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ABSTRACT
This paper presents the development of a longitudinal tire

force estimation algorithm. Rather than using highly nonlinear
tire-road friction models, we propose a decentralized estimation
algorithm which treats the longitudinal tire force of the individ-
ual wheel as an unknown input signal for the one-DOF wheel
dynamic model. Two types of unknown input observers are de-
signed to estimate the longitudinal tire force based on the wheel
speed measurement in this study. To make the estimated tire force
signals also satisfy the longitudinal dynamic model of the vehi-
cle, the estimation results of the unknown input observer are inte-
grated with the longitudinal acceleration measurement by using
a projection method.

INTRODUCTION
Tire-road friction force is a crucial signal in various au-

tomotive active safety systems, such as anti-lock braking sys-
tems (ABS), traction control (TC) and electronic stability con-
trol (ESC) [1]. However, no commercial vehicles are equipped
with sensors which can directly measure this force signal. This
is due to either cost concern or technical challenge. This pro-
vides a need for an efficient and accurate estimation algorithm.
In fact, the ever-increasing demand for safety and driving com-
fort makes it a very active research field in both academic soci-
ety and auto industry. Many research results can be found in the
literature. However, tire-road friction is a very complex phys-
ical phenomenon, which is represented by various complicated
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mathematical models, such as Magic Formula [2] and Dugoff
tire model [3]. To utilize this kind of model, an online identifica-
tion algorithm should be developed to detect the change of those
parameters that classify road conditions. Even after consider-
able simplification, those models are still highly nonlinear, such
as LuGre model [14], which makes the design of the controller
or estimator extremely challenging [16] [17] [18]. Moreover,
the coupling between longitudinal and lateral tire forces further
complicates the design process and lowers the robustness of the
control and estimation algorithm. Another issue is that those tire
model based estimation methods in [17] [18] are allowed to be
used only when the persistent excitation condition is satisfied.
However, this assumption often fails in real world applications.
In this paper, we present a longitudinal tire force estimation al-
gorithm without using any tire-road friction models. Instead, the
longitudinal tire force of the individual wheel is regarded as an
unknown input signal for the wheel spinning dynamic model.
A significant advantage of this approach is that no complex tire
models are involved in the estimation algorithm which not only
relieves the computation burden but also increases the robustness
with respect to the large variation of the road conditions.

The paper is organized as follows. First a one DOF wheel
dynamical model is given, based on which two estimator design
methods are developed. The next section shows how the esti-
mation results from the individual wheel are integrated with the
longitudinal dynamical model of the whole vehicle to further im-
prove the accuracy of the estimation. Finally, the experimental
results are presented, followed by the conclusions.
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Table 1. Parameter Definition of One DOF Wheel Dynamical Model

Parameters Explanation

Iw rotation inertia of the wheel

Td drive torque acting on the individual wheel

Tb brake torque acting on the individual wheel

b coefficient of linear viscous damping

Fx longitudinal tire force

r effective radius of the individual wheel

One DOF Wheel Dynamical Model
For the rotational motion of individual wheel, it is modeled

as a rigid body that rotates about its CG as shown in Fig. (1).

Figure 1. One DOF Wheel Dynamic Model

The dynamic equation is shown in Eq. (1) [3].

Iwω̇ = Td +Tb−bω− rFx (1)

where ω denotes the angular velocity of the individual wheel.
The definitions of other parameters can be seen in Tab (1). The
effective radius r of the individual wheel is a time-varying pa-
rameter that depends on the tire pressure and maneuver condi-
tions. The estimation of the effective radius is beyond the scope
of this paper. Here, we assume that this is a known parame-
ter and its variation can be estimated from the measured normal
load [12]. Moreover, the linear damping torque bω can be ig-
nored during acceleration and hard braking due to its relative
small amplitude compared with other inputs. This leads to the
following simpler form of Eq. (1).

Iwω̇ = Td +Tb− rFx (2)

As can be seen from Eq. (2), the longitudinal tire force Fx is
the only unknown input signal that needs to be estimated. Com-
pared with those tire model-based estimation algorithm, one dis-
tinct advantage of this model is that the longitudinal and lateral
tire forces are completely decoupled, since the lateral tire force
makes no contribution to the response of wheel speed signal.

Individual Tire Force Estimation
In this section, we will discuss how to use the wheel dy-

namic model and wheel speed measurement to estimate the lon-
gitudinal tire force. The same with those tire model based force
estimation methods, such as [17] [18], we assume that wheel
speed ω, drive torque Td and brake torque Tb are all available.
Although the two torque signals are not directly measured in the
current vehicle active safety systems, they can be estimated for
other sources. For example, the brake torque can be estimated
from the measurement of pressure of the hydraulic cylinder in the
ABS systems that are widely used today. While, the paper [19]
proposed an estimation method for the drive torque. Then, a
quite straightforward method is to differentiate the wheel speed
signal directly and simple algebraic manipulation can give us the
estimation of the longitudinal tire force. However, this method
will definitely be vulnerable to the high-frequency content in the
sensor noise. In the following, two types of unknown input esti-
mators will be discussed, both of which avoid direct differentia-
tion of the wheel speed signal.

Kalman Filter as an Unknown Input Estimator
Kalman filter is widely used as an unknown input estimator.

It models the evolution of unknown input signals as a random
walk [4]. Before discussing the Kalman filter, let’s derive the
discrete-time wheel dynamic model in Eq. (2) by using Euler’s
method.

ω(k+1) = ω(k)+hω̇(k)

= ω(k)+h Td(k)+Tb(k)
Iw

−h rFx(k)
Iw

(3)

where h is the sampling time. To be consistent with the data
transmission rate ( = 100Hz) in the current automotive active
safety systems, h is chosen as 0.01 second. Then, the state-space
representation of the wheel dynamic model for the Kalman filter
is

Fx(k+1) = Fx(k)+w1(k)

ω(k+1) = ω(k)−h r
Iw

Fx(k)+h τ(k)
Iw

+w2(k)

y(k) = ω(k)+ v(k)

(4)

where w1 is the random walk signal that causes the update of tire
force Fx; w2 is the unmeasured process disturbance acting on the
wheels; vk is the measurement noise from the wheel speed sensor.
τ(k) is defined as the sum of drive torque and brake torque acting
on the wheel, which is treated as the measured input signal here.

τ(k) = Td(k)+Tb(k) (5)

If we define the state vector x(k) as x(k) =
[

Fx(k) ω(k)
]T , the

above discrete-time wheel dynamic model can be rewritten as the
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standard state-space form x(k+ 1) = Ax(k)+Bτ(k)+w(k) and
y(k) =Cx(k)+ v(k). The matrices A, B and C are

A =

(
1 0
−h r

Iw
1

)
B =

(
0

h 1
Iw

)
C =

(
0 1
) (6)

The observability matrix is

(
C

CA

)
=

(
0 1
−h r

Iw
1

)
(7)

It is evident that this is a full row rank matrix, which implies that
the state space model in Eq. (6) is an observable one. Therefore,
it is reasonable to use a Kalman filter and wheel speed measure-
ment to estimate the unmeasured tire force signal. Unlike the
tire model based estimation methods presented in [17] [18], this
estimator makes the persistent excitation condition unnecessary.
The covariance matrices Q(k) of the process noise and R(k) of
the measurement noise are

Q(k) = E
(

w2
1(k) w1(k) ·w2(k)

w2(k) ·w1(k) w2
2(k)

)
R(k) = E(v2(k))

(8)

If we assume the process noise w1 and w2 are uncorrelated, Q(k)
becomes a diagonal matrix. The objective of the Kalman filter is
to optimally estimate the unknown input signal Fx(k) in terms of
the minimum-variance criterion. The Kalman filter equations for
each step are summarized in Eq. (9) [5].

P−k = AP+
k−1AT +Qk−1

Kk = P−k CT (CP−k CT +R)−1

x̂−k = Ax̂+k−1 +Buk−1

x̂+k = x̂−k +Kk(yk−Cx̂−k )

P+
k = (I−KkC)P−k

(9)

Here, we regard Q(k) and R(k) as tuning parameters. To guar-
antee fast convergence, it is advisable to increase the covariance
of the first process noise signal w1(k). In this case, the Kalman
filter will put more confidence on the measured wheel speed sig-
nal. However, it is also commonly known that large covariance
of the process noise will defy our expectation of a smooth esti-
mation signal. Therefore, these two conflicting design objectives

require us to tune Q(k) and R(k) in a balanced way. A heuristic
trial-and-error method is usually used in a practical situation.

This Kalman filter-based tire force estimation algorithm can
only be applied to the individual wheel. But we can easily ex-
tend it to one Kalman filter for all four wheels by defining the
following vectors and diagonal block matrices.

A = diag
(
Al f ,Ar f ,Alr,Arr

)
; x =

(
xT

l f ,x
T
r f ,x

T
lr,x

T
rr

)T

B = diag
(
Bl f ,Br f ,Blr,Brr

)
; u =

(
uT

l f ,u
T
r f ,u

T
lr,u

T
rr

)T

H = diag
(
Hl f ,Hr f ,Hlr,Hrr

)
; y =

(
yT

l f ,y
T
r f ,y

T
lr,y

T
rr

)T

P = diag
(
Pl f ,Pr f ,Plr,Prr

)
;

K = diag
(
Kl f ,Kr f ,Klr,Krr

)
;

(10)

where the subscripts l f , r f , lr and rr represent the left-front,
right-front, left-rear, right-rear wheels respectively. We can then
apply these vectors and matrices to the formulas in Eq. (9) to get
the longitudinal tire force estimation for all four wheels.

Feedback Controller as an Unknown Input Estimator
This kind of unknown input estimator incorporates a virtual

wheel dynamic model, which is the same as Eq. (2). The vir-
tual model is driven by the measured or estimated torque sig-
nals Td , Tb and the output of the controller. The controller’s in-
put is the tracking error of the wheel speed, which is the dif-
ference between the measured wheel speed signal and the vir-
tual model’s output. Because the input-output relation of the one
DOF wheel dynamic model is a causal one. If the virtual model’s
output can accurately follow the measured wheel speed signal, it
implies that the controller’s output or the control action indeed
compensates the unmeasured input −rFx, which is the torque
produced by the longitudinal tire force [11]. Feedback control
design methods with the aim of achieving good tracking perfor-
mance can be used. In this paper, we use the PID controller as
an example. The general structure of this type of unknown input
estimator is shown in Fig. (2), which is indicated by the green
dash line.

Before discussing the model used by the estimator, let’s de-
fine the symbol of a low-pass filter signal. For example, we will
use the symbol yT (t) to denote the low-pass filtered signal y(t)
in the subsequent formulas. This is illustrated in Fig. (3).

Then, the time-domain model for the proposed estimator is

Iw ˙̂ωT = (Td +Tb)T +Kpω̃+Ki

∫ t

0
ω̃dt +(−Iw +Kd) ˙̃ωT (11)

where ω̃=ω−ω̂ is the deviation between measured wheel speed
ω and virtual model’s output ω̂; Kp, Ki, Kd and T are all tuning
parameters. To analyze the convergence of the estimator, let’s
transform the above time-domain wheel dynamic model and es-
timator model to the s domain.
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Figure 2. General Structure of Feedback Controller Based Unknown In-
put Estimation

Figure 3. Illustration of low-pass filtered signal yT (t)

• For wheel dynamic model in Eq. (2)

Iwω̇ = Td +Tb− rFxww�Laplace Trans f ormation
Iwsω = Td(s)+Tb(s)− rFx(s)ww�Low− pass Filter

1
T s+1 Iwsω = 1

T s+1 [Td(s)+Tb(s)]− 1
T s+1 rFx(s)

(12)

• For the estimator in Eq. (11)

1
T s+1 Iwsω̂ = 1

T s+1 [Td(s)+Tb(s)]

+Kpω̃(s)+Ki
1
s ω̃(s)+ −Iw+Kd

T s+1 sω̃(s)
(13)

If we subtract Eq. (13) from the last formula in Eq. (12), the rela-
tion between wheel speed estimation error ω̃ and the longitudinal
tire force Fx can be derived as

− 1
T s+1

rFx(s) = Kpω̃(s)+Ki
1
s

ω̃(s)+
Kds

T s+1
ω̃(s) (14)

Therefore, the estimation of the tire force F̂x(s) is

F̂x(s) = 1
T s+1 Fx(s)

=− 1
r [Kpω̃(s)+Ki

1
s ω̃(s)+ Kds

T s+1 ω̃(s)]
(15)

It is also easy to find that the right side of Eq. (15) is the transfer
function of a PID controller [9]. The tuning of the four parame-

ters, Kp, Ki, Kd and T , can resort to the existing successful tuning
rules of a PID controller [10]. The low-pass filter is included to

- Suppress the high-frequency noise in the feedback loop;
- Approximate the differentiator in the PID controller in low-

frequency range;

Eq. (15) shows that the low-pass weighted filter 1/(T s+1) gives
us the approximation of the unmeasured friction force in the low-
frequency range. It is obvious that the smaller the time constant
T , the wider the frequency band of the tire force information can
be extracted from ω̃. We expect that the estimated force signal
in Eq. (15) should not only respond fast enough to capture the
change of Td , Tb and ω but also minimizing the subsequent noise
effect. Multi-objective optimization method can be used to solve
this controller design problem [7] [13] [15].

From the estimator model in Eq. (11), we can find that it
contains three integrators, which implies a third-order estimator.
The state variables x1, x2, x3 are chosen as the outputs of the
virtual model, the integration part of the PID controller and the
low-pass filter respectively. The state-space realization is shown
as

ẋii = Aiixii +Biiuii
yii =Ciixii +Diiuii

(16)

where ii is the index of the individual wheel, xii =
(

x1 x2 x3
)T ,

uii =
(

ω τT
)T and yii = F̂x. The matrices Aii, Bii, Cii and Dii are

Aii =



Iw−T Kp−Kd
T (T Kp+Kd)

Ki
T Kp+Kd

− −Iw+Kd
T (T Kp+Kd)

− Iw
T Kp+Kd

− T Ki
T Kp+Kd

−Iw+Kd
T Kp+Kd

− Iw
T (T Kp+Kd)

− Ki
T Kp+Kd

−Iw−T Kp
T (T Kp+Kd)



Bii =


− Iw−T Kp−Kd

T (T Kp+Kd)
1

T Kp+Kd

Iw
T Kp+Kd

− T
T Kp+Kd

Iw
T (T Kp+Kd)

− 1
T Kp+Kd


Cii =− 1

r

(
− Iw

T 0 − Iw
T

)
Dii =− 1

r

( Iw
T −1

)

(17)

Similar to the Kalman filter case, we can combine the state-space
models for the estimators of each wheel together as

ẋ = Ax+Bu
y =Cx+Du (18)
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with the following vectors and diagonal block matrices

A = diag
(
Al f ,Ar f ,Alr,Arr

)
; x =

(
xT

l f ,x
T
r f ,x

T
lr,x

T
rr

)T

B = diag
(
Bl f ,Br f ,Blr,Brr

)
; u =

(
uT

l f ,u
T
r f ,u

T
lr,u

T
rr

)T

C = diag
(
Cl f ,Cr f ,Clr,Crr

)
; y =

(
yT

l f ,y
T
r f ,y

T
lr,y

T
rr

)T

D = diag
(
Dl f ,Dr f ,Dlr,Drr

)
;

where the subscripts l f , r f , lr and rr still represent the left-
front, right-front, left-rear, right-rear wheels respectively as the
Kalman filter case.

Adding Longitudinal Acceleration as a Constraint
In the previous two sections, we develop two types of un-

known input estimation algorithm based only on the one DOF
wheel dynamic model. For each wheel, the longitudinal tire
force is estimated only from its own spinning speed measure-
ment. This implies that the estimation result of the individual
wheel is totally independent of the states of other wheels. Fur-
thermore, the inaccurate information of the torque signals and
effective radius can result in a biased estimation. One way to
verify the accuracy of the above one DOF wheel dynamic model
based estimation method is to use the longitudinal vehicle dy-
namic model as a constraint. From Newton’s second law, we can
easily derive the following dynamic model of the longitudinal
motion [12].

M(v̇x−ψvy)≈ Fl f +Fr f +Flr +Frr (19)

where M and v̇x are the total mass of the vehicle and measured
longitudinal acceleration at the CG respectively. ψ and vy are
the yaw rate of the vehicle body and lateral velocity of the CG
respectively. While, Fl f , Fr f , Flr and Frr denote the longitudi-
nal tire forces of the left front wheel, right front wheel, left rear
wheel and right rear wheel respectively. The operator ≈ implies
that this model includes some unmodeled small-amplitude input
sources, such as air resistance and a component of gravity caused
by a non-zero bank angle. If we assume the vehicle is running
straightly on a flat road, which implies that the yaw rate ψ is zero,
then the longitudinal dynamic model is simplified as

Mv̇x ≈ Fl f +Fr f +Flr +Frr (20)

For the estimated longitudinal tire forces to satisfy both individ-
ual wheel dynamics and longitudinal dynamics of the whole ve-
hicle, we propose to use the results in the previous section as an
initial one. Then, a correction term can be added based on Eq.
(20) to further improve the estimation accuracy [6].

Inequality Constraint
Inequality constraint applies to the situations that the rela-

tionship among the state variables is only roughly known or that
the constraint function has some bounded uncertainty [6]. Let’s
consider the following inequality for the estimated tire forces and
measured longitudinal acceleration signal.

|Mv̇x− (F̃l f + F̃r f + F̃lr + F̃rr)| ≤ ε (21)

where F̃l f , F̃r f , F̃lr and F̃rr are the augmented longitudinal tire
force estimation after taking the inequality constraint into ac-
count. While, ε represents the upper bound of those unknown
input sources and uncertainty in the longitudinal dynamic model,
such as air resistance and inertia force caused by inaccurate ve-
hicle mass information. One common method is to regard this
inequality constraint as an additional measurement equation as
shown in Eq. (22), where the covariance of the measurement
noise is chosen to be the same as the margin of the above in-
equality [6].

Mv̇x = F̃l f + F̃r f + F̃lr + F̃rr + ε (22)

Then, the output of the unknown input observer can be regarded
as the estimation results of time-update step. Next step is to use
Eq. (22) to augment this time update results by applying kalman
filter algorithm again. However, the pair of the diagonal block
state matrix in either Eq. (10) or Eq. (18) and this additional
state output matrix

[
1 1 1 1

]
is an unobservable one. Another

method tries to minimize the cost function of [12].

x̃k = argminx(x− x̂k)
TW (x− x̂k) (23)

subject to

|Mv̇x− (F̃l f + F̃r f + F̃lr + F̃rr)| ≤ ε

where x̂k is the estimated force signals by using either of the two
estimation methods discussed in section . x̃k is the augmented es-
timation that satisfies the given inequality constraints and W is a
positive-definite weighting matrix. This optimization problem is
equivalent to the following semidefinite programming problem,
which can be easily solved by the efficient convex optimization
algorithm, through the Schur complement [7].

min γ (24)

subject to the linear matrix inequality (LMI) constraint

(
γ (x− x̂k)

T

(x− x̂k) W−1

)
> 0
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and the linear algebraic inequality constraint

−ε≤Mv̇x− (F̃l f + F̃r f + F̃lr + F̃rr)≤ ε

where both γ and x are decision variables. x represents the vector
of four augmented estimated force signals and γ is the lowest
upper bound of the cost function in Eq. (23). Unfortunately, this
kind of numerical optimization algorithm is often not practical in
real-world applications due to limited computation resources.

Equality Constraint
Equality constraint applies to the situations where the rela-

tionship among the state variables are well known with very good
accuracy [6]. Let’s consider the following equality constraint for
the estimated tire force signals and measured longitudinal accel-
eration.

Mv̇x = F̃l f + F̃r f + F̃lr + F̃rr (25)

Some literature regards the equality constraint as a perfect mea-
surement with zero covariance noise [6]. Kalman filter can be
used to get the augmentation. However, the observability prob-
lem as described in the inequality case makes this method ques-
tionable. Instead, we can still use the optimization algorithm to
get the augmentation, which is defined in Eq. (26) [6].

x̃k = argminx(x− x̂k)
TW (x− x̂k) (26)

subject to

Mv̇x = F̃l f + F̃r f + F̃lr + F̃rr

and

F̃lr = F̂lr; F̃rr = F̂rr (optional)

where x̂k, x̃k and W have the same definitions as those in the
case for inequality constraint. The last equality constraint is an
optional one, since it only applies to the situation where we be-
lieve that the estimation results for the two rear wheels from the
method discussed in section have already been accurate enough
and no augmentation is needed. For example, during the acceler-
ation of a front wheel drived (FWD) vehicle, neither drive torque
nor brake torque acts on the rear wheels. In this case, there is no
uncertainty in the measured input signals, which makes the pre-
vious unknown input estimator very accurate. Therefore, we can
use this optional equality constraint to achieve no augmentation
for these signals.

Although this equality constrained optimization method ne-
glects some uncertainty in the longitudinal vehicle dynamic

model that is considered in the inequality constraint case, one
advantage of this method is that it can be solved in an analytical
way by using the Lagrange multiplier method [8]. If we define
the matrix D and vector d as

D =
(

1 1 1 1
)

; d = Mv̇x

or

D =

 1 1 1 1
0 0 1 0
0 0 0 1

 ; d =

Mv̇x
F̂lr
F̂rr


where all the equality constraints are abstracted to the form Dx̃ =
d, then the solution to the optimization problem in Eq. (26) is [6]

x̃k = x̂k−W−1DT (DW−1DT )−1(Dx̂k−d) (27)

It is obvious that W−1DT (DW−1DT )−1 acts as a linear correc-
tion gain in Eq. (27). This method is practical since it does not
need online iteration to solve for the optimal solution. The only
remaining problem is how to tune the weighting matrix W . In the
literature, W is usually selected as [6]

W = I or W = (P+
k )−1 (28)

For W = I, the solution x̃ is the orthogonal projection of the
original estimation result x̂ into the subspace Dx̃ = d. For
W = (P+

k )−1, where P+
k is the measurement updated covariance

matrix at the kth step, the resulting x̃ is a point in the subspace
Dx̃ = d that is close to the original estimation x̂ in a weighted
least-square sense.

Experimental Results
To verify the developed longitudinal tire force estimation al-

gorithm, both CarSim simulation and vehicle test data are uti-
lized. The only difference between these two kinds of data is
that only the brake torque is measured in the test. While, both
brake torque and drive torque information are available in the
CarSim simulation. For the unknown input estimator part, both
the Kalman filter-based and feedback controller-based methods
are simulated. For the constraint augmentation part, only equal-
ity constraint are considered.

CarSim Data: The simulated vehicle is a sedan whose mass
and rotational moment of inertia of each individual wheel are

M = 950(kg) and Iw = 0.6(kg ·m2)

In the first case, the vehicle accelerates on a flat road whose max-
imum µ is 0.8. The simulation result for the left-front tire can be

6 Copyright © 2012 by ASME and General Motors

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Figure 4. Estimation results from CarSim data for the case µmax = 0.8

seen in Fig. (4). In the second case, the vehicle accelerates on a
icy road whose maximum µ is 0.2 and a closed-loop speed reg-
ulator is utilized. The simulation result for the left-front tire can
be seen in Fig. (5). We can see that both the estimation results of
Kalman filter and feedback controller based methods performs
very well but have an undesired impulse response at around 8ms
due to a sudden jump of the drive torque at that instant. Fortu-
nately, this kind of phenomenon can be filtered out by the pro-
jection method which includes the longitudinal acceleration as
a constraint. This is because the tire-road friction force is easy
to be saturated on this kind of low-friction surface. Therefore,
the tire force signal cannot follow the change of the drive torque
quickly and also does the longitudinal acceleration. The projec-
tion method strictly constrains the estimated tire force signals
to the subspace defined by the longitudinal acceleration, which
makes the estimation results insensitive to the impulsive change
of the drive torque.

Figure 5. Estimation results from CarSim data for the case µmax = 0.2

Real Experimental Data: The vehicle used in the real test
is a large sedan. Its mass and rotational moment of inertia of
each individual wheel are

M = 2083(kg) and Iw = 1.2(kg ·m2)

The vehicle accelerates on a flat road whose maximum µ is about
0.8. The estimation result for the left-front tire can be seen in Fig.
(6). All three methods achieve similar acceptable performance.

Figure 6. Estimation results from real test data

CONCLUSIONS
In this paper, we proposed a model-based algorithm to esti-

mate the longitudinal tire force without resorting to any complex
tire-road friction models. This estimator integrates the informa-
tion from the dynamic model of individual wheel and the longi-
tudinal motion of the vehicle to derive robust estimation results.
The simulation results show that this estimation algorithm gener-
ally provides good results using both CarSim simulation and ve-
hicle test data. Compared with the tire-model based algorithm,
the simple structure of the proposed estimator significantly in-
creases the computation efficiency, which makes it an acceptable
solution for practical applications.
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