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IDEALS OF PSEUDO MV-ALGEBRAS BASED ON VAGUE SET
THEORY

Y. B. JUN AND C. H. PARK

Abstract. The notion of vague ideals in pseudo MV-algebras is introduced,
and several properties are investigated. Conditions for a vague set to be a

vague ideal are provided. Conditions for a vague ideal to be implicative are

given. Characterizations of (implicative, prime) vague ideals are discussed.
The smallest vague ideal containing a given vague set is established. Prime
and implicative extension property for a vague ideal is discussed.

1. Introduction

In the real world there are vaguely specified data values in many applications,
such as sensor information. Fuzzy set theory has been proposed to handle such
vagueness by generalizing the notion of membership in a set. Essentially, in a fuzzy
set, each element is associated with a point-value selected from the unit interval
[0, 1], which is termed the grade of membership in the set. A vague set, as well
as an intuitionistic fuzzy set, is a further generalization of a fuzzy sets. Instead of
using point-based membership as in fuzzy sets, interval-based membership is used
in a vague set. The interval-based membership in vague sets is more expressive in
capturing vagueness of data. In the literature, the notions of intuitionistic fuzzy
sets and vague sets are regarded as an equivalent notion, in the sense that an
intuitionistic fuzzy set is isomorphic to a vague set. Because of this view and
intuitionistic fuzzy sets being earlier known as a tradition, the interesting features
for handling vague data that are unique to vague sets are largely ignored. Several
authors from time to time have made a number of generalizations of Zadeh’s fuzzy
set theory [7]. Of these, the notion of vague set theory introduced by Gau and
Buehrer [3] is of interest to us. Using the vague set in the sense of Gau and
Buehrer, Biswas [1] studied vague groups. In this paper we introduce the notion of
(implicative) vague ideals in pseudo MV-algebras, and investigate their properties.
We provide conditions for a vague set to be a vague ideal. We also give conditions
for a vague ideal to be implicative. We discuss characterizations of (implicative,
prime) vague ideals. We establish the smallest vague ideal that contains a given
vague set. We also discuss implicative and prime extension property for a vague
ideal.
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2. Basics

In this section, we introduce some basic concepts related to pseudo MV-algebras
and vague sets.

2.1. Basic Results on Pseudo MV-algebras. A pseudo MV-algebra is an alge-
bra (M ;⊕,− ,∼ , 0, 1) of type (2, 1, 1, 0, 0) such that the following axioms hold for
all x, y, z ∈ M with an additional binary operation � defined via

y � x = (x− ⊕ y−)∼ :

(a1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(a2) x⊕ 0 = 0⊕ x = x,
(a3) x⊕ 1 = 1⊕ x = 1,
(a4) 1∼ = 0, 1− = 0,
(a5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,
(a6) x⊕ x∼ � y = y ⊕ y∼ � x = x� y− ⊕ y = y � x− ⊕ x,
(a7) x� (x− ⊕ y) = (x⊕ y∼)� y,
(a8) (x−)∼ = x.

If we define x ≤ y if and only if x− ⊕ y = 1, then ≤ is a partial order such that M
is a bounded distributive lattice with the join x ∨ y and the meet x ∧ y given by

x ∨ y = x⊕ x∼ � y = x� y− ⊕ y,

x ∧ y = x� (x− ⊕ y) = (x⊕ y∼)� y.

Let M be a pseudo MV-algebra and x, y, z ∈ M. Then the following properties
are valid (see [4]).

(b1) x� y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.
(b2) (x ∨ y)− = x− ∧ y−.
(b3) x ≤ y ⇒ z � x ≤ z � y, x� z ≤ y � z.
(b4) z ⊕ (x ∧ y) = (z ⊕ x) ∧ (z ⊕ y).
(b5) z � (x⊕ y) ≤ z � x⊕ y.
(b6) (x∼)− = x.
(b7) x� 1 = 1� x = x.
(b8) x⊕ x∼ = 1, x− ⊕ x = 1.
(b9) x� x− = 0, x∼ � x = 0.

(b10) x� (y � z) = (x� y)� z.
(b11) (x⊕ y)− = y− � x−, (x⊕ y)∼ = y∼ � x∼.
(b12) x ≤ y ⇔ x� y− = 0 ⇔ y∼ � x = 0.
(b13) x� y− ∧ y � x− = 0, x∼ � y ∧ y∼ � x = 0.

A subset I of a pseudo MV-algebra M is called an ideal of M if it satisfies:
(i) 0 ∈ I,
(ii) If x, y ∈ I, then x⊕ y ∈ I,
(iii) If x ∈ I, y ∈ M and y ≤ x, then y ∈ I.

For every subset W ⊆ M, we denote by 〈W 〉 the ideal of M generated by W, that
is, 〈W 〉 is the smallest ideal containing W. By [4, Lemma 2.5],

〈W 〉 = {x ∈ M | x ≤ y1 ⊕ · · · ⊕ yk for some y1, . . . , yk ∈ W}.
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Let J be a proper ideal of a pseudo MV-algebra M (i.e., J 6= M). Then J is
said to be prime if for every ideals J1 and J2 of M, J = J1 ∩ J2 implies J = J1 or
J = J2.

Proposition 2.1. [4] For an ideal J of a pseudo MV-algebra M, the following are
equivalent.

(i) J is prime.
(ii) (∀x, y ∈ M) (x ∧ y ∈ J ⇒ x ∈ J or y ∈ J).

2.2. Basic Results on Vague Sets. Let U be a classical set of objects, called the
universe of discourse, where an element of U is denoted by u.

A fuzzy set A = {〈u, µA(u)〉 | u ∈ U} in U is characterized by a membership
function µA : U → [0, 1]. An intuitionistic fuzzy set (IFS)

A = {〈u, µA(u), γA(u)〉 | u ∈ U}
in U is characterized by a membership function, µA, and a non-membership func-
tion, γA, as follows:

µA : U → [0, 1], γA : U → [0, 1], and 0 ≤ µA + γA ≤ 1.

A vague set (VS) A in U is characterized by two membership functions given by
(see [1]):

(1) A truth membership function

tA : U → [0, 1],

(2) A false membership function

fA : U → [0, 1],

where tA(u) is a lower bound of the grade of membership of u derived from the
“evidence for u”, and fA(u) is a lower bound on the negation of u derived from the
“evidence against u”, and

tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a subinterval
[tA(u), 1− fA(u)] of [0, 1]. This indicates that if the actual grade of membership is
µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).
The vague set A is written as

A = {〈u, [tA(u), 1− fA(u)]〉 | u ∈ U},
where the interval [tA(u), 1 − fA(u)] is called the vague value of u in A and is
denoted by VA(u).

As we can see that the difference between vague sets and intuitionistic fuzzy
sets is due to the definition of membership intervals. We have [tA(u), 1 − fA(u)]
for u in a vague set A, but 〈u, µA(u), γA(u)〉 for u in an intuitionistic fuzzy set A.
Here the semantics of µA and γA are the same as tA(u) and fA(u), respectively.
However, the boundary 1−fA(u) is able to indicate the possible existence of a data
value, as already mentioned in [2]. This subtle difference gives rise to a simpler but
meaningful graphical view of data sets. Consider a vague set in Fig. 1 ([5]) and an
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intuitionistic fuzzy set in Fig. 2 ([5]) respectively. It can be seen that, the shaded
part formed by the boundary in a given VS in Fig. 1([5]) naturally represents
the possible existence of data. Thus, the “hesitation region” corresponds to the
intuition of representing vague data.

For our discussion, we shall use the following notations, which are given in [1],
on interval arithmetic.

Notion. Let I[0, 1] denote the family of all closed subintervals of [0, 1]. If I1 =
[a1, b1] and I2 = [a2, b2] be two elements of I[0, 1], we call I1 ≥ I2 if a1 ≥ a2 and
b1 ≥ b2. Similarly we understand the relations I1 ≤ I2 and I1 = I2. Clearly the
relation I1 ≥ I2 does not necessarily imply that I1 ⊇ I2 and conversely. We define
the term “imax” to mean the maximum of two intervals as

imax(I1, I2) = [max(a1, a2),max(b1, b2)].

Similarly we define “imin”. The concept of “imax” and “imin” could be extended
to define “isup” and “iinf” of infinite number of elements of I[0, 1].

It is obvious that L = {I[0, 1], isup, iinf,≤} is a lattice with universal bounds
[0, 0] and [1, 1] (see [1]).

For α, β ∈ [0, 1] we now define (α, β)-cut and α-cut of a vague set.

Definition 2.2. [1] Let A be a vague set of a universe X with the true-membership
function tA and the false-membership function fA. The (α, β)-cut of the vague set
A is a crisp subset A(α,β) of the set X given by

A(α,β) = {x ∈ X | VA(x) ≥ [α, β]}.

Clearly A(0,0) = X. The (α, β)-cuts are also called vague-cuts of the vague set A.

Definition 2.3. [1] The α-cut of the vague set A is a crisp subset Aα of the set X
given by Aα = A(α,α).

Note that A0 = X, and if α ≥ β then Aβ ⊆ Aα and A(α,β) = Aα.
Equivalently, we can define the α-cut as

Aα = {x ∈ X | tA(x) ≥ α}.

3. Vague Ideals

In what follows let M be a pseudo MV-algebra unless otherwise specified.

Definition 3.1. A vague set A of M is called a vague ideal of M if the following
conditions are true:

(c1) (∀x, y ∈ M) (VA(x⊕ y) ≥ imin{VA(x), VA(y)}),
(c2) (∀x, y ∈ M) (y ≤ x ⇒ VA(y) ≥ VA(x)).

that is,
(1) for all x, y ∈ M,

(3.1)
tA(x⊕ y) ≥ min{tA(x), tA(y)},
1− fA(x⊕ y) ≥ min{1− fA(x), 1− fA(y)},
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(2) for all x, y ∈ M, y ≤ x implies

(3.2) tA(y) ≥ tA(x), 1− fA(y) ≥ 1− fA(x)

It is easily seen that (c2) forces
(c3) (∀x ∈ M) (VA(0) ≥ VA(x)),

that is, for every x ∈ M,

(3.3) tA(0) ≥ tA(x), 1− fA(0) ≥ 1− fA(x).

Example 3.2. Let I be an ideal of M and let A be a vague set of M defined by

(3.4) VA(x) =

{
[α1, α2], if x ∈ I,

[β1, β2], otherwise,

where [α1, α2], [β1, β2] ∈ I[0, 1] with [α1, α2] > [β1, β2]. Let x, y ∈ M. If x, y ∈ I,
then x⊕ y ∈ I and so

VA(x⊕ y) = [α1, α2] = imin{VA(x), VA(y)}.

If x /∈ I or y /∈ I, then VA(x) = [β1, β2] or VA(y) = [β1, β2]. Thus

VA(x⊕ y) ≥ [β1, β2] = imin{VA(x), VA(y)}.

Let x, y ∈ M be such that y ≤ x. If y ∈ I, then VA(y) = [α1, α2] ≥ VA(x). Assume
that y /∈ I. Then x /∈ I, and thus VA(y) = [β1, β2] = VA(x). Therefore A is a vague
ideal of M.

Proposition 3.3. Let A be a vague ideal of M. Then
(i) (∀x, y ∈ M) (VA(x� y) ≥ imin{VA(x), VA(y)}).
(ii) (∀x, y ∈ M) (VA(x ∧ y) ≥ imin{VA(x), VA(y)}).
(iii) (∀x, y ∈ M) (VA(x ∨ y) = imin{VA(x), VA(y)}).
(iv) (∀x, y ∈ M) (VA(x⊕ y) = imin{VA(x), VA(y)}).

Proof. Note that x� y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y for all x, y ∈ M. Then

tA(x� y) ≥ tA(x ∧ y) ≥ tA(x ∨ y) ≥ tA(x⊕ y) ≥ min{tA(x), tA(y)},

1− fA(x� y) ≥ 1− fA(x ∧ y) ≥ 1− fA(x ∨ y)
≥ 1− fA(x⊕ y) ≥ min{1− fA(x), 1− fA(y)}.

Since x⊕ y ≥ x ∨ y ≥ x, y for all x, y ∈ M, we have

tA(x⊕ y) ≤ tA(x ∨ y) ≤ tA(x), tA(y),
tA(x⊕ y) ≤ tA(x ∨ y) ≤ min{tA(x), tA(y)},
1− fA(x⊕ y) ≤ 1− tA(x ∨ y) ≤ 1− fA(x), 1− fA(y),
1− fA(x⊕ y) ≤ 1− fA(x ∨ y) ≤ min{1− fA(x), 1− fA(y)}.

This completes the proof. �

Theorem 3.4. Let A be a vague set of M. Then A is a vague ideal of M if and
only if it satisfies (c1) and

(c4) (∀x, y ∈ M) (VA(x ∧ y) ≥ VA(x)),
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that is, for all x, y ∈ M,

(3.5) tA(x ∧ y) ≥ tA(x), 1− fA(x ∧ y) ≥ 1− fA(x).

Proof. Assume that A is a vague ideal of M and let x, y ∈ M. Since x ∧ y ≤ x, it
follows from (c2) that VA(x ∧ y) ≥ VA(x). Suppose that A satisfies (c1) and (c4).
Let x, y ∈ M be such that y ≤ x. Then x∧y = y and so VA(y) = VA(x∧y) ≥ VA(x)
by (c4). Hence A is a vague ideal of M. �

Proposition 3.5. Every vague ideal A of M satisfies the following inequality

(3.6) (∀x, y ∈ M) (VA(y) ≥ imin{VA(x), VA(x∼ � y)}).

Proof. Let A be a vague ideal of M. Since y ≤ x∨ y = x⊕ x∼ � y for all x, y ∈ M,
it follows from (c1) and (c2) that

VA(y) ≥ VA(x⊕ x∼ � y) ≥ imin{VA(x), VA(x∼ � y)}.

This completes the proof. �

Proposition 3.6. Let A be a vague set of M that satisfies (c3) and (3.6). Then A
satisfies the condition (c2) and

(3.7) (∀x, y ∈ M) (VA(y) ≥ imin{VA(x), VA(y � x−)}).

Proof. Assume that A satisfies (c3) and (3.6). Let x, y ∈ M be such that y ≤ x.
Using (b3) and (b9), we have x∼ � y ≤ x∼ � x = 0 and so x∼ � y = 0. It follows
from (c3) and (3.6) that

VA(y) ≥ imin{VA(x), VA(x∼ � y)} = imin{VA(x), VA(0)} = VA(x)

so that (c2) is valid. Note that

(y � x−)∼ � (y � x− ⊕ x) ≤ (y � x−)∼ � (y � x−)⊕ x = 0⊕ x = x

so from (c2) that VA(x) ≤ VA((y � x−)∼ � (y � x− ⊕ x)). Now since

x∼ � y ≤ x⊕ x∼ � y = y � x− ⊕ x,

it follows from (c2) that VA(x∼ � y) ≥ VA(y � x− ⊕ x) so that

VA(y) ≥ imin{VA(x), VA(x∼ � y)} ≥ imin{VA(x), VA(y � x− ⊕ x)}
≥ imin{VA(x), imin{VA(y � x−), VA((y � x−)∼ � (y � x− ⊕ x))}}
≥ imin{VA(x), imin{VA(y � x−), VA(x)}}
= imin{VA(x), VA(y � x−)}.

This completes the proof. �

Proposition 3.7. If a vague set A of M satisfies conditions (c3) and (3.7), then
A is a vague ideal of M.

Proof. Let x, y ∈ M be such that y ≤ x. Then y � x− ≤ x � x− = 0 by (b3) and
(b9), and thus y � x− = 0. Using (c3) and (3.7), we have

VA(y) ≥ imin{VA(x), VA(y � x−)} = imin{VA(x), VA(0)} = VA(x).
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Thus (c2) is valid. Note that

(x⊕ y)� y− = (x⊕ (y−)∼)� y− = x ∧ y− ≤ x

for all x, y ∈ M so from (3.7) and (c2) that

VA(x⊕ y) ≥ imin{VA(y), VA((x⊕ y)� y−)} ≥ imin{VA(y), VA(x)}.
Hence (c1) is valid, and A is a vague ideal of M. �

Combining Propositions 3.5, 3.6 and 3.7, we have the following characterization
of a vague ideal in a pseudo MV-algebra.

Theorem 3.8. For a vague set A of M, the following are equivalent:
(i) A is a vague ideal of M.
(ii) A satisfies the conditions (c3) and (3.6).
(iii) A satisfies the conditions (c3) and (3.7).

Proposition 3.9. Let A be a vague set of M. If A satisfies conditions (c3) and

(3.8) (∀x, y, z ∈ M) (VA(x� y) ≥ imin{VA(x� y � z), VA(z∼ � y)}),
then A is a vague ideal of M. Moreover, A satisfies:

(i) (∀x, y ∈ M) (VA(x� y) = VA(x� y � y)),
(ii) (∀x ∈ M) (∀n ∈ N) (VA(x) = VA(xn)),

where xn = xn−1 � x = x� xn−1 and x0 = 1.

Proof. Taking x = y, y = 1 and z = x− in (3.8) and using (a8) and (b7), we have

VA(y) = VA(y � 1) ≥ imin{VA(y � 1� x−), VA((x−)∼ � 1)}
= imin{VA(y � x−), VA(x)}.

It follows from Theorem 3.8 that A is a vague ideal of M. Now taking z = y in
(3.8) and using (b9) and (c3), we get

VA(x� y) ≥ imin{VA(x� y � y), VA(y∼ � y)}
= imin{VA(x� y � y), VA(0)}
= VA(x� y � y).

On the other hand, since x� y� y ≤ x� y, we see that VA(x� y� y) ≥ VA(x� y).
Then (i) holds.

The proof of (ii) is by induction on n. If n = 1, then (ii) is obviously true. If we
put x = 1 and y = x in (i), then

VA(x) = VA(1� x) = VA(1� x� x) = VA(x2).

Now assume that (ii) is valid for every positive integer k > 2. Then

VA(xk+1) = VA(xk−1 � x� x) = VA(xk−1 � x) = VA(xk) = VA(x).

Therefore (ii) is true. �

Theorem 3.10. Let A be a vague set of M. Then the following assertions are
equivalent.

(i) A is a vague ideal of M.
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(ii) (∀x, y, z ∈ M) (z � x− � y− = 0 ⇒ VA(z) ≥ imin{VA(x), VA(y)}.)
(iii) (∀x, y, z ∈ M) (x∼ � y∼ � z = 0 ⇒ VA(z) ≥ imin{VA(x), VA(y)}.)

Proof. (i) ⇒ (ii). Assume that A is a vague ideal of M. Then A satisfies (3.7).
Hence

VA(z) ≥ imin{VA(x), VA(z � x−)}
and

VA(z � x−) ≥ imin{VA(y), VA(z � x− � y−)}
for all x, y, z ∈ M. It follows that

VA(z) ≥ imin{VA(x), VA(y), VA(z � x− � y−)}
= imin{VA(x), VA(y), VA(0)}
= imin{VA(x), VA(y)},

which proves (ii).
(ii) ⇒ (iii). Let x, y, z ∈ M be such that x∼ � y∼ � z = 0. Then

(y ⊕ x)∼ � z = 0

by (b11), and so z�(y⊕x)− = 0 by (b12). It follows from (b11) that z�x−�y− = 0.
Using (ii), we have

VA(z) ≥ imin{VA(x), VA(y)}.
(iii) ⇒ (i). Suppose that (iii) is valid. Since x∼ � x∼ � 0 = 0 for all x ∈ M, we

have
VA(0) ≥ imin{VA(x), VA(x)} = VA(x).

Using (b9), we get (x∼�y)∼�x∼�y = 0 for all x, y ∈ M. It follows from (iii) that

VA(y) ≥ imin{VA(x∼ � y), VA(x)}.
Using Theorem 3.8, we conclude that A is a vague ideal of M. �

Corollary 3.11. A vague set A of M is a vague ideal of M if and only if it satisfies:

(∀x, y, z ∈ M) (z ≤ x⊕ y ⇒ VA(z) ≥ imin{VA(x), VA(y)}.

Using induction on n, we have the following corollary.

Corollary 3.12. A vague set A of M is a vague ideal of M if and only if it satisfies:

x ≤ y1 ⊕ y2 ⊕ · · · ⊕ yn ⇒ VA(x) ≥ imin{VA(y1), VA(y2), · · · , VA(yn)}
for all x, y1, y2, · · · , yn ∈ M.

Proposition 3.13. For any vague set A of M, the condition (3.8) is equivalent to
the following condition:

(3.9) (∀x, y, z ∈ M) (VA(x� y) ≥ imin{VA(x� y � z−), VA(z � y)}.

Proof. (3.8) ⇒ (3.9): Let x, y, z ∈ M. Using (3.8) and (a8), we have

VA(x� y) ≥ imin{VA(x� y � z−), VA((z−)∼ � y)}
= imin{VA(x� y � z−), VA(z � y)}.

(3.9) ⇒ (3.8): Applying (3.9) we see that

VA(x� y) ≥ imin{VA(x� y � (z∼)−), VA(z∼ � y)}.
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From this we obtain (3.8), because (z∼)− = z by (b6). �

In [6], Walendziak introduced the notion of implicative ideals in pseudo MV-
algebras. An ideal I of M is said to be implicative if it satisfies the following
implication:

(∀x, y, z ∈ M) (x� y � z ∈ I & z∼ � y ∈ I ⇒ x� y ∈ I).

Definition 3.14. Let A be a vague ideal of M. We say that A is implicative if it
satisfies the condition (3.8) (or (3.9)).

Proposition 3.15. Let I be an ideal of M. Then I is implicative if and only if the
vague set A which is described in Example 3.2 is an implicative vague ideal of M.

Proof. Straightforward. �

Lemma 3.16. Let A be a vague ideal of M. Then

(3.10) (∀x, y ∈ M) (VA(x� y) ≥ imin{VA(x� y � y), VA(y ∧ y∼)}).

Proof. Applying (b7), (b8) and (b5), we have

x� y = (x� y)� 1 = (x� y)� (y ⊕ y∼) ≤ (x� y)� y ⊕ y∼.

Using (b4), we obtain

x� y ≤ y ∧ (x� y � y ⊕ y∼)
≤ (x� y � y ⊕ y) ∧ (x� y � y ⊕ y∼)
= x� y � y ⊕ (y ∧ y∼).

It follows from (3.2) and (3.1) that

tA(x� y) ≥ tA(x� y � y ⊕ (y ∧ y∼))
≥ min{tA(x� y � y), tA(y ∧ y∼)}

and
1− fA(x� y) ≥ 1− fA(x� y � y ⊕ (y ∧ y∼))

≥ min{1− fA(x� y � y), 1− fA(y ∧ y∼)},
that is, VA(x� y) ≥ VA(x� y � y ⊕ (y ∧ y∼) ≥ imin{VA(x� y � y), VA(y ∧ y∼)}.
This completes the proof. �

Theorem 3.17. Let A be a vague ideal of M. Then the following statements are
equivalent:

(i) A is implicative.
(ii) (∀x, y ∈ M) (VA(x� y) = VA(x� y � y)).
(iii) (∀x ∈ M) (x2 = 0 ⇒ VA(x) = VA(0)).
(iv) (∀x ∈ M) (VA(x ∧ x−) = VA(0)).
(v) (∀x ∈ M) (VA(x ∧ x∼) = VA(0)).

Proof. (i) ⇒ (ii): This is by Proposition 3.9.
(ii) ⇒ (iii): Taking x = 1 and y = x in (ii), we get

VA(x) = VA(1� x) = VA(1� x� x) = VA(x2).

Then (iii) is obviously true.
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(iii) ⇒ (iv): Using (b3) and (b9) we have

(x ∧ x−)2 = (x ∧ x−)� (x ∧ x−) ≤ x� x− = 0.

Consequently, (x ∧ x−)2 = 0. Hence VA(x ∧ x−) = VA(0).
(iv) ⇒ (v): Since x ∧ x∼ = x∼ ∧ x = x∼ ∧ (x∼)−, it follows from (iv) that

VA(x ∧ x∼) = VA(0).
(v) ⇒ (i): Note that

VA(x� y) ≥ imin{VA(x� y � y), VA(y ∧ y∼)}
by Lemma 3.16. Therefore

VA(x� y) ≥ min{VA(x� y � y), VA(0)} = VA(x� y � y).

Applying (b3) and (b5) we get

x� y � y ≤ x� y � (z ∨ y) = x� y � (z ⊕ z∼ � y) ≤ x� y � z ⊕ z∼ � y.

Since A is a vague ideal, we have

VA(x� y � y) ≥ VA(x� y � z ⊕ z∼ � y)
≥ min{VA(x� y � z), VA(z∼ � y)}.

Thus A satisfies the condition (3.8), i.e., A is implicative. �

Theorem 3.18. (Implicative extension property for vague ideals) Let A be an
implicative vague ideal of M and B any vague ideal of M such that A is contained
in B and VA(0) = VB(0). Then B is an implicative vague ideal of M.

Proof. Since A is an implicative vague ideal of M, we get VA(x ∧ x∼) = VA(0) for
all x ∈ M by Theorem 3.17. It follows from hypothesis that

VB(0) = VA(0) = VA(x ∧ x∼) ≤ VB(x ∧ x∼)

so that VB(x∧x∼) = VB(0). Using Theorem 3.17, we know that B is an implicative
vague ideal of M. �

Theorem 3.19. If A is a vague ideal of M, then its nonempty (α, β)-cuts

A(α,β) := {x ∈ M | VA(x) ≥ [α, β]}
is a crisp ideal of M for all α, β ∈ [0, 1].

Proof. Assume that A is a vague ideal of M and let α, β ∈ [0, 1] be such that
A(α,β) 6= ∅. Obviously 0 ∈ A(α,β). Let x, y ∈ M be such that x, y ∈ A(α,β). Then
VA(x) ≥ [α, β] and VA(y) ≥ [α, β], that is, tA(x) ≥ α, 1 − fA(x) ≥ β, tA(y) ≥ α
and 1− fA(y) ≥ β. It follows that

tA(x⊕ y) ≥ min{tA(x), tA(y)} ≥ α,

1− fA(x⊕ y) ≥ min{1− fA(x), 1− fA(y)} ≥ β.

Hence VA(x⊕y) ≥ imin{VA(x), VA(y)} ≥ [α, β], and so x⊕y ∈ A(α,β). Let x, y ∈ M
be such that x ∈ A(α,β) and y ≤ x. Then VA(y) ≥ VA(x) ≥ [α, β] by (c2), and so
y ∈ A(α,β). Therefore A(α,β) is a crisp ideal of M. �

The ideals like A(α,β) are also called vague-cut ideals of X.
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Corollary 3.20. If A is a vague ideal of M, then the set

Ma := {x ∈ M | VA(x) ≥ VA(a)}

is a crisp ideal of M for every a ∈ M.

Proof. Straightforward. �

Theorem 3.21. Any ideal I of M is a vague-cut ideal of some vague ideal of M.

Proof. Consider the vague set A of M given by

(3.11) VA(x) =

{
[α, α], if x ∈ I,

[0, 0], if x /∈ I,

where α ∈ (0, 1). Since 0 ∈ I, we have VA(0) = [α, α] ≥ VA(x) for all x ∈ X. Let
x, y ∈ M. If x, y ∈ I, then x⊕ y ∈ I. Hence

VA(x⊕ y) = [α, α] = imin{VA(x), VA(y)}.

If one of x and y does not belong to I, then one of VA(x) and VA(y) is equal to
[0, 0]. Thus

VA(x⊕ y) ≥ [0, 0] = imin{VA(x), VA(y)}.
Assume that y ≤ x. If x ∈ I, then y ∈ I. Thus VA(y) = VA(x). If x /∈ I, then
VA(x) = [0, 0], and so VA(y) ≥ VA(x). Therefore A is a vague ideal of M. Obviously,
A(α,α) = I. �

Theorem 3.22. Let A be a vague ideal of M. Then the set

I0 := {x ∈ M | VA(x) = VA(0)}

is a crisp ideal of M. Moreover, if A is implicative then I0 is implicative.

Proof. Clearly 0 ∈ I0. Let x, y ∈ M be such that x, y ∈ I0. Then VA(x) = VA(0) =
VA(y), and so

VA(x⊕ y) ≥ imin{VA(x), VA(y)} = VA(0).
Since VA(0) ≥ VA(x) for all x ∈ M, it follows that VA(x ⊕ y) = VA(0). Hence
x⊕y ∈ I0. Let x ∈ I0 and y ∈ M be such that y ≤ x. Then VA(y) ≥ VA(x) = VA(0),
and hence VA(y) = VA(0), i.e., y ∈ I0. Consequently, I0 is a crisp ideal of M. Now,
suppose that A is implicative. Let x, y, z ∈ M. If x � y � z ∈ I0 and z∼ � y ∈ I0,
then VA(x � y � z) = VA(0) = VA(z∼ � y). Since A is implicative, it follows from
(3.8) that

VA(x� y) ≥ imin{VA(x� y � z), VA(z∼ � y)} = VA(0).

Hence VA(x�y) = VA(0), which implies that x�y ∈ I0. Therefore I0 is implicative.
�

Proposition 3.23. If a vague set A of M satisfies the condition (3.8), then

(3.12) (x� y � z ∈ A(α,β) & z∼ � y ∈ A(α,β) ⇒ x� y ∈ A(α,β))

for all x, y, z ∈ M and α, β ∈ [0, 1].
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Proof. Assume that A satisfies the condition (3.8) and let x, y, z ∈ M and α, β ∈
[0, 1] be such that x�y�z ∈ A(α,β) and z∼�y ∈ A(α,β). Then VA(x�y�z) ≥ [α, β]
and VA(z∼ � y) ≥ [α, β]. It follows from (3.8) that

VA(x� y) ≥ imin{VA(x� y � z), VA(z∼ � y)} ≥ [α, β]

so that x� y ∈ A(α,β). �

Applying Theorem 3.19 and Proposition 3.23, we have the following theorem.

Theorem 3.24. If A is a vague ideal of M that satisfies the condition (3.8), then
A(α,β) is an implicative ideal of M for all α, β ∈ [0, 1].

Given a vague set A of M, we finally establish the smallest vague ideal of M
that contains A. For two vague sets A and B of M, if VB(x) ≥ VA(x) for all x ∈ M
then we say that B contains A.

Theorem 3.25. Let A be a vague set of M. Define a vague set B of M as follows:

VB(x) = isup{imin{VA(a1), VA(a2), · · · , VA(an)} | x ≤ a1⊕
a2 ⊕ · · · ⊕ an for some a1, a2, · · · , an ∈ M}.

Then B is the smallest vague ideal of M that contains A.

Proof. Obviously, VB(0) ≥ VB(x) for all x ∈ M. Let x, y ∈ M be such that

x ≤ a1 ⊕ a2 ⊕ · · · ⊕ an

and
x∼ � y ≤ b1 ⊕ b2 ⊕ · · · ⊕ bm

for some a1, a2, · · · , an, b1, b2, · · · , bm ∈ M. Then

y ≤ x ∨ y = x⊕ x∼ � y
≤ a1 ⊕ a2 ⊕ · · · ⊕ an ⊕ b1 ⊕ b2 ⊕ · · · ⊕ bm,

and so

VB(y) ≥ imin{VA(a1), VA(a2), · · · , VA(an), VA(b1), VA(b2), · · · , VA(bm)}.

Denote by

Ω1 := {imin{VA(a1), VA(a2), · · · , VA(ai)} | x ≤ a1⊕
a2 ⊕ · · · ⊕ ai for some a1, a2, · · · , ai ∈ M}

and
Ω2 := {imin{VA(b1), VA(b2), · · · , VA(bj)} | x∼ � y ≤ b1⊕

b2 ⊕ · · · ⊕ bj for some b1, b2, · · · , bj ∈ M}.
Then

imin{VB(x), VB(x∼ � y)} = imin{isupΩ1, isupΩ2}
= isup{imin{VA(a1, VA(a2), · · · , VA(ai), VA(b1),

VA(b2), · · · , VA(bj)} | x ≤ a1 ⊕ a2 ⊕ · · · ⊕ ai;
x∼ � y ≤ b1 ⊕ b2 ⊕ · · · ⊕ bj

for some a1, a2, · · · , ai, b1, b2, · · · , bj ∈ M},
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and so VB(y) ≥ imin{VB(x), VB(x∼ � y)}. By Theorem 3.8, we know that B is a
vague ideal of M. Since x ≤ x⊕ x for all x ∈ M, we get

VB(x) ≥ imin{VA(x), VA(x)} = VA(x)

for all x ∈ M, that is, B contains A. Now let C be a vague ideal of M that contains
A. For any x ∈ M,

VB(x) = isup{imin{VA(a1), VA(a2), · · · , VA(an)} | x ≤ a1 ⊕ a2 ⊕ · · · an

for some a1, a2, · · · , an ∈ M}
≤ isup{imin{VC(a1), VC(a2), · · · , VC(an)} | x ≤ a1 ⊕ a2 ⊕ · · · an

for some a1, a2, · · · , an ∈ M}
≤ VC(x).

Therefore B is the smallest vague ideal of M that contains A. �

4. Prime Vague Ideals

In this section, we define the notion of a prime vague ideal of a pseudo MV-
algebra and investigate its properties.

Definition 4.1. A vague ideal A of M is said to be prime if it is non-constant
vague set and satisfies:

(4.1) (∀x, y ∈ M) (VA(x ∧ y) = imax{VA(x), VA(y)}),

that is, for every x, y ∈ M,

(4.2)
tA(x ∧ y) = max{tA(x), tA(y)},
1− fA(x ∧ y) = max{1− fA(x), 1− fA(y)}.

We provide characterizations of a prime vague ideal.

Theorem 4.2. Let A be a non-constant vague ideal of M. Then the following are
equivalent.

(i) A is a prime vague ideal of M.
(ii) (∀x, y ∈ M) (VA(x ∧ y) = VA(0) ⇒ VA(x) = VA(0) or VA(y) = VA(0)).
(iii) (∀x, y ∈ M) (VA(x� y−) = VA(0) or VA(y � x−) = VA(0)).
(iv) (∀x, y ∈ M) (VA(x∼ � y) = VA(0) or VA(y∼ � x) = VA(0)).

Proof. (i) ⇒ (ii). Assume that A is a prime vague ideal of M. Let x, y ∈ M be such
that VA(x ∧ y) = VA(0), that is, tA(x ∧ y) = tA(0) and 1− fA(x ∧ y) = 1− fA(0).
Then

max{tA(x), tA(y)} = tA(x ∧ y) = tA(0),
max{1− fA(x), 1− fA(y)} = 1− fA(x ∧ y) = 1− fA(0),

and so tA(x) = tA(0) or tA(y) = tA(0), and 1− fA(x) = 1− fA(0) or 1− fA(y) =
1− fA(0). This shows that VA(x) = VA(0) or VA(y) = VA(0).

(ii) ⇒ (iii). By (b13), we have x � y− ∧ y � x− = 0 for all x, y ∈ M. Hence
VA(x � y− ∧ y � x−) = VA(0). It follows from (ii) that VA(x � y−) = VA(0) or
VA(y � x−) = VA(0).

(iii) ⇒ (iv). Replacing x and y by x∼ and y∼, respectively, in (iii) and using
(b6), we have (iv).
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(iv)⇒ (i). Assume that VA(x∼�y) = VA(0) for all x, y ∈ M, that is, tA(x∼�y) =
tA(0) and 1− fA(x∼ � y) = 1− fA(0). Note that

y ≤ (x ∨ y) ∧ (y ⊕ x∼ � y) = (x⊕ x∼ � y) ∧ (y ⊕ x∼ � y) = (x ∧ y)⊕ (x∼ � y)

for some x, y ∈ M. Since A is a vague ideal of M, it follows from (3.1), (3.2) and
(3.3) that

tA(y) ≥ tA((x ∨ y) ∧ (y ⊕ x∼ � y))
≥ min{tA(x ∧ y), tA(x∼ � y)}
= min{tA(x ∧ y), tA(0)} = tA(x ∧ y),

and
1− fA(y) ≥ 1− fA((x ∨ y) ∧ (y ⊕ x∼ � y))

≥ min{1− fA(x ∧ y), 1− fA(x∼ � y)}
= min{1− fA(x ∧ y), 1− fA(0)} = 1− fA(x ∧ y).

Since x ∧ y ≤ y, it follows from (3.2) that tA(x ∧ y) ≥ tA(y) and 1 − fA(x ∧
y) ≥ 1 − fA(y). Hence tA(x ∧ y) = tA(y) and 1 − fA(x ∧ y) = 1 − fA(y), that is,
VA(x ∧ y) = VA(y). By Theorem 3.8 and (c3), we know that

VA(y) ≥ imin{VA(x), VA(x∼ � y)}
= imin{VA(x), VA(0)}
= VA(x).

Consequently, VA(x∧ y) = imax{VA(x), VA(y)}, and so A is a prime vague ideal of
M. Similarly, we can induce the implication (iv) ⇒ (i) for the case of VA(y∼�x) =
VA(0). This completes the proof. �

Theorem 4.3. Let A be a vague ideal of M. Then A is prime if and only if

I0 = {x ∈ M | VA(x) = VA(0)}

is a prime ideal of M.

Proof. Assume that A is a prime vague ideal of M. Then I0 is an ideal of M by
Theorem 3.22. Since A is non-constant, I0 is proper. Let x, y ∈ M be such that
x ∧ y ∈ I0. Then

VA(0) = VA(x ∧ y) = imax{VA(x), VA(y)},

and so VA(x) = VA(0) or VA(y) = VA(0). Therefore x ∈ I0 or y ∈ I0, and hence I0

is a prime ideal of M by Proposition 2.1.
Conversely, suppose that I0 is a prime ideal of M. Since I0 is proper, A is non-

constant. Let x, y ∈ M. Then x � y− ∧ y � x− = 0 ∈ I0 by (b13). It follows from
Proposition 2.1 that x � y− ∈ I0 or y � x− ∈ I0, that is, VA(x � y−) = VA(0) or
VA(y�x−) = VA(0). Using Theorem 4.2, we conclude that A is a prime vague ideal
of M. �

Theorem 4.4. (Prime extension property for vague ideals) Let A be a prime vague
ideal of M and B any non-constant vague ideal of M such that B contains A and
VA(0) = VB(0). Then B is a prime vague ideal of M.
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Proof. Since A is a prime vague ideal of M, we have VA(x � y−) = VA(0) or
VA(y � x−) = VA(0) for all x, y ∈ M by Theorem 4.2. It follows from hypothesis
that

VB(0) = VA(0) = VA(x� y−) ≤ VB(x� y−)
or

VB(0) = VA(0) = VA(y � x−) ≤ VB(y � x−)
so that VB(0) = VB(x � y−) or VB(0) = VB(y � x−) for all x, y ∈ M. Applying
Theorem 4.2, we know that B is a prime vague ideal of M. �
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