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ABSTRACT 

The quest for producing vehicles friendlier to the 
environment is often impeded by the fact that a producer 
private good objective, such as maximum profit, competes 
with the public good objective of minimizing impact on the 
environment. Contrary to commercial claims, there may be no 
defined decision maker in the vehicle production and 
consumption process who takes ownership of the public good 
objective, except perhaps the government. One way eco-
friendly products could become more successful in the 
marketplace is if public and private good objectives become 
more aligned to each other. This paper introduces three 
metrics for comparing Pareto curves in bi-objective problems 
in terms of relative level of objective competition.   The paper 
also presents a quantitative way of studying an individual 
firm’s trade-off between profit and fuel consumption for 
automotive products, currently undergoing an historic 
evolution in their design. We show how changes in 
technology, preferences, competition, and regulatory scenarios 
lead to Pareto frontier changes, possibly eliminating it 
altogether.  

1 INTRODUCTION 
Quantitative studies of trade-offs between competing 

objectives are ubiquitous. They typically focus on finding 
Pareto points [1] and the preference structure for selecting one 
point among many —or vise versa. Preferences or constraints 
that lead to the trade-off relationship are assumed fixed.  

However, changes to the mathematical structure and 
input parameter values of the optimization model can lead to 
changes in the shape of the attainable set and its Pareto 
boundary. These changes can be captured by the objective 
function gradients and constraint activity shifts. Furthermore, 
psychologists have shown and recent work in the design 
community has begun to explore that decision maker 
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preferences do not necessarily exist a priori.  This finding 
implies decision maker preferences may be influenced by 
evolving tradeoffs—hence the value of studying them 
systematically [2-5]. 

Economic externalities affect decision-making.  An 
externality exists when consumers and producers do not 
explicitly consider all costs and benefits associated with their 
choices, as observed by society.  A negative externality occurs 
when a decision maker does not bear the full cost of a decision 
and over-produces or over-consumes.  Figure 1 shows the 
market equilibrium point compared with the societal ideal 
with respect to supply and demand, and price. 

Negative externalities related to automobiles include 
traffic congestion, harmful pollutant emissions, road 
degradation, accidents, and greenhouse gas (GHG) emissions. 
Mechanisms such as fuel taxes, emissions standards, and fuel 
economy standards reduce some of these externalities. 
However, one may argue that they do not internalize the total 
cost to society, and that an externality still exists, particularly 
with respect to GHG emissions.  This paper will not discuss 
public valuation [6] or finding the “right” price for GHG 
emissions.  Instead, the paper presents analysis of the trade-off 
between profit and fuel consumption to support the private 
decision of a producer to act in its best interest. 

This paper continues work studying public and private 
interest in vehicle design [7, 8] and formalizes metrics for 
comparing trade-off scenarios. We adopt an enterprise-wide 
trade-off model [7, 9, 10] with two objectives: a private one (a 
firm's stated business objective to maximize profit) and a 
public one (a firm's stated social objective to minimize 
environmental impact).  The enterprise balances these 
competing objectives with price and product design as 
decision variables. 
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Figure 1: Negative externalities result in market 
equilibrium away from societal ideal equilibrium 
The environmental impact metric used in this paper is 

fuel consumption per distance traveled, as vehicle use 
constitutes as much as 85% of GHG and other emissions [11, 
12]. For a fixed number of vehicle miles traveled, emissions 
decrease as vehicle fuel economy increases. 

We hypothesize that we can measure how much two 
objectives compete in a Pareto problem. The less they 
compete the more aligned they are. A multicriterion or Pareto 
optimization problem is stated as: 

 

min   f(x)

Subject to: h(x) = 0;  g(x) ! 0;  x "X
   (1) 

Here f(x)  is a vector of criteria of interest 
 
fi ,  i = 1,  …,  n .  

The set of variable values x  that satisfy all constraints is the 
feasible (design) domain, S .  The range set of all vectors f  
mapped from the feasible domain is the attainable 
set

 
! = f(x) | x "S{ } .  A point in Ξ, f *(x)  is said to be non-

dominated, or Pareto optimal, if there exist no f(x)  such that 
f(x) ! f(x

*
),  fi (x) < fi (x

*
) for at least one i.  

Ideal values are the optimal values obtained using one 
criterion at a time, 

  
fi
!

= min fi (x) | h(x) = 0,g(x) ! 0,x "X{ }, i = 1, ...,n .  
Nadir values are the worst values for each criterion found in 
the set of Pareto optimal points.  For a bi-criterion problem the 
nadir value for one criterion can be found when the other 
criterion reaches its ideal value:

 
fi
N
= { fi (x) | f j (x) = f j

!

}  [13]. 
The ideal or utopia point is the vector of ideal values for all 

criteria,
 
f
!

= f
1

!

  f
2

!!" #$
% . 

 The remainder of the paper is organized as follows. 
Section 2 introduces metrics for how much two objectives 
compete. Section 3 describes the bi-objective vehicle design 
optimization problem used in the demonstration study. It is 
stated at the enterprise level and includes engineering, market 
demand, cost, and price equilibrium models. Sections 4 and 5 
introduce and examine design scenarios where the public and 
private good objectives exhibit varying levels of competition. 
Section 6 offers a summary and conclusions. 

2 MULTICRITERION TRADE-OFF METRICS  
We consider now how we can compare different Pareto 

sets. A design scenario is defined here as the Pareto set 
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generated by a given problem statement and its associated 
parameter values. A design scenario can be classified as 
superior to another using the concept of a meta-Pareto set, 
which includes all non-dominated criteria vectors selected 
from the union of all the individual Pareto sets under 
consideration [14, 15]. 

The concept of criterion alignment is introduced to 
compare Pareto sets in terms of how much their objectives 
compete with each other. Two objectives are said to be aligned 
when both attain their ideal values simultaneously. A Pareto 
curve is more aligned than another when (i) the effective 
curvature of the normalized Pareto curve is greater; (ii) it 
spans a smaller area in the criterion space; (iii) it is less 
sensitive or “flat”. Three metrics, each emphasizing a different 
aspect of criteria alignment, are proposed in order to facilitate 
comparisons between design sets: Effective curvature, area, 
and sensitivity. With the exception of curvature, the metrics 
are relative and can be used to compare trade-offs only for 
problems with identical criteria. 

2.1 Effective Curvature: 
The effective curvature κ indicates the relative convexity 

or concavity of a particular trade-off. Το calculate κ we 
normalize the Pareto set between 0 and 1 for each 
criterion:

 
fi! (x) = fi (x) " fi

!

/ fi
N
" fi

! , and define the minmax 

solution L
!

A
= min L

!
= min "f

!
, !f

"
= max f

1
!{ , f

2
! } ,  

that minimizes the maximum deviation from either ideal 
value, 0 < L

!

A
< 1 . This solution is at the intersection of the 

curve f
2
! = f

1
!  and the Pareto set, and is used to calculate κ by 

finding the curvature of the hyperbola y = 1 / (Ax + B) ! C , 
intersecting the coordinate axes at 1. Then  
! = 3 2(2L

"

A
#1)

2
/ 2L

"

A 2

(L
"

A
#1)

2( ),   0 < L
"

A
$ 1 / 2,  convex  

! = "3 2(2L
#

A
"1)

2
/ 2L

#

A
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#
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2( ),  1 / 2 < L
#

A
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Thus κ is a monotonically decreasing, smooth, piecewise 
function with respect to L

!

A , with vertical asymptotes at 0 and 
1 and an inflection point at 0.5. Criteria compete less as κ 
increases, indicating increasing convexity and L

!

A closer to 0. 
Figure 2 shows differences in curvature for a normalized 
Pareto set.  In general,  

!" <# < "

lim
x$1# $ ", perfectly competing

0 <# < ", severely competing

!" <# < 0, marginally competing

lim
x$0 # $ !",

# = 0,

perfectly aligned
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%

&

'
''

(

'
'
'

 (3) 

2.2 Area: 
The area metric is the area of the rectangle that inscribes 

the Pareto set, defined as ! = X
s
Y
s

where
 
Xs = f

1

N
! f

1

!( ) / "1 , 

 
Ys = f

2

N
! f

2

!( ) / "2 for the bi-objective problem, with !
i
, i = 1, 

2, chosen by the designer, to compute a scaled range for 
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Figure 2: Normalized criterion space showing 

competition severity as a function of Pareto set curvature 
criterion i. Criteria compete less or are more aligned, as the 
area is reduced.  

A useful heuristic for selecting !
i
 is to consider the 

smallest change in fi  that would be meaningful, i.e., one that 
gives a unique solution in a practical application.  For 
example, for a miles/gallon criterion, a difference of 0.1 mpg 
may be the smallest significant unit. The scaled values of fi  
would then be multiples of the significant unit. Setting 
! = 1maintains the original scale.  Scaling based on a 
significant unit is useful for comparing Pareto sets because the 
scale of the relative changes in each criterion is preserved. 
This would not be the case if the Pareto set was normalized or 
if a value unique to each design scenario was used, such as

 
fi
! . 

Selecting scaling factors implies some judgment on the 
relative value of each criterion, just as normalizing or leaving 
criteria unscaled implies a relative weighting.   

2.3 Sensitivity: 
The sensitivity metric is defined relative to each criterion 

!
X
s

=
Y
s

X
s

,  !
Y
s

=
X
s

Y
s

.  A lower value of !
X
s

means, criterion 

Y is less sensitive to changes in criterion X. The sensitivity 
metric reflects the change in one criterion given a change in 
the other criterion over the entire Pareto set; it indicates the 
shape of the rectangle that inscribes the Pareto set. A criterion 
is more or less sensitive as the rectangle becomes more 
eccentric. Balanced sensitivity occurs when Y

s
/ X

s
= 1 .   

 3 ENTERPRISE VEHICLE DESIGN MODEL  
The decision maker is assumed to be a single automobile 

manufacturer, Firm X, offering a single vehicle in a narrow 
class, namely, five-passenger, midsize, crossover vehicles.  
Vehicle design and pricing results are generated based on a 
hypothetical marketplace consisting of nine vehicles based 
roughly on 2007 models. Vehicle attributes not included in the 
demand and cost models were similar, including standard 
seating, towing capacity, and approximate cargo volume. The 
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Firm X vehicle is assumed to have a towing capacity of 3500 
lbs. as enforced by the towing constraint. 
 The profit objective π is represented by simple near-term 
profit for a one-year period:! = revenue " cost . Vehicle 
demand is a function of the vehicle attributes and prices of all 
vehicles; attributes are functions of seven design variables;  
cost is a function of design variables and sales volume. 
Models used to estimate attributes, cost, and demand are based 
on the literature and some new developments described below. 
We assume that all firms produce the number of vehicles 
equal to the expected demand for their product. 
 The social or public good objective is to minimize fuel 
consumption/distance traveled.  Rate of fuel consumption is 
only an approximation for minimizing environmental impact, 
but a factor most likely to be under manufacturers’ control. 
Since a surrogate (rate of fuel consumption) is used rather than 
the externalities themselves (e.g., GHG emissions, criteria air 
pollutants, and nonrenewable resource use), some relevant 
factors are neglected, for example, the rebound effect of 
increased vehicle miles traveled when the cost of driving is 
reduced by improvements in fuel economy. 
   The flow of information between profit, demand, 
attributes, and cost follows the development of Michalek et al.  
[7].  However, we assume that Firm X has control over vehicle 
design and price while the other firms control only price.  

3.1 Vehicle Engineering Model: 
An engineering model was developed using the AVL 

Cruise software package [16]; it calculates the following 
attributes using powertrain simulations, curve-fits from 
empirical data, or analytical expressions: fuel economy, MPG; 
0-60 mph time, Acc060; styling, as used in the demand model 
(length + width)/height, Styl1; 30-50 mph acceleration time 
while towing, Acc3050; maximum grade at 65 mph while 
towing, Grad65Tow; vehicle top speed, MaxSpeed; static 
rollover score based on static stability factor [17], Rollover; 
estimated engine length, EngLength; cargo volume index 
behind 2nd row, CVI; ramp breakover angle, A147; angle of 
departure, A107 [18]; vehicle center of gravity position in 
longitudinal and vertical direction, CG_long, CG_vert; vehicle 
curbweight and gross vehicle weight rating, VehMass, GVWR; 
bumper to driver heel crush space, CrushSpace; and, estimated 
peak deceleration in front crash test, MaxDecel.  The variables 
are: engine bore, EngBore; engine bore to stroke ratio, 
EngBoretoStroke; final drive ratio, FinalDrive; vehicle length, 
width, and height, L103, W105, H101; and vehicle wheelbase, 
L101.  

The ! " constraint method [19] was used to find Pareto 
points of the problem: min f | f = !Profit, fuelconsump[ ]by 
varying the constraint parameter MinMPG between 
fMPG
N and

 
fMPG
! . 

The constraint set is as follows: 
3 Copyright © 2007 by ASME Copyright © 2008 by ASME
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g1 = MinTowGrad !Grad65Tow " 0

g2 = 13! ! A107 " 0

g3 = 12! ! A147 " 0

g4 = 29 ft3
! CVI " 0

g5 = CVI ! 60 ft3
" 0

g6 = Rollover ! .21 " 0

g7 = 50% !100 1! CGlong ! L104 / L101( ) " 0

g8 = 5% !Grad65Tow " 0

g9 = Payload +VehMas !GVWR " 0

g10 = MinCrushSpace ! CrushSpace " 0

g11 = MaxDecel ! 20(9.81 m/s2 ) " 0

g12 =
2TireFlop + 2MidRailWidth +             

EngLength + 50.8) ! (W105 ! 254) " 0

g13 = L101+ L104 ! L103 " 0

g14 = 120 mph ! MaxSpeed " 0

g15 = MinSitheight ! H101 " 0

g16 = MinMPG ! MPG " 0

    (4) 

 Vehicle simulations were configured to represent a 
standard automatic transmission front wheel drive vehicle with 
a gasoline engine.  In addition to powertrain specifications 
(i.e., gear ratios, gear shifting schedule, engine number of 
cylinders, vee or inline configuration, bore, and stroke, 
valvetrain configuration, and final drive ratio.) Cruise also 
receives other vehicle parameters as inputs, including curb 
weight, frontal area, drag coefficient, tire radius, and center of 
gravity location under various loads.  Over 30 parameters 
were tuned for midsize crossover vehicles based on data from 
one 2007 model.  All other parameters were left at the default 
passenger vehicle levels.   

Cruise characterizes engine performance by reference to 
engine maps derived from experimental results of a baseline 
engine.  The fuel consumption map is taken from a 2.5 l, V-6 
engine with BMEPPpeak=1068 kPa.  The full load characteristic 
is scaled from the Duratec35 engine (BMEPPpeak=1085 kPa) 
used in the Ford Edge. Engine maps were scaled for each 
design iteration as functions of EngBore and EngBoretoStroke 
following established scaling relationships [20, 21]. We 
assume the peak power brake mean effective pressure of the 
Firm X vehicle engine (1085 kPa) and mean piston speed at 
peak power out (18.1 m/s) are constant for all designs. The 
advanced friction module found in Cruise, which incorporates 
engine and valvetrain architecture, based on [22] was used to 
integrate frictional engine losses into the simulations.   
 Five vehicle simulations were executed using Cruise:  
FTP (US urban cycle) and HFET (US highway driving cycle) 
estimate combined fuel economy rating according to 2008 
EPA MPG-based guidelines [23].  Shifting gears from 
standstill was used to predict 0-60 acceleration and vehicle top 
speed; shifting gears from 30-50 mph was used to estimate 30-
50 mph time with towing simulated by adding the max trailer 
weight to the mass of the vehicle; max gradeability estimates 
the percent grade achievable at 65 mph with towing simulated 
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using the virtual trailer option that allows specification of 
trailer mass and an estimate of losses. 

Surrogate models were obtained from Cruise simulations 
to reduce computational expense, using Latin hypercube 
experimental designs.  Satisfactory polynomials were found 
for both driving cycles and the gradeability simulation (R2: 
0.998 City, 0.994 Hwy, 0.997 Grade). Two neural nets were 
generated in Matlab, one for Acc060 and one for MaxSpeed, 
both of which had R2 values for the training points and the test 
points above 0.99.  
 A regression was fit (R2:0.92) to estimate curb weight: 
VehMass = c1(L103 !W105)

2
+ c2 (L01!W105) + c3EngDisp

                   + c4FWD + c5AWD + c6 4WD + c7RWD + c8

(5) 

using data for 2005 light-duty trucks from Ward's automotive 
yearbook [24].  Here EngDisp is the engine displacement 
volume, and FWD, AWD, 4WD, RWD are dummy variables 
{0,1} for driveline configuration.    

Cargo volume and rollover constraints [17] were relaxed 
(g4(min CVI) from 32 ft3 to 29 ft3, g6(max rollover score) from 
0.1999—a 4-star rating—to 0.21) to account for differences 
between the model and real world data. 

Attributes for competing vehicles were gathered from the 
Internet including values for all design variables, transmission 
ratios, and other model parameters [25-27]. Single Cruise 
simulation runs were performed for each vehicle and the 
values of the attributes were recorded.  In most cases the 
computed values of MPG and Acc060 for each vehicle were 
used in the market equilibrium model rather than the reported 
values to avoid bias given discrepancies between simulated 
and real-world performance. The vehicle simulation was rerun 
using the reported curb weight for VehMass in cases where the 
vehicle curb weight prediction deviated by more than 50 kg 
from the reported curb weight.  

3.2 Vehicle Demand Model: 
A logit model was chosen for representing demand, due 

to its ease of interpretation congruent with random utility 
theory [28], and widespread use.  We considered only vehicles 
from a very narrow class and thus reduced the risk of violating 
the independence of irrelevant alternatives assumption with 
the introduction or exclusion of a particular vehicle. All other 
purchase possibilities are represented in the utility of the 
outside good vog.  

The choice share of a given product is defined for the 
logit model as the probability of choosing product i given 
products 1, …, n as follows,  

Pr i( ) = evi / e
vog + e

vj

j

!
"

#$
%

&'
, v

i
= !

k
"(z

k
)

k

#  for k attributes. (6) 

From the literature of demand models for the auto industry 
[29-31] we adopted a model similar to Boyd & Mellman [32]. 
It assumes aggregate (homogeneous) preferences, a logit form 
of the choice model, and a utility model that is linear in the 
coefficients with vehicle attributes: price, fuel consumption, 
the inverse of 0-60 acceleration time, a styling factor Styl1 
based on external vehicle dimensions.  

The Boyd & Mellman model was estimated using model 
year 1977 vehicle data, and as such, caution should be taken 
when interpreting results.  Vehicle price was converted to 
4 Copyright © 2007 by ASME Copyright © 2008 by ASME
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1977 dollars using the consumer price index; 0-60 times 
improved dramatically from 13.8s in 1977 to 9.6s in 2007 
[33].   A 1s shift (rather than the full 4.2s) to acceleration 
times generated vehicle designs similar to the existing market 
for the baseline scenario implying that preference for 
acceleration increased.  

Conveniently, the assumed price of gas in 1977 dollars 
was $0.70 (roughly $2.40 in 2007 dollars—at the low end of 
the observed range of gas price in 2007). The average decrease 
in fuel consumption (≈30%), as tested by the EPA, is 
accounted for by using the updated adjusted values [23] for 
fuel economy, rather than the EPA test values, and then 
shifting the mpg value by the 0.7mpg remaining difference, 
implying people value improvements in fuel economy at 
roughly the same level but expect higher average fuel 
economies. 

The model was further calibrated by setting market size 
to the total vehicles sold in the US in 2007 (14.87 M), and vog 
was set to produce a total demand for the 9 hypothetical 
vehicles roughly equivalent to the 2007 sales of the real 
vehicles (≈600,000).  Adjusting market size and vog in this way 
rather than using the segment market size and a modest vog did 
not shift the design decisions of Firm X, but did provide 
downward pressure on prices to bring them inline with 
observed values. 

Market demand for each vehicle is estimated to be the 
product of the market size cap and the choice share. Other 
choice model formulations such as the mixed logit [28] allow 
for preference heterogeneity.  Studying the impact of choice 
model selection on the Pareto set outcomes could be the 
subject of future work.   

One difficulty in calibrating models between years is that 
not only have the purchase power of the dollar decreased and 
the average vehicle attributes changed, but the average price 
of vehicles in real dollars has increased [29]. 

Attributes of the competing vehicles are listed in Table 1.  
Time is given in seconds, fuel economy in miles/gallon, and 
length in inches.  The Styl1 attribute and utility are 
dimensionless. We assume all vehicles use regular gasoline. 

3.3 Vehicle Cost Model: 
The cost model, modified from De Weck [34] and Cook 

[35], is based on assigning a cost to a hypothetical average 
vehicle and then computing the cost for a specific vehicle 
based on deviations from the average.  Approaching cost 
modeling in this way enables design-specific cost differences  

Table 1: Hypothetical midsize crossover vehicle market 
excluding Firm X vehicle 

Make Acc060 MPG L103 W105 H101 Styl1 B&M 
Util.1 

xEdge 7.7 19 185.7 75.8 67.0 3.9 5.75 
xEndeavor 8.4 19 190.8 73.6 69.6 3.80 5.42 
xHighlander 7.9 19 184.6 71.9 67.9 3.78 5.52 
xMurano 8.0 20 187.6 74.0 66.5 3.93 5.82 
xSanta Fe 8.2 19 184.1 74.4 67.9 3.81 5.48 
xXL7 7.9 18 190.8 73.6 69.6 3.80 5.43 
xTribeca 8.3 19 189.8 73.9 66.4 3.97 5.68 
xVue 8.4 21 181.3 71.5 66.5 3.8 5.64 

                                                        
1 Vehicle utility based on adjusted B&M model excluding price 
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to be considered without requiring a complete bottom up cost 
structure.  The initial cost value is generated from assumptions 
about average profit margin α =20% (OEM + dealer), as well 
as the average operating leverage φ  =0.35  (relative distribution 
of fixed vs. variable costs).  No learning curve effect was 
assumed.  

Variable vehicle cost is broken down into four 
subsystems, where the relative cost of each subsystem is a 
function of design variables and parameters. Powertrain (30%) 
(EngBore, EngBoretoStroke), Chassis (35%) (W105, L101), 
Body (30%) (L103, H101, W105), Wheels (5%) (Wheel 
diameter, a fixed parameter in this study).  Total cost is 
calculated according to the following. 

Ctot = Cvar + Cfix

C fix = ! " AvgUnitCvar " AvgSales / 1# !( )

Cvar = SalesVol "UnitCvar

   (7) 

3.4 Price Equilibrium Solution Strategy: 
Each competitor optimizes profit with respect to vehicle 

price given the product designs and prices of all competitors.  
Firm X then optimizes product design and price variables, 
concluding one iteration.  Iterations continue until price 
changes fall below a threshold constraint (≈ $80).  The vehicle 
prices (and Firm X design variables) are now set such that no 
firm can make a different decision that would improve its own 
profits while the choices of the other firms remain fixed—
approximating a Nash equilibrium [36]. 
 A complete product equilibrium process would allow 
each competitor to optimize designs as well as prices with 
respect to all others’ designs and prices.  However, given the 
use of a homogenous multinomial logit model and identical 
underlying engineering and cost models, each firm would 
choose identical designs and prices, as seen in [7]. Instead, 
assuming fixed competitor designs coincides with vehicle 
planning where a firm makes some educated assumptions 
about the products competitors will produce. During product 
launch and subsequent sales, all competitors are at liberty to 
adjust prices freely while the designs remain fixed.  
Competitive behavior [37] among auto manufacturers 
considering the full market has been modeled, for example 
[38, 39].  The simplified approach shown here includes 
competitive effects sufficient to illustrate trends without 
greatly increasing the computational complexity of the model. 

4 DESIGN SCENARIOS 
We examine design scenarios that translate into model 

changes and new Pareto sets.  The criterion alignment metrics 
and the overall value of each scenario are compared. A Pareto 
set that dominates another Pareto set has greater value.  We 
divide design scenarios into four ‘mechanisms’: technology, 
preference, competition, and regulation. Table 2 gives the 
initial parameter values for the baseline case. Table 3 lists 
each design scenario and the corresponding model changes.  
Each model change is implemented individually, and all other 
parameter values are kept at the baseline levels.  The unscaled 
results are shown in Figure 3 and discussed in Section 5. All 
design scenarios consider 9 producers including Firm X. 
5 Copyright © 2007 by ASME Copyright © 2008 by ASME
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4.1 Baseline Case: 
The vehicle price (MSRP), market share (within 

segment), and expected profit for each firm are listed in Table 
4 for the 

 
f
! profit

!  solution. Table 5 shows the attribute values 

for 
 
fprofit
!  and 

 
f fuelconsump
!  for the baseline case. 

4.2 Technology: 
Two technology scenarios are considered. The drag 

coefficient is changed to 0.4 and 0.34 from 0.37, and the 
powertrain cost parameter is changed from 30% to 20% and 
40%. The difference in cost is absorbed evenly by the chassis 
and body subsystems.  

4.3 Preference: 
Individual preferences for products change over time 

based on externalities (e.g., rising fuel prices or increased 
public concern for global warming) and based on changes to 
the performance levels and salience of the observable 
characteristics of a product.  Advances in technology and 
government regulation are two influences that may 

Table 2: Design scenario parameters for baseline  

Market 
assumptions 

Market 
Size 

Utility of  
outside 

good 

Dealer 
markup 

Number 
of Firms 

 14,870,000 9.1 8% 9 
Relative cost 
breakdown Powertrain Chassis Body Wheels 

 0.3 0.35 0.3 0.05 
Choice model 
coefficients MPG ACC Styl1 Price 

 -0.339 0.375 1.37 -0.000286 

Table 3: Design scenarios listed by mechanism and 
model parameter level 

Mechanism Levels 
 1 2 3 
Technology    

CD 0.34 0.40  
Powertrain cost 20% 40%  

Preference    
Accel. Indifference !

ACC
= 0    

Fuel economy -0.239 -.439 -.639 

Styling preference W105 ! 2 + L103 / 2

H101

 ! W105 + L103 + H101( )
2000

 10 ! H101

W105 + L103

 

Competition    
Price-cutting 21,000 (xVue) 23,000 (xVue)  
Market size volatility 12,870,000 16,870,000  

Regulation    
Price-ceiling $20,000 $22,000 $24,000 

Table 4: Prices, market shares, and expected profits for 
all firms for the baseline case 

 xEdge xMurano xHighlander xSanta Fe xTribeca 
MSRP $26,900 $26,700 $26,000 $26,300 $25,900 
Market Share 12% 13% 10% 9% 12% 
Profit $314mil. $373mil. $197mil. $151mil. $319mil. 
      

  xVue xXL7 xEndeavor Firm X 
MSRP  $25,900 $26,900 $27,100 $27,400 
Market Share  11% 10% 8% 15% 
Profit  $257mil. $193mil. $68mil. $543mil. 
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change the observable product characteristics of a product 
such as the automobile.  For example, increased consumer 
interest may be placed on fuel economy and derivative 
characteristics of advanced powertrains (e.g., range, access to 
refueling).  Of course, advertising is another mechanism that 
influences preferences.  

The importance of acceleration in the baseline case is 
contrasted to the case where consumers are completely 
indifferent to 0-60 acceleration given that the vehicle meets 
towing, top speed, and 30-50 mph acceleration requirements. 

We postulate new fuel consumption coefficients in the 
demand model assuming preference is proportional to cost of 
transportation in real dollars.  This analysis assumes that 
preference for the other attributes with respect to price remain 
unchanged, which has the unavoidable side effect of changing 
the elasticities between fuel consumption and the other 
attributes. The !

MPG
 coefficients are listed with the 

corresponding fuel price in 2007 dollars: 
!
MPG

= ".239, $1.69;  " .339, $2.40;  " .439, $3.10;  " .639, $4.51{ }  
Several alternative styling forms were considered.  Three 

forms are reported, i) A longer, lower, wider form, where 
increases in width are more important than increases in length; 
ii) minimalist styling that emphasizes reduction in all three 
exterior dimensions; iii) an “inverted” form that is taller, 
shorter, and thinner.   

Changing parameter values or functional form of product 
attributes in the utility model changes the computed values of 
utility.  The utility of the outside good was updated to preserve 
the relative difference between the average utility value of the 
8 original vehicles and the utility of the outside good for all 
preference and regulatory scenarios. Finally, all firms will 
react to changes in consumer preference.  However, only Firm 
X changes vehicle design in this example.  The resulting 
profits should be considered inflated relative to market 
expectations, but the trend in vehicle design (i.e., the relative 
change of fuel economy) should be preserved. 

4.4 Competition: 
Two scenarios are considered that deal with the 

competitive landscape facing Firm X.  First, the effect of a 
price-cutting strategy by another firm is examined at 
approximately $3,000 and $5,000 below the baseline 
equilibrium price.  Second, market volatility is considered by 
varying annual US vehicle market size ± 2 million vehicles. 

4.5 Regulation: 
Numerous regulatory scenarios can be explored using the 

proposed framework.  Only one policy, a mandatory price 
ceiling at $24,000, $22,000, and $20,000, is reported here.  A 
natural consequence of a price ceiling policy is that demand 
exceeds supply.  Losses by many firms in these scenarios 
indicate that the worst performing firms would exit the market 
and fewer vehicles would be produced overall. 

5 DISCUSSION 
The results of each design scenario, including the 

baseline case, are shown in Figure 3 grouped by mechanism.  
The criterion alignment metrics are listed in Table 6.  Section 
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5.1 compares the value or magnitude of the scenarios, and 
Section 5.2 discusses the criterion alignment metrics. 

L103 is large at 
 
f
! profit

! and shrinks along the Pareto 
frontier. Vehicle cost, MPG, and ACC060 are all negatively 
correlated with vehicle size. H101 is constrained by the 
minimum sitting height constraint.  W105 is constrained by the 
rollover constraint and L103 and L101 are constrained by the 
minimum angle of departure and cargo volume constraints.  In 
the absence of preference valuation for cargo volume, 
legroom, or other spatial features of the vehicle, Firm X will 
seek to build the smallest vehicle possible. The Styl1 attribute, 
which rewards increases in length and width, moves the 
design away from the constraint boundaries at the most 
profitable solutions.  L103, L101, and W105 are above average 
for the hypothetical marketplace and H101 is slightly below 
average.  The minimum towing grade constraint becomes 
active at

 
f fuelconsump
! .   

Most of the Pareto sets follow a similar form given that 
the constraint activity remained the same across most 
scenarios—a gradual decrease in profits for about 1/2 the fuel 
consumption change followed by a steeper region of profit 
loss for the remaining fuel consumption change. The top speed 
constraint is active up to the elbow in the direction of 
decreasing fuel consumption and is no longer active beyond 
that point.  Also near the elbow, EngBore meets the lower 
bound imposed by the model.  However, EngBoretoStroke 
does not reach its lower bound so the engine displacement 
continues to decrease modestly as fuel consumption decreases.  

The attainable set for all scenarios is limited by the same 
set of constraints on vehicle characteristics.  The scenarios 
have the effect of shifting output levels of the objective 
functions (e.g., the technology scenarios) and shifting the 
boundary of the attainable set that is Pareto optimal (e.g., the 
preference scenarios).  New scenarios that modified, 
introduced, or excluded constraints could change the boundary 
of the attainable set.  On the other hand, the Pareto frontier in 
an unconstrained problem would depend only on the gradients 
of the objective functions. 

5.1 Scenario Dominance: 
The globally dominant meta-Pareto set tracks along the 

market size of 16.87 million, then follows the indifference to 
acceleration, and then the CD=0.34 scenario.   

In the low fuel consumption region, expensive 
powertrains produce results in the market similar to higher 
preference for fuel economy.  When powertrains are expensive 
(40% vs. 30%) fuel economy improves for the max profit 
solution; however, it is still more profitable to balance 
acceleration and fuel economy rather than reduce engine size 
and cost, and focus on fuel economy.  Such a result may 

Table 5: Firm X vehicle attributes for ideal -profit and 
fuel consumption values for the baseline case 

Make Acc060 MPG L103 W105 H101 Styl1 Util.2 

Firm X 
 
f
! profit

!  7.2 18.4 196.6 74.4 67.0 4.05 6.03 

Firm X 
 
f fuelconsump
!  9.8 21.1 187.3 74.2 67.0 3.90 5.48 

                                                        
2 Vehicle utility based on adjusted B&M model excluding price 
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explain one reason many hybrids have been tuned towards 
performance and not solely to maximize fuel economy.   

Intuitively, increased market size increases profits.  Non-
intuitively, artificially lowering the price of a single vehicle 
had a negligible effect on Firm X decisions.  This result 
demonstrates one of the weaknesses of the simple logit model: 
there is no way to account for the substitution patterns we 
would expect, i.e., more sales for the reduced price model 
coming from shifting demand within the segment rather than 
the entire vehicle fleet (the outside good).  Preliminary studies 
using the segment size as the market size and a modest value 
of outside good utility showed results for a price cut by one 
firm very similar to a price ceiling on the entire segment. 

5.2 Trade-off Metric Comparison: 
Values for the three metrics are listed in Table 6.  Each 

metric shows a range of values across the analyzed scenarios.  
Area and sensitivity were computed using scale factors of 
!
" profit = $100, 000  and ! fuelconsump = 0.02 gal/100 mi .   

The acceleration indifferent scenario comes closest to 
showing how the bi-objective problem can collapse to a single 
solution when the gradients of the two objectives are very 
similar. The importance of the Styl1 attribute preserves a 
trade-off. Another type of collapse could occur when one 
objective becomes completely indifferent to the other 
objective.  This can occur when the gradients of each objective 
are uncoupled or only weakly coupled.  In other words, the 
objectives depend on few if any of the same design variables.. 

Comparing the metric values and Figure 3 shows that 
localized effects of the Pareto curves are not accounted for by 
the metrics.  The trade-off region of interest to a vehicle 
producer is the region immediately around the max profit 
point.  For most scenarios, the trade-off in this region is much 
more shallow than the overall trade-off as indicated by the 
sensitivity metric, and the curvature is much closer to 0 than 
indicated by the curvature metric.  The metrics could be 
reapplied to a designated region of the Pareto curve to define 
metrics for local curvature, area, and sensitivity. 

There are clear changes to the nature of the trade-off as 
the MPG attribute increases in importance.  The area 
decreases as f fuelconsump

N  decreases.  The curvature decreases 
dramatically between the baseline and the !

MPG
= "0.639  case 

because the shallow trade-off region is no longer Pareto-
optimal, and the sensitivity increases because the range of fuel 
consumption decreases dramatically while the range of profit 
changes less.  The styling importance impact on profit and fuel 
consumption is mixed. Particularly interesting is the Styl1(1) 
scenario where width is valued more than length.  Increased 
profits can be achieved and a firm is severely penalized for 
decreasing fuel consumption. 

Reduced drag coefficient leads to increase in the area 
metric as the Pareto set improves in value, which is 
inconsistent with the trend in the preference scenarios.  One 
interpretation of these results is that improvements in vehicle 
design (e.g., improved drag characteristics) have great 
potential for decreasing environmental impact, but these 
changes alone will lead only to marginal changes at 

 
f
! profit

!  
when they occur in isolation of other model changes. 
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Figure 3: Results for all design scenarios showing -Profit vs. Fuel Consumption 
lo
Price ceiling scenarios decreased fuel consumption at the 
cost of reduced profit levels.  Trends for the metrics are 
summarized in Table 7.   For example, the first line of the 
table should be read, “As preferences change such that the 
value of the Pareto set improves, curvature and area decrease 
while sensitivity increases.”  Some trends are not monotonic. 
Results for effective curvature were mixed over all the 
scenarios.  As a whole, the trade-off metrics show increasing 
alignment for improved Pareto set values when changes are 
made with respect to technology or preference, and they show 
increasing alignment for inferior Pareto set values when 
changes are made with respect to competition or regulation. 

6 CONCLUSIONS 
This paper presents three metrics for measuring bi-

objective trade-offs and illustrates their application in a 
vehicle design problem. The area metric is of practical 
significance to decision makers in that larger trade-off area 
means more to gain (lose) in the trade-off decision. The area 
metric also appears to give the best overall assessment of 
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criterion competition considering the working definition of 
criteria alignment, i.e., both objectives achieve single 
objective optimality simultaneously.  The other two metrics 
actually show increased competition for most cases when the 
area metric decreases.  In fact the smallest area values 
coincide with the smallest curvature values, likely indicating 
that as ideal values move closer together for a given problem 
formulation, smaller regions of the attainable set boundary are 
Pareto optimal and are thus more and more closely 
approximated by a straight line.  This effect should be 
explored in other multi-objective problems with different 
Pareto frontier shapes (e.g., a concave frontier), and future 
work should investigate directly how the problem structure 
(i.e., objective gradients and constraint activity) ties to the 
metrics. The curvature metric, which can be compared across 
problems, may serve to classify multiobjective problems 
according to typical Pareto frontier shapes. 

The enterprise vehicle design problem is an example of a 
class of problems where decision maker preferences are 
heavily weighted to one objective (e.g., profit).  The 
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sensitivity metric can be useful in such problems, especially if 
it is applied locally around the 

 
f
! profit

!  solution.  A firm 

considering producing a vehicle away from 
 
f
! profit

!  for 
strategic reasons could then formulate a risk assessment for 
each scenario given the sensitivity of profit with respect to 
their choice.  Scenarios with lower !

X
s

 values will be less 

sensitive to design choices away from
 
f
! profit

! . 
Another insight drawn from the metrics is that decreased 

objective competition does not predicate superior solutions 
compared to a more competing scenario.  For example, one 
intuitive yet important trend in the results is that when the area 
metric decreases due to changes in the objective gradients 
(e.g., consumer indifference to acceleration) the design 
scenario has potential to improve value for both stakeholders.  
However, when area decreases are due to changes in 
constraints (e.g., a price ceiling), the overall value of the 
scenario decreases for at least one stakeholder. 

Caution should be taken in interpreting the results of this 
study.  The intent is not to represent a true market equilibrium, 
but to represent a design scenario as it may appear to a vehicle 
manufacturer making assumptions about the vehicle designs of 

Table 6: Criteria alignment metrics for each design 
scenario 

Design Scenario 

 
 Curvature Area Sensitivity !

X
s

 

Baseline 5.7 131,000 103 
Technology    

CD 0.34 6.1 142,000 109 
CD 0.40 7.4 117,000 93 
Powertrain cost 20% 6.3 149,000 98 
Powertrain cost 40% 5.3 118,000 107 

Preference    
Accel. Indifference 0.02 5,750 168 
Fuel economy -0.239 5.3 186,000 102 
Fuel economy -0.439 6.4 95,000 101 
Fuel economy -0.639 0.8 35,000 195 
Styl1(1): W105 ! 2 + L103 / 2

H101

 7.0 89,000 101 

Styl1(2): ! W105 + L103 + H101( )
2000

 7.1 84,000 94 

Styl1(3): 10 ! H101

W105 + L103

 1.8 188,000 145 

Competitive    
Price-cutting $21,000 5.7 131,000 102 
Price-cutting $23,000 5.7 131,000 102 
M. size vol.(12,870,000) 5.7 114,000 89 
M. size vol.(16,870,000) 5.7 149,000 116 

Regulatory    
Price-ceiling $24,000 6.1 87,000 80 
Price-ceiling $22,000 7.2 57,000 60 
Price-ceiling $20,000 0.3 10,000 98 

Table 7: Trends in trade-off metric values with respect to 
changes in Pareto set value 

 Value Curvature Area Sensitivity 
Preference ↑ ↓ ↓ ↑ 
Technology ↑ mixed mixed ↑ 
Competition ↓ none ↓ ↓ 
Regulation ↓ mixed ↓ mixed 
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competitors. Significant obstacles remain in studying max 
profit formulations in vehicle design including questions about 
underlying demand model validity, econometric 
interpretations of changes to the demand model parameters, 
and realistic cost models, among others.  Furthermore, other 
regulatory scenarios can be considered, such as a CAFE 
standard, fuel tax, or CO2 tax.  Therefore, the numerical results 
presented here are useful in illustrating the proposed concept 
of public-private alignment rather than suggesting specific 
decisions. 
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