases with

decreasing temperature (as per anArrhenius relation) and

they are neglected in the present analysis. The total
number of lattice sites between the geometrically neces-

sary kinks is

N ¼ Nu¼0 �
1

2
K ¼ L

a
cosu� 1

2
K; ð10Þ

where Nu¼0 is the number of sites along the projection of

the segment onto the [11] direction.

If u ¼ 0, the interface energy per site is 2J . For u „ 0,
the interface energy increases by J per kink. Therefore,
the segment of length L has energy

LcE ¼ Nu¼0 � 2J þ K � J ¼ 2JL
a

cosuð þ 1ffiffiffi
3

p sinu

�
:

ð11Þ
This equation shows that the contribution of the inter-

nal energy of the interface to the stiffness at T ¼ 0 is

cE þ c00E ¼ 0: ð12Þ
Note, however, that this expression is inapplicable at

u ¼ np=3 ðn is integer) in a triangular lattice, where the
stiffness is singular. Also note that this expression is

accurate at low temperatures, where the density of

thermally nucleated kink pairs is small. These results

suggest that the behavior of the interface stiffness is

dominated by the interface entropy.

The configuration entropy of this segment can be

determined from the number of ways there are to ar-

range K kinks and N non-kink sites using Stirling�s
approximation

Sc ¼ kB ln
ðN þ KÞ!
N !K!

¼ � kBL
a

2 sinuffiffiffi
3

p
� �

ln
2 sinuffiffiffi

3
p

cosuþ sinu

� ��

þ
ffiffiffi
3

p
cosu� sinuffiffiffi

3
p

 !
ln

ffiffiffi
3

p
cosu� sinuffiffiffi

3
p

cosuþ sinu

 !#
:

ð13Þ
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Combining Eqs. (12) and (13), we can write the in-

terface stiffness as a function of interface orientation and

temperature as

cþ c00 ¼ �T ðSc þ S00
c Þ ¼

2
ffiffiffi
3

p
kBT

a sinð3uÞ : ð14Þ

As expected, the stiffness is strongly anisotropic.
5. Analytical prediction of the interface mobility

We now address the question of ‘‘does the interface

stiffness anisotropy compensate for the anisotropy in the

interface mobility such that the reduced mobility is

nearly isotropic (in the triangular lattice Ising model)?’’
We begin this discussion by focusing on the simple case

of a small inclination angle, u, and a small external field

ðH � kBT Þ. Consider the kink geometry shown in Fig. 5.

At each Monte Carlo step every atomic site is sampled,

on average, one time. At low temperature, only the spins

at sites 1 and 2 can flip (at any appreciable rate). When

site 1 is sampled, the spin flip is accepted with unit

probability P1 ¼ 1 while the flip of spin 2 is accepted with
probability P2 ¼ e�2H=kBT . The kink drift velocity is then

vk ¼
a
s
ðP1 � P2Þ ¼

a
s

1ð � e�2H=kBT
�
� a

s
2

kBT
H : ð15Þ

We neglected the possibilities that a particular site may

be sampled more than once during a single Monte Carlo
step or that a kink may move by more than single lattice

spacing in one Monte Carlo step. Such corrections are

of order ðH=kBT Þ2 and hence negligible in the limit

H � kBT .
When the kinks move by the average inter-kink sepa-

ration ðdk ¼
ffiffiffi
3

p
a=2 tanuÞ, the interface moves by the

projection of the kink height onto the interface normal

ðdi ¼
ffiffiffi
3

p
a=2 cosuÞ. Therefore, the net interface velocity is

v ¼ di
dk

vk �
a
s

2u
kBT

H : ð16Þ

Since the external driving force in the triangular lat-

tice Ising model is P ¼ 4H=ð
ffiffiffi
3

p
a2Þ, the interface mo-

bility at small inclination is
Fig. 5. Illustration of a kink in an [11] interface on a triangular lattice.

Spins labeled by 1 and 2 are the only ones that can flip in the zero

temperature limit.
M ¼
ffiffiffi
3

p
a3

2s
u
kBT

: ð17Þ

This expression shows that the interface mobility scales

linearly with the inclination angle and is zero at u ¼ 0

(i.e., the interface [11]). Recall, however, that the kinetic

Monte Carlo simulations show that the interface mo-

bility is small but finite at low temperature for the [11]

interface. This discrepancy is due to the fact that we
neglected the thermal generation of kinks.

In the small inclination limit, the interface stiffness

(Eq. 15) reduces to

cþ c00 ¼ �T ðSc þ S00
c Þ ¼

2ffiffiffi
3

p
a

kBT
u

: ð18Þ

Therefore, the reduced mobility,M� ¼ Mðcþ c00Þ, can be

found from Eqs. (17) and (18) to be

M� ¼ a2

s
: ð19Þ

Clearly, although the mobility and the interface stiffness

are strongly anisotropic, the reduced mobility in the
small inclination angle limit is independent of inclina-

tion in the triangular lattice Ising model.

We can test this conclusion over the entire range of

inclinations. To do this, we assume that the reduced

mobility is isotropic (as suggested above based upon the

small angle analytical derivation and the analysis of the

kinetic Monte Carlo results using the continuum sharp

interface model). Applying this assumption to the case
of the shrinking initially circular grain gives us a rela-

tionship between the rate of change of grain area and the

reduced mobility:

dA
dt

¼�
I

vRdu¼�
I

M�jRdu¼�M�
I

du¼�2pM�

ð20Þ

Combining this result with the definition of the reduced

mobility shows

M ¼ � 1

2pðcþ c00Þ
dA
dt

: ð21Þ

To apply Eq. (21), we require an expression for dA=dt.
Such an expression was obtained in [10] for low tem-

perature. This derivation is based upon the observation

that at low temperature, the net number of kinks (i.e.,

the number of + kinks minus the number of ) kinks) is

exactly six for any closed shape on a triangular lattice as
illustrated in Fig. 6. Any of the spins at kink sites can

flip with no increase in the system energy, such that the

rate of such flips is 1=s. The area per spin in the trian-

gular lattice is a2
ffiffiffi
3

p
=2. Therefore,

dA
dt

¼ �3
ffiffiffi
3

p a2

s
: ð22Þ

Combining Eqs. (21), (14) and (22) we find
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M ¼ 3a3

4ps
1

kBT
sinð3uÞ: ð23Þ

Fig. 2 shows a comparison of the mobility calculated

using Eq. (23) with the kinetic Monte Carlo simulation

data obtained from the flat interface simulations. This

comparison suggests that the assumption that the re-

duced mobility is isotropic (i.e., the main assumption in
deriving Eq. (15)) is rather good. Therefore, the an-

isotropy of the interface mobility is almost completely

compensated by the anisotropy in the interface stiffness

in the triangular lattice Ising model. On the other hand,

if we employ the widely used assumption that the re-

duced mobility is simply Mc rather than Mðcþ c00Þ, we
would be forced to conclude that the interface mobility

is nearly isotropic – in strong disagreement with the
kinetic Monte Carlo results (see Fig. 2). This clearly

demonstrates the importance of using interface stiffness

rather than the interface free energy in the analysis of

the capillarity driving interface migration.

Fig. 2 suggests that the reduced mobility is not pre-

cisely isotropic. A more rigorous derivation of the re-

duced mobility on a triangular lattice [11] yields

M� ¼ a2

s
1

ðcosuþ 1ffiffi
3

p sinuÞ : ð24Þ

Combining Eq. (24) above with the expression for the

interface stiffness, we obtain

M ¼
ffiffiffi
3

p
a3

2s
1

kBT

sinuðcosu� 1ffiffi
3

p sinuÞ
ðcosuþ 1ffiffi

3
p sinuÞ : ð25Þ

This expression, also plotted in Fig. 2, is in an even

better agreement with the kinetic Monte Carlo results
Fig. 6. Illustration of a grain on a triangular lattice showing shaded

boundary spins that flip with no change of total energy, and hence are

the only spins that can flip in the zero temperature limit. We can show

that, in this limit, the number of shaded spins inside the grain (8 in the

example above) minus the number of the shaded spins outside the

grain (2 in. the example above) is equal to six in general.
than Eq. (23). The remaining discrepancies are attrib-

utable to neglecting thermal kinks in the analysis. We

note that for the square lattice analytical expressions for

the mobility [12,13] and the reduced mobility [14] where

derived previously. Interestingly, in this case, the shape
of a shrinking grain is markedly less isotropic owing to

the fact that the reduced mobility is more anisotropic for

the square lattice.
6. Discussion and concluding remarks

In this work, we have examined interface motion
under different driving forces in the Ising model at low

temperature. The starting point of our investigation was

the puzzling observation from simulations that a circu-

lar grain shrinks as a nearly perfect circle on a triangular

lattice under the action of capillarity alone, while the

same grain shrinks or expands with the lattice anisot-

ropy (i.e., as a near hexagon) when an external field is

switched on. The latter is easily explained by the fact
that interface facets are nearly immobile at low tem-

perature, due to the rarity of kink nucleation, while in-

terfaces with a high density of geometrically necessary

kinks are highly mobile. As a result, the interface mo-

bility is strongly anisotropic and the grain shape reflects

the underlying anisotropy of the lattice under the action

of an external field. More puzzling was the observation

that interface motion driven by curvature can be quasi-
isotropic, in apparent contradiction with the fact that

the interface mobility is highly anisotropic.

We have obtained excellent agreement between the

Monte Carlo simulations results and a sharp-interface

model where the reduced mobility for curvature-driven

motion is isotropic and the mobility for field-driven

motion is highly anisotropic. Based on this agreement,

one might naively be tempted to conclude that the in-
terface mobility depends on the nature of the driving

force. We have learned that this is incorrect because a

quasi-isotropic reduced mobility does not imply a quasi-

isotropic interface mobility. This is more subtle than we

initially expected and can be explained on the basis of

two observations. First, the correct expression for the

reduced mobility given by the Herring relation is the

product of the bare mobility (which is itself anisotropic,
as discussed above) and the interface stiffness cþ c00. The
interface stiffness is also highly anisotropic if one in-

cludes the entropic part of c, TSc. Second, the aniso-

tropies of the stiffness and of the mobility almost cancel

each other to produce a nearly isotropic reduced mo-

bility. This cancellation occurs because the entropic part

of the stiffness TS00c is large for inclinations where the

mobility is low and vice versa. This, in turn, occurs
because the number of geometrically necessary kinks,

and hence the kink configurational entropy Sc, increases
rapidly when the inclination is varied near a singular
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orientation. In contrast, this entropy has only a weak

dependence on inclination near mobile interfaces with a

high density of kinks.

Our results show that a reliable comparison of the

mobilities obtained from experiments, where the same
boundary moves subject to both an external driving

force (elastic or magnetic field) and capillarity, requires

a precise knowledge of the boundary stiffness rather

than simply the boundary free energy. The term c00,
which is usually neglected in most theories of grain

boundary migration, cannot a prioiri be neglected.

Unfortunately, we do not know of any experiment or

simulation to date where this term was determined
reliably.

We expect the main conclusion that the mobility is

independent of driving force to remain true for grain

boundaries in polycrystalline materials. Less certain,

however, is whether the error introduced by neglecting

c00 in the reduced mobility is as dramatic for these

boundaries as it is for the idealized interfaces studied

here in the Ising model. Clearly, grain boundaries in real
materials have complex atomic structure and defects

contained within grain boundaries interact elastically.

Consequently, the fact that the enthalpic part of the

stiffness vanishes exactly in the Ising model, where cE is

simply the local bond cutting energy, is an over-simpli-

fication. Recent molecular dynamic simulations for the

U-shape grain geometry (analogous to Fig. 5) for

the Lennard–Jones system has shown that the shape of
the grain is consistent with a reduced mobility that is

nearly isotropic [15]. Therefore, we expect the basic rule

that the ‘‘stiffness is high where the mobility is low (and

vice versa)’’ to remain valid for real grain boundaries.

Extensive molecular dynamics simulations are presently

underway to test the validity of this rule for these

boundaries and experiments. Work is also in progress to

extend the methods of this article to the three-dimen-
sional (3D) Ising model [11].
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